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Abstract

For two decades diffusion fiber tractography has been used to probe both the spatial extent of 

white matter pathways and the region to region connectivity of the brain. In both cases, anatomical 

accuracy of tractography is critical for sound scientific conclusions. Here we assess and validate 

the algorithms and tractography implementations that have been most widely used - often because 

of ease of use, algorithm simplicity, or availability offered in open source software. Comparing 

forty tractography results to a ground truth defined by histological tracers in the primary motor 

cortex on the same squirrel monkey brains, we assess tract fidelity on the scale of voxels as well as 

over larger spatial domains or regional connectivity. No algorithms are successful in all metrics, 

and, in fact, some implementations fail to reconstruct large portions of pathways or identify major 

points of connectivity. The accuracy is most dependent on reconstruction method and tracking 

algorithm, as well as the seed region and how this region is utilized. We also note a tremendous 

variability in the results, even though the same MR images act as inputs to all algorithms. In 

addition, anatomical accuracy is significantly decreased at increased distances from the seed. An 

analysis of the spatial errors in tractography reveals that many techniques have trouble properly 

leaving the gray matter, and many only reveal connectivity to adjacent regions of interest. These 

results show that the most commonly implemented algorithms have several short-comings and 

limitations, and choices in implementations lead to very different results. This study should 

provide guidance for algorithm choices based on study requirements for sensitivity, specificity, or 

the need to identify particular connections, and should serve as a heuristic for future developments 

in tractography.
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1. Introduction

Diffusion MRI fiber tractography is widely used to probe the structural connectivity of the 

brain, with a range of applications in both clinical and basic neuroscience [1,2]. However, 

these techniques are subject to a number of serious pitfalls and limitations which may limit 

the anatomical accuracy of the reconstructed pathways [3,4]. In addition, the large number 

of diffusion reconstruction algorithms and tracking strategies that exist are likely to result in 

different “tracts”, with varying levels of accuracy. As utilization of fiber tractography 

continually increases, it is necessary to validate these techniques in order to gain insight into 

the conditions under which they succeed, and more importantly, where they fail.

One approach to validation is through classical tracer injection techniques in animal models, 

followed by histological analysis to defined the “ground truth” pathways for subsequent 

comparisons with diffusion tractography. Traditionally, validating the faithfulness of 

tractography against tracers takes one of two forms. First, some metric of spatial overlap of 

the tract versus the tracer can be computed, which evaluates the overall layout or spatial 

extent of the tract. Second, many studies evaluate connectivity measures, disregarding how 
tracts reach their destinations, with a focus on the strength of the connections between 

different regions of the brain.

Connection strengths estimated from tractography have been compared with invasive tracer 

data accumulated in existing atlases or databases, for example the Markov-Kennedy [5] or 

CoCoMac [6] databases for the macaque, or the Allen Brain Atlas for the mouse [7]. These 

studies have provided encouraging results, finding moderate to high positive correlations 

between tractography and connection strengths [8–10], suggesting that the number of 

reconstructed streamlines is correlated with the strength of connections between brain 

regions. However, tractography becomes less reliable for longer pathways [10], and results 

are heavily dependent on decisions made during the tracking process (i.e. the seeding 

strategy). The use of large-scale tracer databases has the advantage of assessing connectivity 

of a large number of pathways across many cortical areas, however, they have several 

disadvantages. Most notably, tracer injection and MRI are typically not employed on the 

same animal (with few exceptions [11]). Not only can pathway connection strength vary 

between animals, but variance in brain geometry between injected and scanned animals 

could lead to mismatches in identifying the location of the injection regions in the subject of 

interest, together compromising the fidelity of the “ground truth” to which tractography is 

being compared.

Alternatively, a number of studies have investigated the voxel-wise spatial overlap of 

histologically-defined white matter trajectories with those from tractography. Validating 

these measures gives confidence in the ability of tractography to segment specific white 

matter pathways (with subsequent analysis typically taking some quantitative measure along 
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these pathways). For example, Schmahmann et al. [12] compare one implementation of 

tractography (diffusion spectrum imaging) to histological tracing and conclude that 

tractography is able to replicate the major features and geometrical organization of a number 

of association pathways. Improving upon this, in a series of studies on the macaque brain, 

Dauget et al. [13,14] register histological sections of labeled fiber tracts in 3D to diffusion 

tensor imaging (DTI) tractography data. They find a range in spatial agreement, with a range 

of Dice overlap coefficients (0.2–0.75) dependent on the pathway of interest and various 

tractography parameters, and note that DTI has difficulties when tracts cross or divide, an 

issue now referred to as the “crossing fiber” problem.

Building upon these studies, the goal of the present work is to systematically characterize 

the anatomical accuracy of diffusion fiber tractography – both the spatial extent and tract 

connections – and to do this on both the scale of individual voxels as well on a larger domain 

over anatomical regions of interest. To achieve this goal, we utilize the squirrel monkey 

brain, and compare tractography results directly to registered high-resolution tracer data 

from the same animal. We aim here to evaluate the algorithms most commonly employed in 

the literature (all of which are implemented in open-source software packages) in order to 

reveal the successes and shortcomings of the majority of studies utilizing diffusion 

tractography to date. In addition to measures of overlap and connectivity for each algorithm, 

we further assess the effects of user-defined algorithm choices (reconstruction algorithm, 

seeding strategy, tracking logic), distance from seed point, and effects of probabilistic 

thresholding on the fidelity of resulting tractograms. The focus of this work is on 

tractography of the pathways in the motor system. This is because the organization and 

anatomical connections of this system are well understood [15], and the motor system is a 

frequent target of tractography as it is particularly relevant for a variety of disabilities or 

pathologies including stroke [16,17], multiple sclerosis [18,19], Parkinson’s disease [20,21], 

cerebral palsy [22,23], and tumor removal surgeries [24,25], among others. Herein, we 

investigate the spatial errors in these tractography algorithms, asking where in the brain 

these algorithms typically fail, and assess potential reasons for this failure.

2. Methods

All animal procedures were approved by the Vanderbilt University Animal Care and Use 

Committee. Fig. 1 shows the methodology pipeline used in this study. Briefly, biotinylated 

dextran amine (BDA), a histological tracer, was injected into the primary motor cortex (M1) 

of two squirrel monkey brains. Afterwards, diffusion MRI was acquired on the ex vivo 

brains and diffusion fiber tractography performed using 40 different algorithms and/or 

tracking settings. These 40 tractograms resulted in both streamline locations (with the 

exception of two algorithms) and track density maps, which represent the number of 

streamlines traversing each voxel. During the brain sectioning digital photographs of the 

frozen block of the brains were taken to aid in registration of the modalities. Histological 

sections were processed to visualize BDA and imaged at high resolution. BDA was then 

segmented from these images in order to create BDA density maps which can be compared 

directly on a voxel-by-voxel basis to the tractograms and streamline density maps.
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2.1. Tracer injection

For our study we chose BDA, a commonly used neuroanatomical tracer for studying 

neuronal pathways. BDA is transported in both anterograde and retrograde directions, 

yielding sensitive and detailed labeling of both axons and terminals, as well as neuronal cell 

bodies [26]. This tracer relies on axonal transport systems; thus BDA injection was 

performed prior to ex vivo scanning. Under general anesthesia, BDA (Molecular Probes Inc., 

Eugene, OR) was injected (as a 10% solution in phosphate buffer) into M1 cortex of the left-

hemisphere following the procedures followed in previous studies [11,15]. Pressure 

injections of BDA were carried out using a 2 μl Hamilton syringe. Eight injections (1 μl/site) 

were made in order to cover a large M1 region representing the distal forelimb as identified 

by intracortical micro-stimulation. After each injection, the needle was left in the brain for 

5–10 min and then retracted stepwise to avoid leakage of the tracer along the needle track. 

