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Abstract

Zika virus (ZIKV) infection during human pregnancy may lead to severe fetal pathology and

debilitating impairments in offspring. However, the majority of infections are subclinical and

not associated with evident birth defects. Potentially detrimental life-long health outcomes in

asymptomatic offspring evoke high concerns. Thus, animal models addressing sequelae in

offspring may provide valuable information. To induce subclinical infection, we inoculated

selected porcine fetuses at the mid-stage of development. Inoculation resulted in trans-fetal

virus spread and persistent infection in the placenta and fetal membranes for two months.

Offspring did not show congenital Zika syndrome (e.g., microcephaly, brain calcifications,

congenital clubfoot, arthrogryposis, seizures) or other visible birth defects. However, a

month after birth, a portion of offspring exhibited excessive interferon alpha (IFN-α) levels in

blood plasma in a regular environment. Most affected offspring also showed dramatic IFN-α
shutdown during social stress providing the first evidence for the cumulative impact of pre-

natal ZIKV exposure and postnatal environmental insult. Other eleven cytokines tested

before and after stress were not altered suggesting the specific IFN-α pathology. While

brains from offspring did not have histopathology, lesions, and ZIKV, the whole genome

expression analysis of the prefrontal cortex revealed profound sex-specific transcriptional

changes that most probably was the result of subclinical in utero infection. RNA-seq analysis

in the placenta persistently infected with ZIKV provided independent support for the sex-

specific pattern of in utero-acquired transcriptional responses. Collectively, our results pro-

vide strong evidence that two hallmarks of fetal ZIKV infection, altered type I IFN response
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and molecular brain pathology can persist after birth in offspring in the absence of congenital

Zika syndrome.

Author summary

A number of studies showed that Zika virus (ZIKV) can cause severe abnormalities in

fetuses, e.g., brain lesions, and subsequently life-long developmental and cognitive

impairment in children. However, the majority of infections in pregnant women are sub-

clinical and are not associated with developmental abnormalities in fetuses and newborns.

It is known that disruptions to the in utero environment during fetal development can

program increased risks for disease in adulthood. For this reason, children affected in
utero even by mild ZIKV infection can appear deceptively healthy at birth but develop

immune dysfunction and brain abnormalities during postnatal development. Here, we

used the porcine model of subclinical fetal ZIKV infection to determine health sequelae in

offspring which did not show apparent signs of the disease. We demonstrated that sub-

clinical fetal infection was associated with abnormal immunological responses in appar-

ently healthy offspring under normal environmental conditions and during social stress.

We also showed silent sex-specific