After surgery, the monkeys were allowed to recover, giving the tracer sufficient time to be 

transported along axons to all regions connected to the injected M1 cortex.

2.2. Diffusion MRI acquisition

After animal sacrifice, the brains were perfusion fixed with 4% paraformaldehyde preceded 

by rinse with physiological saline. The brain was removed from the skull and stored in 

buffered saline overnight. The next day, the brain was scanned on a 9.4 T Varian scanner 

using a quadrature birdcage volume coil (inner diameter = 63 mm), and immersed in PBS 

during scanning. Diffusion weighted imaging was performed using a pulsed gradient spin 

echo multi-shot spinwarp imaging sequence with full brain coverage at 300 μm isotropic 

resolution (TR = 4.6 s, TE = 42 ms, 32 gradient directions, b ≈ 1000 s/mm2, image matrix = 

192 × 128 × 115, 1 b0 image). With a brain volume of approximately 20 cm3, this is roughly 

equivalent to high resolution protocol of a human brain scanned at ~1.2 mm isotropic. Bore 

temperature was monitored and maintained at 19–20 °C by circulating air through the bore. 

Acquisition for a single diffusion-weighted volume took approximately 10 min. The scan 

time was extended to 50 h in order to facilitate 9 and 10 signal averages, respectively. The b 

value used in this experiment was lower than is optimal for diffusion studies in fixed tissue 

[27,28] (approximate mean diffusivity of 0.45 × 10–3 mm2/s [29], about half of that 

expected in vivo), due to hardware limitations. A low b value decreases the diffusion-related 

contrast-to-noise ratio (CNR) in the image data (upon which tractography ultimately relies), 

which has the same effect as higher image noise. To compensate for this shortcoming, we 

extended the scan time to 50 h, which yielded a CNR comparable to in vivo human studies 

(equivalent to an in vivo study with mean diffusivity = 0.8 × 10–3 mm2/s and SNR > 50). 

Thus, although the b-value is lower than optimal, the angular contrast is increased, resulting 

in voxel-wise reconstructions consistent with expected anatomy. See Supplementary Fig. 1 

for example orientation distributions derived from example CSD, QBI, and B&S methods in 

both single fiber, crossing fiber, and gray matter regions. Because the scan is ex vivo, and 

only collects a single line of k-space per excitation (as opposed to echo-planar imaging), the 

data was not pre-processed for motion nor susceptibility induced distortions (effective phase 

encode bandwidth is infinite).
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2.3. Diffusion MRI fiber tractography

Forty diffusion tractograms were created. Details of each are out-lined in Table 1. All were 

created using open-source software packages – Diffusion Toolkit and Trackvis [30], FSL 

[31], DSI Studio [32], and MRtrix [33] – typically using the default or recommended 

settings and strategies. For example, constraints (FA, curvature, etc.) and tracking choices 

(step-size, integration, etc.) are set as default or as done on website tutorials, and whole 

brain tracking is performed prior to the filtering techniques assessed. We note that this is not 

a compressive list of all software packages or tracking algorithms, but is representative of a 

number of algorithms and strategies often employed. Table 1 describes any pre-processing 

(if performed), the reconstruction strategy, software package, tractography method and 

algorithm, seeding strategy, as well as additional information that may be useful. Detailed 

descriptions of each method, including software versions, specific commands and 

implementations, and tracking parameters are given as supplementary information. 

Reconstruction techniques included DTI [34], Qball Imaging [35], Ball and Sticks (B&S) 

[36], and Constrained Spherical Deconvolution (CSD) [37]. Tractography included both 

deterministic and probabilistic methods each with a variety of tract propagation strategies. 

Seed regions included both the seed defined by the BDA injection region (named “Seed”) 

(see Section 2.4) as well as the seed dilated 600 μm into the white matter (“Seed600 μm”), a 

strategy often employed in order to propagate out of the gray matter. Seeds were used both 

as a literal seed region, meaning that streamline propagation begins in this mask, or used as a 

region of interest (ROI) “AND” region subsequent to full brain seeding, where streamlines 

were included if they pass through this region. The number of streamlines generated, or 

extracted, was generally determined by the software default parameters. After tractography, 

the number of streamlines traversing each voxel is counted, and saved as track density maps.

2.4. Histology acquisition

Following MRI scanning, the brains were frozen and cut serially on a microtome in the 

coronal plane at 50 μm thickness. The surface of the frozen tissue block (i.e. the “block-

face”) was digitally photographed prior to cutting every third section (i.e. at 150 μm 

intervals). These block-face images have been shown to produce more robust inter-modality 

registration results by providing a relatively undistorted intermediate reference space 

between the histological and MRI data [38].

Sections were divided into six series. Every sixth thin section was processed for BDA 

histochemistry [26], producing a series of 172 sections (83 of which contained evidence of 

BDA stain, or connections to M1). Whole-slide Brightfield microscopy was performed using 

a Leica SCN400 Slide Scanner at 20× magnification, resulting in a maximum in-plane 

resolution of 0.5 μm/pixel.

2.5. Ground truth M1 connectivity

The “ground truth” connectivity of the injection area was determined by the presence of 

BDA-labeled axons in our high-resolution histology, which displayed as brown in the digital 

images. BDA-labeled fibers were segmented and counted following a series of 

morphological processes: top-hat filtering was performed to correct uneven illumination, 

global thresholding to extract fibers (segmenting brown [r/g/b = 165/42/42] using the 
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“colorseg” function available on MathWorks File Exchange), and morphological operations 

to remove non-fiber objects (objects < 11 pixels, empirically chosen) and to remove branch 

points of overlapping fibers. Histological images were down-sampled to the resolution of the 

MRI-data (300 μm isotropic), and the number of BDA fibers per voxel was counted, 

resulting in BDA density maps. These BDA density maps represent the ground truth 

“strength of connections” to the M1 injection area.

2.6. Registration

In order to make direct comparisons between diffusion MRI tractography and histology, a 

multi-step registration procedure was utilized. The chosen procedure is similar to the 

registration framework validated in previous studies [39], which showed that the accuracy of 

the overall registration was approximately one MRI voxel (~300 μm).

Briefly, the high-resolution Leica image was down-sampled to 128 μm/pixel (down-sample 

factor of 256), and registered to the down-sampled photograph (256 × 256 pixels at a 

resolution of 128 μm/pixel) of the corresponding tissue block using a 2D affine 

transformation followed by a 2D non-rigid transformation, semi-automatically calculated via 

the Thin-Plate Spline algorithm [40]. Next, all down-sampled block face photographs were 

assembled into a 3D volume and registered to the 3D diffusion MRI volume (the non-

diffusion weighted volume) using a 3D affine transformation followed by a non-rigid 

transformation automatically calculated via the Adaptive Bases Algorithm [41]. 

Deformation fields produced by all registration steps were concatenated in order to transfer 

BDA density maps into MRI space. Immediately following spatial transformation, the 

Jacobian matrix of the corresponding deformation field was calculated and used to 

compensate the density change caused by geometric transformations. Finally, direct, voxel-

by-voxel comparisons could be made between the diffusion MRI datasets (tractograms) and 

histology datasets (BDA density maps).

2.7. Anatomical accuracy measures

Measures were calculated which describe the anatomical fidelity of the resulting 

tractograms, several of which have been previously employed in the validation literature. 

Here, measures are divided into voxel-wise fidelity metrics, and ROI-based fidelity metrics.

In the following, the BDA defined volume is represented by Bj (j = 1,2, …, m) and 

tractography volume represented by Ti (i = 1,2, …, n).

2.7.1. Voxel-wise measures

• Bundle Overlap (OL) [42,43]: The proportion of voxels that contain BDA fibers 

(i.e. voxels in the BDA binary image volume) that are traversed by at least one 

streamline. The OL describes how well tractography is able to describe the 

volume occupied by BDA fibers and is defined as:

OL =
T i ∩ B j

B j
(1)
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where |•| denotes cardinality.

• Bundle Overreach (OR) [42,43]: the number of voxels containing streamlines 

that are outside of the ground truth BDA bundle divided by the total number of 

voxels within the BDA bundle:

OR
T i\B j

B j
(2)

where operator \ denotes relative complement operation.

• Modified Hausdorff Distance, mean value (HDmean): The Hausdorff distance is 

derived by calculating all the distances from a point in one set (voxels containing 

streamlines) to the closest point in the other set (voxels containing BDA), and 

taking the maximum of these distances. The distribution of minimum distances is 

heavily weighted towards zero, with a small number of voxels that produce large 

distances. Here, we took the mean of the minimum distances. For example, an 

HDmean = 5 mm means that the voxels containing streamlines are, on average, 

within 5 mm from the true BDA pathways.

HDmean = mean supt ∈ Ti
infb ∈ B j

d(t, b), supb ∈ B j
inft ∈ Ti

d b, t) (3)

where sup represents supremum and inf the infimum.

• Modified Hausdorff Distance, 90th percentile (HD90): Here, we took the 90th 

percentile of the minimum distances. In this case, an HD90 = 5 mm means that 

90% of the streamlines are within 5 mm from the true BDA pathways.

HD90=p90 supt ∈ Ti
infb ∈ B j

d(t, b), supb ∈ B j
inft ∈ Ti

d b, t) (4)

All voxel-wise measures were calculated without inclusion of the seed region, as this region 

should always contain streamlines.

2.7.2. ROI-based measures—A total of 71 regions of interest were defined in MRI-

space, as previously described in [29,44,45]. Briefly, 20 Gy matter labels (both cortical and 

deep gray matter) were defined on a separate histological dataset (of the same brain) based 

on cytoarchitectural features revealed in Nissl-stained sections. ROIs were manually labeled 

by an experienced neuroanatomist (author IS), digitized, and transformed to MRI-space 

using similar registration procedures as above. In addition, 51 white matter labels were 

created using fiber tractography, manually defining seed points, and refining tracts based on 

known anatomy. Labels were quality checked by a neuroanatomist (IS), assessing the coarse 

shape and organization of each tract. These data have been incorporated into the first digital 

atlas of the squirrel monkey brain [46], and will be released as a web-viewer tool to facilitate 

navigation through labels, histology, and MRI (manuscript in preparation).
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Using these 71 labels, anatomical fidelity metrics of sensitivity, specificity, and accuracy 

were derived for all tractograms.

• Sensitivity – True positive rate; measures the proportion of positives (regions that 

are occupied by BDA) that are correctly identified as such (using tractography). 

Sensitivity measures the ability to correctly detect all connections of the M1 

region.

• Specificity – True negative rate; measures the proportion of negatives (regions 

that do not contain BDA) that are correctly identified as such (do not contain 

streamlines). Specificity measures the ability to correctly identify voxels that do 

not have connections with M1.

• Accuracy – The number of correct assessments (both true positives and true 

negatives) overall assessments. The accuracy measures the proportion of regions 

that are correctly identified as either connected, or not connected, with the M1 

injection region.

All metrics, both voxel-wise and ROI-based are computed for all algorithms. Additionally, 

effects of reconstruction strategy, tracking algorithm (deterministic vs. probabilistic), 

seeding strategy, and tracking logic (using the seed region as an ROI vs. using it as a literal 

seed) are assessed by grouping algorithms and performing the non-parametric Kruskal 

Wallis test in order to test for statistically significant differences. In addition, we look at the 

effects of the probabilistic threshold and distance from the seed region on these accuracy 

measures.

3. Results

3.1. Histological results

The “ground truth” BDA connectivity of the M1 injection region is shown in Fig. 2, as both 

BDA density maps overlaid on MRI coronal slices (A,C) and as a binary map (B,D) in a tri-

planar view for each subject. Most notably, the highest BDA densities occur in the cortex of 

the injection region, with dense projection fibers down the corticospinal tract (CST) 

traversing the genu of the internal capsule (IC) and the cerebral peduncles (CP). As expected 

based on existing literature, the M1 injection region also has connections with the ipsi-lateral 

anterior parietal cortex (APC), premotor cortex (PM), ventrolateral thalamus, posterior 

parietal cortex (PPC), and supplementary motor area (SMA). In addition, fibers coursing 

through the body of the corpus callosum (BCC) connect with the M1 and PM cortex of the 

contra-lateral hemisphere. We note that the M1 forelimb representation of monkey #2 was 

found to be slightly more rostral and ventral to that of monkey #1.

3.2. Tractograms

The generated streamlines for 10 randomly selected tractography methods are shown in Fig. 

3 for each monkey. Qualitatively, there is tremendous variability in the resulting connectivity 

profiles, both in spatial extent and the pathways represented. Many algorithms result in very 

limited connectivity to the seed region, restricted largely to the adjacent gray matter, while 

other algorithms cover large expanses of the left hemisphere. Notably, few algorithms 
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project to the contra-lateral hemisphere (particularly for monkey #1), and even fewer 

correctly follow the CST through the CPs.

3.3. Voxel-wise anatomical accuracy

Results for the voxel-wise fidelity metrics are shown for all algorithms in Fig. 4, with 

marker shape, color, and fill representing differing reconstruction methods, monkey number, 

and algorithms, respectively. Again, there is large variation in all measures. Importantly, all 

results show similar trends for both monkeys. Overlap measures of OL (Fig. 4, A) vary from 

as low as 0.01 up to 0.71 for the most successful algorithms, indicating that the most 

successful tested methods recover only as much as 70% of the spatial extent of the 

pathways. CSD methods generally show the highest overlap measures, and utilizing the 

dilated seed (seed600) usually results in a greater overlap when compared to the 

corresponding algorithm using the undilated seed region.

The algorithms with the largest overlap generally also have higher over-reach (Fig. 4, B), 

sometimes with more false-positive voxels than the total number of voxels within the BDA 

volume itself (OR > 1). However, most algorithms have very small, or no, OR.

HDmean for all methods lies between 1.7 and 12.4 voxels (Fig. 4, C), meaning that using the 

implemented methods, voxels from tractography, on average, are between 1.7 and 12.4 

voxels away from those of the BDA volume, or vice-versa (note this is a symmetric 

measure). Generally, the methods that on average differ the least from BDA are those 

implementing CSD as a reconstruction method. HD90 (Fig. 3, D) shows trends very similar 

to that of HDmean, with 90% of tractography within 48 voxels from BDA for the worst case, 

and within 5 voxels for the best case.

3.4. ROI-based anatomical accuracy

Fig. 5 displays the results of the ROI-based tractography fidelity measures of sensitivity (A), 

specificity (B), and accuracy (C). Similar to voxel-wise results, there is a wide range of 

performance across algorithms. Specifically, many CSD methods are able to detect a 

majority of the connections to M1 (high sensitivity), but lack in specificity. Conversely, 

nearly all other methods are highly specific, rarely indicating false positive voxels. Taken 

together, there is still some variation in overall ROI-based accuracy, ranging between 0.45 

(algorithm #1, monkey #1) and 0.85 (algorithm #25, monkey #1). ROC curves (Fig. 5, D and 

E) reiterate that even on the broader scale of larger ROI domains, there is always a tradeoff 

in sensitivity and specificity, with a majority of methods at the two extremes, and 

interestingly, the DTI algorithms that use a spherical ROI (centered on the injection region) 

as the seed (indicated by green circles) lie in between. All results (both voxel- and ROI-

based) are given in tabular form in Supplementary Table 1.

3.5. Reconstruction strategy

We next assessed the effects of the reconstruction strategy on both the voxel-based and ROI-

based accuracy measures, and results are shown in Fig. 6. In agreement with qualitative 

observations above, CSD has statistically significantly greater OL, and OR (Fig. 6, A,B), 

and significantly smaller HDmean and HD90 than all other methods (Fig. 6, C,D). The B&S 
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method has significantly greater BTO than QBI and DTI, and no differences in any other 

metric. Similarly, CSD has significantly greater sensitivity, lower specificity, and greater 

accuracy than all other reconstruction techniques (Fig. 6, E–G).

3.6. Tracking algorithm

Differences between deterministic and probabilistic algorithms were also statistically 

significant, as shown in Fig. 7. For voxel-wise metrics, probabilistic algorithms indicate 

greater overlap measures and smaller HD distances (Fig. 7, A,C,D), but a greater OR (Fig. 7, 

B). For ROI-based measures, probabilistic algorithms indicate greater sensitivity, reduced 

specificity, and an overall greater accuracy (Fig. 7, E–G) than deterministic algorithms.

3.7. Seeding strategy

No statistically significant differences were found between the use of the three different 

seeds: the injection region (“seed”), the injection region dilated into the white matter 600 μm 

(“seed600”) and a sphere centered on the seed (“sphere”) (Supplementary Fig. 2). While not 

statistically significant, there are some general trends that dilating into white matter slightly 

increases the median overlap values (OL) as well as the ROI-based sensitivity 

(Supplementary Fig. 2).

3.8. Seeding logic and inclusion criteria

The use of the injection region as either a seed or as an ROI after whole brain seeding only 

had a statistically significant effect on the HDmean (Supplementary Fig. 3), where the use as 

an ROI has a significantly decreased HDmean. No other measure was statistically 

significant. However, the use of the injection region as an ROI had an increased OL and a 

decreased HD90, yet this came with an increased OR. For ROI metrics, the use as an ROI 

had an increased sensitivity and accuracy, but decreased specificity (Supplementary Fig. 3). 

Again, none of these reached statistical significance.

3.9. Probabilistic threshold

For probabilistic algorithms, an “uncertainty” threshold is commonly chosen, usually 5%–

10% of the maximum number of streamlines in a voxel, with voxels containing less than this 

threshold usually disregarded. Here, we assess the effects of the threshold on algorithms #7 

and #8, which differ in only the seed used (#8 utilized the dilated seed) (Fig. 8). The OL 

(Fig. 8, A) is quickly reduced with an increasing threshold, reaching values of 0.03 and 0.07 

(for seed and seed600) at a threshold of 5%. The OR (Fig. 8, B) is almost eliminated entirely 

at a threshold of just 1%. Interestingly, the both HDmean and HD90 (Fig. 8, C, D) are very 

low with no threshold (due to the increased OL), and increase with increasing thresholds. 

For ROIs (Fig. 8, E–G), the thresholds between 0% and 5% have the largest change in 

metrics. A threshold of 5% yields sensitivity, specificity, and accuracy values of 0.11, 1.0, 

and 0.45 (for monkey #1) and 0.16, 1.0, 0.55 (for monkey #2), while a threshold of 0% 

results in a sensitivity of 0.97 (#1) and 0.77 (#2), specificity of 0.59 (#1) and 0.61 (#2), and 

accuracy of 0.83 (#1) and 0.77 (#2). There is comparatively little change in these metrics 

after 2% or 3% thresholds.
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3.10. Track lengths and distance from seed

Table 2 shows the number of tracks generated for each algorithm, along with the mean, 

median, maximum, and standard deviation of tract lengths (in units of mm). Most algorithms 

were limited by the software defined default maximum number of streamlines, or simply by 

the number of tracks passing through the seed ROI. We highlight the three algorithms with 

the lowest (blue) and highest (green) lengths for each category. For reference, the squirrel 

monkey brain is approximately 35 mm across (left to right), 30 mm in height (at the level of 

the injected region), and 50 mm in length (anterior to posterior). Some of the standard 

methods implemented track with maximum lengths of only 10–15 mm, with average lengths 

on the order of 1 mm, clearly not able to cover the spatial extent of the true connections.

We next examine the anatomical accuracy measures as distance from the seed varies. This 

was done by binning results (BDA and tractography) into bins based on a Euclidean distance 

from the center of the seed, and calculating metrics for each case. Fig. 9 shows the results of 

these experiments, with algorithms again separated based on reconstruction method, tracking 

method, seed region, and seeding logic. Intuitively, the overlap measures (Fig. 9, A) 

decrease with increase distance from seed, for all tracking parameters. In nearly all cases, 

the overlap is zero by the 4th “bin”, a distance of 14.7 mm (see figure legend). The OR 

values (Fig. 9, B) show interesting trends, with most overreach occurring in the medium-

distance range (a range still in the ipsi-lateral hemisphere). This is because there is very little 

over-reach for small distances, and few streamlines propagate longer distances (see Table 2) 

thereby contributing only little to OR. For the HD distances (Fig. 9, C, D), in all cases the 

maximum distance between BDA and streamlines increases for the pathways further from 

the seeds. If streamlines do propagate greater distances, they do not do so accurately.

3.11. Pathway representations

To better understand which pathways are more (or less) represented by standard algorithms 

on both voxel and ROI scales, we visualized the number of algorithms that pass-through a 

given voxel (Fig. 10, top), as well as those that indicate connections to a given ROI (Fig. 10, 

bottom). Besides the seed region (M1), the voxels most represented are in the cortical areas 

just anterior (PM cortex) and posterior (PPC) to the injection region, in addition to the 

superficial white matter immediately below the cortex (Fig. 10, top) for both monkeys. Few 

algorithms overlap in the corpus callosum or overlap in the CST, and fewer still have any 

overlapping voxels in the contra-lateral hemisphere.

On the scale of ROIs, Fig. 10 (bottom) shows the BDA connections ranked from highest to 

lowest, with a colored index (colored based on reconstruction method) if the algorithm 

reaches these regions. All algorithms indicate connections with APC and PM regions. Few 

reach the thalamus, and those that do are largely grouped between #21–28 and #37–40, 

employing CSD. Similarly, only a few reach the CST (only 3 and 5 DTI methods for 

monkey #1 and #2, respectively) and fewer extend through to the CP. The ipsi-lateral cortical 

areas (PPC and SMA) are largely represented for most methods, while the contralateral 

connections are few, and again mostly dependent on the reconstruction method or software 

package. Monkey #2 was slightly more successful in identifying contralateral connections 

than tracking on Monkey #1.
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3.12. Spatial errors in tractography

We next ask two questions, where do errors occur? And what do these “error voxels” have in 

common? Following every individual streamline, we record where it first exits the BDA 

mask, meaning it no longer coincides with the M1 pathway. Fig. 11 shows three views each 

of DTI, CSD, and QBI reconstructions (concatenation of all algorithms using that 

reconstruction) highlighting where errors occur for monkey #1 (Monkey #2 results are 

shown in supplementary Fig. 4). Qualitatively, all three methods show hot spots of errors 

posterior to the injection region, in the gray matter, in the PPC (yellow arrow). In addition, 

all show a grouping of errors projecting anteriorly into the sulcal fundi (inferior to the 

injection region) instead of following the U-fibers along the gyral stalk (green arrow). 

Finally, the CSD methods, of which many project down the CST, show evidence of 

prematurely exiting this pathway anteriorly (red arrow).

We quantify several measures at these error locations (Fig. 12 and Supplementary Fig. 5 for 

monkey #1 and #2, respectively). For all reconstruction methods, we find that most errors 

actually occur in gray matter regions (Fig. 12, A), whereas the BDA is distributed 

approximately equally between white and gray matter (Fig. 12, B). In agreement with lower 

OR and increased specificity, a large majority of streamlines for DTI and QBI never “go 

wrong”, never leaving the true pathways volume. When streamlines do leave the BDA mask, 

most errors occur < 7–10 mm away from the seed region (Fig. 12, C) in both white and gray 

matter. To give a reference for distance, the distances from the seed to all voxels occupied by 

BDA is shown in Fig. 12, D, with median distances of about 7 mm. The Euclidean distance 

to the error is always less than the actual length of the streamlines themselves (Fig. 12, E), 

which generally propagate between 10 and 20 mm before they become unreliable. We note 

that MRTrix default tracking parameters have a hard cut-off of maximum streamline length 

of 100 times the voxel size, thus all of the tracking implementations utilizing CSD 

reconstructions (all done in MRTrix) have a maximum streamline length of 30 mm.

A look at the overall distribution of BDA density in BDA-positive voxels (Fig. 12, G) shows 

that a majority of voxels have a very low density, with prevalence decreasing quickly as 

density increases. Quantifying the BDA density along a streamline’s last correct step (Fig. 

12, F), we find that a majority occur in regions of very low BDA (< 2 BDA fibers per voxel) 

and very rarely do streamlines deviate from pathways with strong connections to M1. In 

addition, the voxels with higher BDA densities are consistently more represented by 

tractography than those with lower densities (Fig. 12, H).

4. Discussion

Diffusion MRI tractography is the only non-invasive method that offers the ability to map 

the structural connectivity of the human brain, and its application has been widely adopted 

in both small and large-scale studies over the last two decades in order to improve our 

understanding of normal brain development as well as complex brain disorders. However, 

the application of these methods is arguably racing ahead of our ability to understand the 

data and its limitations. It is critical that these methods result in anatomically accurate 

reconstructions, both in reconstructing major fiber bundles and in quantifying region-to-

region connectivity, not only to ensure that sound conclusions are reached on an individual 
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basis, but also for comparative studies across subjects, time, or even across differing 

diffusion tractography implementations. Here, we aim to answer the question “how reliable 

are the most commonly used methods?”. In addition, we attempt to determine the most 

common pitfalls and successes of these algorithms. We accomplish this by performing both 

diffusion MRI and histological tracing in the same brain. Because of this, we can probe not 

only brain connectivity, but spatial overlap on the scale of individual MRI voxels.

There are several main takeaways from this study. First, we find a sensitivity and specificity 

tradeoff in both voxel-wise measures of spatial overlap and in region-to-region measures of 

tractography accuracy. None of the standard practice algorithms was consistently successful 

at identifying true positive connections AND true negative connections. With the large 

number of commonly implemented pipelines investigated, this study helps emphasize the 

differences between tracking methods. We find a large variation in the tractography 

reconstructions, both visually and quantitatively. The anatomical accuracy of the 

reconstructed pathways is dependent on parameter and algorithm choices. For example, the 

results are most dependent on the voxel-wise reconstruction method used, whether the 

algorithm is deterministic or probabilistic in nature, and the tract threshold used in analysis. 

In general, for all algorithms and implementations, the accuracy decreases for increasing 

distances from the seed. Finally, an analysis of spatial errors indicates that many errors occur 

in the cortex, errors occur when the true fiber density is low, and results of long-range 

connectivity (for example to the contra-lateral hemisphere) should be interpreted with 

caution.

4.1. Anatomical accuracy

Most of the methods implemented in this study do not fully cover the spatial extent of the 

true fiber pathways connected to M1, as shown by low OL values (Fig. 4). This is 

particularly true for DTI (recovering just 20% or less of the true bundles), which was, and 

arguably still is, the most commonly implemented reconstruction algorithm used as a basis 

for tractography. The algorithms that are able to cover large portions of the true fiber 

pathways were typically those implemented using CSD reconstruction with probabilistic 

tractography, however, these suffered from large overreach, sometimes covering twice the 

spatial extent of the true pathways. Discouragingly, measures of distances between histology 

and tractography show that streamlines and tracer are, on average, separated by between 2 

and 10 voxels (HDmean, Fig. 4), however this number is largely influenced by tracer on the 

contra-lateral hemisphere. In summary, none of the commonly utilized methods tested were 

consistently successful at accurately delineating the spatial profile of the true pathways.

While voxel-wise spatial overlap is important, many studies are interested in region-to-

region connectivity or general track shapes where voxel-by-voxel accuracy may not be 

critical. Towards this end, we calculated sensitivity, specificity, and accuracy of these 

methods to identify the presence of connections to various white and gray matter regions of 

interest. Much like OL and OR, the sensitivity and specificity varied dramatically depending 

on algorithm and tracking choices. Notably many algorithms lay at the two extremes of the 

ROC curve (Fig. 5) with either very high sensitivity (typically CSD implementations with 

probabilistic tractography), or high specificity (all other algorithms). It is important to point 
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out that neither the reconstruction method nor tracking method (probabilistic versus 

deterministic) accounts for the sensitivity/specificity tradeoff alone. For example, both 

deterministic and probabilistic methods cover a wide range of sensitivity/specificity with 

different reconstruction methods, and vice-versa, a given reconstruction method can span the 

range of accuracy measures (dependent on tracking method and modulated by other tracking 

parameters). We note that all CSD methods tested were probabilistic, as this was commonly 

done in both literature and existing software packages. Interestingly, three of the four 

algorithms that did not lie at the extremes used DTI with a spherical seed (rather than the 

pre-defined seed). The high specificity for most algorithms, however, is due to the failure to 

propagate longer distances (see Discussion, Errors in Propagation, and Discussion, 
Streamline length), resulting in zero false positive connections.

4.2. Choosing algorithms

Connections of the primary motor cortex are particularly relevant for a variety of disorders, 

for pre-operative planning, and for basic neuroscience of the healthy brain. In addition to 

overall accuracy of the reconstructed pathways, we probe which M1 connections are most 

(or least) represented using different tractography techniques. These results could lend 

insight into the algorithm of choice if a researcher or clinician is interested in a specific 

connection. For example, one may be interested in the thalamic connections for deep brain 

stimulation in patients with Parkinson’s disease or essential tremor [47,48], the contra-lateral 

motor connections through the corpus callosum in patients with epilepsy [49,50], or the 

general corticospinal tract delineation for tumor removal surgery [25,51].

In addition, the sensitivity and specificity analysis should help to choose a tracking and 

reconstruction strategy based on study requirements. An exploratory study of any and all 

potential connections of M1 could choose an implementation with high sensitivity. Our 

results would suggest choosing CSD (Fig. 6), using a seed extended into the WM, using a 

probabilistic method (with a low threshold, if utilized), and using a ROI as an inclusion 

mask rather than as a seed. On the other hand, if a high specificity is required, an algorithm 

could be chosen that has an increased specificity (Fig. 5), but has adequate overlap (Fig. 4) 

and/or meets the requirements for connecting to regions of interest relevant to the study (Fig. 

10). These results are only specific to the M1 of the squirrel monkey brain (see Discussion, 

Limitations), but general trends are expected to be the same for tractography in other 

specimens or differing tracts, although likely with different absolute values.

4.3. Variability

A surprising result of our study was the large variability in the results, given that all 

streamlines were generated using the same data set (same b-value, number of diffusion 

weighted directions, resolution, SNR) and the most basic of algorithms (Fig. 3). This 

variability can be attributed not only to differences in the parameters we tested – 

reconstruction method, which seed was used, how the seed was used, and algorithm – but 

also likely due to the minor variations in implementations from differing software packages. 

This could include variations in termination index (FA, curvature thresholds), step sizes 

used, smoothing, inclusion criteria (maximum and minimum streamline lengths), 

interpolation methods, number of tracts generated, and number of tracts kept for analysis. 
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Analysis of these would make the parameter space intractable, so we’ve chosen to 

implement each algorithm using the default parameters (or those recommended in existing 

tutorials) which represent a majority of the usage.

This variability highlights the importance of using the same tracking parameters for a given 

study. Although we are not aware of comparisons of populations using different tractography 

methods within a study (i.e., the use of CSD for healthy controls and DTI for the diseased 

population), it certainly complicates comparisons across studies. Reported findings, 

statistical differences in indices and locations of these differences, using one technique are 

almost certainly going to differ when using a different implementation. This study also 

highlights the importance of seeds, and how small variability in the seed penetration into 

white matter can lead to large variability in resulting tractography, a factor that could be hard 

to control given individual differences in brain geometries and size, even if analysis is 

performed in a common space.

4.4. Probabilistic threshold

A common strategy following probabilistic tractography is to threshold the streamline count 

to a certain percent of its maximum value (typically 5%), as the voxels containing few 

streamlines are considered to have a higher uncertainty of connection to the seed region [52]. 

Our results shown that the biggest geometrical changes in tractography occur between 

thresholds of approximately 2–3%, beyond which the overreach is reduced and specificity 

increased, but at the cost of dramatically reduced overlap and sensitivity. Similar to 

parameter and tracking considerations, this threshold could be tuned based on the 

requirements of the specific study (see Discussion, Choosing algorithms). And again, there 

is no clear optimal threshold for probabilistic tractography, with several tradeoffs in 

anatomical accuracy that must be considered.

4.5. Common and complex algorithms

This study should not be viewed as a “ranking” of algorithms, but rather as a survey and 

assessment of the methods that are currently most implemented in the literature, and have 

been for the last decade. For example, many of the algorithms and implementations still used 

DTI, which has limitations that have been well known in the diffusion community for quite 

some time [3,53], as well as very basic FACT [54] propagation of streamlines. However, the 

use of these algorithms is still prevalent, largely because of their availability and ease of 

implementation in open source software packages, which require only diffusion images and 

parameters (b-values and b-vectors) to create beautiful tractograms with little to no user 

intervention. Some of the methods implemented do include more advanced high angular 

resolution reconstruction algorithms (i.e. CSD, QBI, B&S), complex decisions made for 

tracking (i.e. probabilistic methods), or even streamline filtering strategies that match fiber 

densities to the diffusion signal (SIFT [55]), with some significant improvements in many 

fidelity measures. However, while these address the problem of fibers crossing within an 

MRI-voxel, they still lack some combination of specificity or sensitivity in all cases.

These algorithms should serve as a benchmark against which future algorithms can be 

compared. Towards this end, the data available here (as well as a phantom dataset and a 
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macaque dataset published in a different study [56]) are being made available for a diffusion 

tractography challenge, hosted by IEEE International Symposium on Biomedical 

Engineering (ISBI 2018). Researchers are free to present their own submissions (even after 

challenge completion) and tract accuracy parameters will be automatically calculated 

(https://my.vanderbilt.edu/votem/).

Based on the current results, there is significant room for improvement in tractography. New 

algorithms and analysis methods are continually proposed and published, and we expect that 

as the algorithms are validated and the fidelity is shown to improve, these methods will be 

more commonly employed. Future development should include algorithms that 

incorporation prior anatomical knowledge [57], use appropriate inclusion/exclusion criteria 

(dependent on tract) [58], or corrections for length and known tracking biases [59–61].

4.6. Length

As expected, and in agreement with previous theoretical and experimental studies [61–63], 

nearly all fidelity metrics worsen as the distance from the seed (or streamline length) 

increases. At the most extreme distances, tractography holds almost no predictive value. 

While some algorithms were limited in that they could not propagate out of the gray matter 

(see Discussion, Spatial errors), the ones that did show evidence of streamlines to the other 

hemisphere did not do so accurately (on the scale of voxels).

4.7. Spatial errors

We assess not only tractography accuracy measures, but also probe where tractography goes 

wrong. We found that for most methods, the first instance of streamline error actually occurs 

in the gray matter (Fig. 11). This can be appreciated qualitatively in Fig. 3 (and 

quantitatively in Fig. 10) where many streamlines show connections to only adjacent cortical 

regions anteriorly (PM) and posteriorly (APC). In many cases (particularly DTI), tracts 

cannot properly extend into the white matter, due to a combination of complex gray matter 

fiber orientations that lead to ambiguous orientation estimates, as well as crossing white 

matter systems adjacent to the cortex [11]. At first sight, the distances to the first 

discrepancy between tractography and tracer was surprisingly short, with an average 

distance of 7–10 mm. However, the streamline lengths to the first errors were on average 10–

20 mm, corresponding to 33–66 voxel-lengths, and anywhere from ~66 (10 mm/.15 mm) to 

as many as ~660 (20 mm/.03 mm) steps, depending on step size (ranging from .03 to .15 

mm).

4.8. In relation to previous validation studies

Several validation studies have aimed to determine the successes and limitations of fiber 

tractography. Specifically, many of these metrics are similarly evaluated on the FiberCup 

[64] dataset using Tractometer [42]. The FiberCup is a physical phantom meant to represent 

a coronal slice of the brain, with crossing, curving, and fanning fiber structures. Although 

the focus was on connectivity metrics, the results of the Tractometer study suggest a much 

more positive outlook, with many algorithms reconstructing 92% or more of the true fiber 

bundles [42], whereas many of our algorithms failed to identify regions not immediately 

adjacent to the seed regions. This could be due to the increased complexity expected in the 
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squirrel monkey tissue, which is expected to be more similar to the complexity seen in the in 

vivo human brain.

As an alternative, many studies utilize histological tracers for validation. Qualitative 

comparisons have shown good agreement with histological tracing in the monkey brain [12], 

or against human cadaver samples [65]. The sensitivity and specificity of tractography in 

detecting pathways has also been systematically explored in the monkey [10,56,66] and 

mouse [9], suggesting a moderate to good accuracy in identifying connections and their 

pathways. However, these all rely on collections of histological data from a brain different 

than the one studied with tractography, and thus cannot access voxel-wise metrics. 

Comparisons with our results show that tractography performs much better when estimating 

connectivity between relatively larger regions of interest rather than fine details on the scale 

of individual voxels. Alternatively, some studies utilize MR-visible tracers as the ground 

truth [67,68], also validating some common implementations of tractography (including 

similar software packages). These studies yielded similar voxel-wise results, although the 

methods are quite different (MR-visible tracers avoid the complexity of registration with 

histology; BDA provides higher spatial resolution connectivity maps). Regardless, all studies 

illustrate a repeated theme – a strong dependence of the results on reconstruction model and 

tractography settings, and that increased sensitivity comes at the cost of decreased 

specificity, thus optimizing tracking parameters is important. Because optimal settings for 

different pathways are likely to vary (due to geometry, location, and complexity), the 

methodology described in this manuscript should be repeated for several pathways of 

interest to the neuroscience or neurosurgery communities.

Our results are largely in agreement with a series of studies performed on a high quality, 

high resolution, ex vivo macaque brain [56,69], where region-to-region connectivity of 

tractography is compared to existing histological tracer studies. The authors demonstrate that 

tractography with high sensitivity will likely show low specificity, and vice-versa [56]. They 

conclude that anatomical accuracy of tractography is fundamentally limited, even with 

exceptional data quality. In addition to the sensitivity/specificity tradeoff, our results indicate 

that a large number of commonly used algorithms (both past and present) lack anatomical 

accuracy in both voxel-wise overlap and region-to-region connectivity. In the macaque study, 

Reveley et al. [69] find that accurate tracking is dependent on the ability to follow the correct 

fiber trajectory through the white matter/gray matter boundary, which is complicated by 

superficial white matter systems immediately adjacent to the cortex. These white matter 

systems are also the likely cause of failure of many algorithms to properly propagate out of 

the cortex.

4.9. Limitations and future work

This study has several potential limitations. The first is the sample size. Significant resources 

are required to perform tracer injections, scan the brain for an extended period of time, 

performed histological reactions, and register individual slices to block face images, all 

before quantitative comparisons can be made. Because of this, we are compiling all data and 

making all resources (both registered histology and MRI) available not only for the ISBI 

2018 challenge, but also on a website containing the first digital atlas of the squirrel monkey 
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brain (publication under review). At this point, we have only assessed a single injection site 

in two monkey brains. Thus, these results are only specific to the connections with the 

primary motor cortex. Although the trends are likely similar across different pathways, 

further evaluations are needed to establish the accuracy of other tracts.

In addition, a major limitation of this study is the MRI protocol, and several sources of error 

are likely related to the sub-optimal acquisition. The acquisition in this study is much closer 

to what would be expected clinically, rather than in the research environment. The number of 

diffusion directions is relatively low for high angular resolution diffusion imaging (although 

on the higher end for tensor-based studies) and the b-value is lower than optimal for ex vivo 

imaging [28], both of which could be sources of variation not related to the algorithms 

themselves. However, the relevant orientation contrast-to-noise ratio between parallel and 

perpendicular diffusivities is increased through multiple averages, facilitating orientation 

distribution reconstructions. For example, Supplementary Fig. 1 shows coherent single fiber 

populations in the corpus callosum, crossing fibers where it crosses with the corona radiata, 

and gray matter distributions largely perpendicular to the white matter/gray matter boundary 

– with fairly consistent results across multiple reconstruction methods. Thus, the 

reconstructions are largely successful, giving expected results, despite the limited 

acquisition. In addition, the FA is preserved ex vivo (Supplementary Fig. 1), with anisotropy 

very similar to that seen in vivo (and in the human) [29] in both white and gray matter, 

justifying the decision to not alter or investigate the default FA thresholds in various 

software implementations. Future work will include more monkeys, and multiple injection 

sites, as well as different acquisition techniques (more time efficient acquisition) and 

different acquisition schemes with multiple diffusion weightings or more diffusion gradient 

directions, for both in vivo and ex vivo brains.

With histology, there are several potential sources of error. First, it is possible that not all 

axons in the injection region were labeled equally, which could contribute to false negative 

tractography results. Errors in Image processing and detection of BDA-labeled fibers could 

also be a source of false positive or false negative BDA in our ground truth dataset. We have 

taken several precautions to ensure that the tracer gets deposited along the entire length of 

the axons (so that stain intensity does not vary with distance), and covers the entire M1 

region of interest. To ensure as much tracer uptake as possible, we made eight injections 

covering large portions of the M1 cortex of interest. We also waited several weeks between 

injection and sacrifice to minimize false negative BDA labels (i.e. to ensure BDA was 

transported along the entire axon) and verified that BDA was visible in axon terminals in the 

cortex. In addition, there is potential geometric mismatch that is not corrected through 

registration. We expect the accuracy to only be on the order of the size of the MR voxels 

themselves [39].

It is important to point out that this study simply asks “is tractography able to identify 

pathways and connections associated with a well-defined cortical region (the injection 

region in M1)”. It does not ask how well tractography extracts a single pathway, instead, M1 

shares connectivity with a number of distinct white matter bundles. If a clinician or scientist 

were trying to extract a known bundle, they may use prior knowledge to place seeds, ROIs, 

or exclusion regions in order to isolate the intended bundle. For example, to extract the 
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corticospinal tract, it is common to seed from the whole brain, and isolate streamlines that 

pass through multiple ROIs, typically in the cerebral peduncles and either the superior 

internal capsule or a gray matter region in the motor cortex. It would be of interest to 

determine how well algorithms with manual ROI placement are able to extract specific 

pathways associated with M1 (for example, contralateral connections, thalamic connections, 

corticospinal projections).

In this study, we do not investigate all possible combinations of parameter choices, instead 

focusing on reconstruction method, tracking logic, threshold value, and seeding strategy. It 

would be of interest to also determine the effects of FA, angular threshold, and step size, as 

has been done on mouse models [70] to systematically study the trends and variation in 

measures. Instead, we chose several commonly implemented pipelines, with common 

parameter choices (scaled to the squirrel monkey brain, when necessary), to look at the 

overall accuracy of the standard of practice techniques.

Finally, the definition of “where tractography goes wrong” needs to be clearly stated. We 

chose this to mean “where tractography first doesn’t match” the BDA pathways, because at 

this point tractography is clearly not correct. However, it may – and likely does - go wrong 

before this point, for example by stepping onto a crossing fiber well inside the BDA mask, 

possibly due to orientation mismatch or the inability to identify all fiber populations present 

in a voxel. For this reason, assessing the ability of reconstruction algorithms to correctly 

describe the distribution of neuronal fibers is also an important step in the validation process 

[71,72].

5. Conclusions

Diffusion tractography has seen widespread use for investigating the structural connectivity 

of the human brain. Despite known limitations of common methods, and a large number of 

advanced algorithms and reconstruction methods, most studies still implement common, 

open-source tractography methodologies. We found that none of these standard-practice 

algorithms is consistently successful at recovering the spatial extent of fiber pathways, or 

revealing region-to-region connectivity. The anatomical accuracy of results is dependent on 

parameter and algorithm choices, and accuracy decreases at increased streamline lengths. 

Finally, error analysis indicates that tractography in many cases is not able to leave the gray 

matter, and is not successful at recovering low density fiber pathways.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Methodology pipeline. High resolution BDA micrographs are registered to the 

corresponding digital photograph of the frozen tissue block, which is registered to the 3D 

diffusion MRI volume. From the micrograph, BDA is automatically segmented, resulting in 

a BDA density map. From diffusion MRI, tractography is performed, resulting in tract 

density maps. Direct, voxel-by-voxel comparisons can now be made between histology and 

diffusion tractography.

Schilling et al. Page 24

Magn Reson Imaging. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Histological Results. BDA density is shown overlaid on the non-diffusion weighted volume 

for five coronal slices for monkey #1 (A) and monkey #2 (C). A BDA mask is shown as a 

volume rendering indicating the presence of BDA in a given voxel for monkeys #1 (B) and 

#2 (D). Injection region is shown in blue, BDA mask is shown in yellow.
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Fig. 3. 
Standard-practice pipelines vary widely in resulting tractography reconstructions. Diffusion 

Tractograms for streamline-generating algorithms are shown in both coronal and sagittal 

planes, for 10 randomly selected algorithms.
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Fig. 4. 
Voxel-wise anatomical accuracy measures. Values for overlap (A), overreach (B), modified 

Hausdorff distance [mean] (units of voxels) (C), and modified Hasudorff distance [90th 

percentile] (D) are shown for all algorithms. Reconstruction methods are designated by 

symbol shape, subject number by color, and tracking algorithm by the presence (or absence) 

of shape fill.
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Fig. 5. 
ROI-based anatomical accuracy measures. Values for sensitivity (A), specificity (B), and 

accuracy (C) are shown for each algorithm, along with ROC plots of sensitivity vs. 1 – 

specificity for animal #1 (D) and animal #2 (E). Shapes, color, and fill are the same as in 

Fig. 4.
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Fig. 6. 
Reconstruction strategy affects track anatomical accuracy measures. Algorithms were 

grouped by reconstruction strategy, and statistically significant differences are indicated by 

solid bars – results are shown for both monkeys.
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Fig. 7. 
Tracking algorithm affects track anatomical accuracy measures. Algorithms were grouped 

by tracking strategy (deterministic and probabilistic), and statistically significant differences 

are indicated by solid bars – results are shown for both monkeys.
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Fig. 8. 
Probabilistic threshold affects track anatomical accuracy measures. Analysis is performed on 

algorithm #7 and #8 for subject #1 (red) and #2 (blue) which differ only in seed (#8 uses a 

dilated seed). Vertical lines represent thresholds at 5%, 10%, 20%, and 50% of the 

maximum number of streamlines in a voxel.
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Fig. 9. 
Track length (distance from seed) affects track anatomical accuracy measures. Measures are 

binned across equidistant intervals (in mm) of < 4.9, 4.9–9.8, 9.8–14.7, 14.7–19.6, and > 

19.6 – results are shown for both monkeys.
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Fig. 10. 
Algorithms vary in estimating both spatial extent and connectivity. The number of 

algorithms reaching given voxels (top) are shown overlaid on select coronal slices. On the 

scale of ROIs (bottom), if an algorithm has at least one streamline reach a region known to 

be occupied by BDA, the index displays as a color (as opposed to black for “no 

connection”). Colors indicate the reconstruction method used (red: DTI; green: Qball; blue: 

B&S; cyan: CSD). Regions on the vertical axis are listed in order of BDA densities derived 

from histology (i.e. most BDA occurs in M1).
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Fig. 11. 
Where tractography goes wrong. Density maps overlaid on the BDA fiber mask indicating 

where tractography first exits the BDA mask are shown for DTI (left), CSD (middle), and 

QBI (right), in three different orientations. Note that for the B&S algorithm, streamline 

outputs are not given, so we cannot query where error occurs. Results for subject #2 are 

given as Supplementary Fig. 3. Error density maps are scaled individually from maximum to 

minimum error (see colorbar) where gray indicates no streamline error.
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Fig. 12. 
Several sources contribute to tractography error. Pie plots show where error occurs (A) as 

well as BDA volume distribution in white and gray matter (B). The Euclidean distance to 

error voxels is shown for white and gray matter (C) as well as the distance to all voxels 

occupied by BDA (D). The streamline length to the error is shown for white and gray matter 

(E). Finally, the BDA density right before an error occurs is shown (F), as well as the overall 

BDA density distribution (G), and the percent of BDA density represented for each 

algorithm (H). Results for subject #2 are given as Supplementary Fig. 3.
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Table 2

Streamline lengths (in mm). The number of tracks, and mean, median, maximum, and standard deviation of 

streamline lengths are shown for all algorithms. Blue and green boxes highlight the three minimum and 

maximums of select categories, respectively.

Algorithm # #Tracks Mean Length Median Length Max Length St.D. Lengths

1 216 2.3 1.2 15.8 2.5

2 360 4.2 3.1 16.1 3.6

3 8340 6.8 5.1 54.5 7.0

4 435 1.0 0.7 10.4 1.0

5 602 1.8 0.9 14.6 2.2

6 11872 3.8 1.8 39.6 4.5

7 9645000 N/A N/A N/A N/A

8 11795000 N/A N/A N/A N/A

9 2000 7.8 4.2 46.2 7.3

10 2000 4.0 1.6 26.2 5.3

11 2000 12.2 12.0 63.5 8.6

12 2000 6.5 2.0 31.5 7.3

13 2000 13.6 13.7 63.5 9.0

14 2000 7.4 3.0 37.2 7.6

15 2000 12.2 14.1 66.2 8.1

16 2000 7.0 3.6 25.4 6.4

17 2000 18.5 18.8 101.9 12.5

18 2000 9.2 5.2 34.9 8.3

19 2000 19.3 19.5 101.9 12.7

20 2000 9.6 5.8 39.6 8.7

21 5000 16.0 15.1 29.9 9.8

22 5000 17.2 16.8 29.9 9.8

23 4876 21.2 23.4 29.9 8.9

24 5000 22.2 25.3 29.9 8.5

25 5000 10.9 8.1 29.9 8.4

26 5000 11.8 9.5 29.9 8.6

27 4136 17.4 17.3 29.9 9.3

28 5000 18.0 18.0 29.9 9.1

29 5000 6.2 5.0 25.7 4.6

30 5000 6.9 5.8 25.7 4.5

31 2092 8.8 9.2 25.6 4.8

32 2568 9.2 10.0 26.1 4.6

33 5000 4.4 3.1 24.4 3.2

34 5000 4.6 3.5 26.0 3.1

35 1348 6.3 5.4 19.7 3.8

Magn Reson Imaging. Author manuscript; available in PMC 2020 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Schilling et al. Page 39

Algorithm # #Tracks Mean Length Median Length Max Length St.D. Lengths

36 1734 6.5 5.6 25.9 3.9

37 6098 13.2 10.6 29.9 9.7

38 6921 14.1 12.0 29.9 9.8

39 8756 9.7 6.4 29.9 8.2

40 9833 10.5 7.3 29.9 8.6
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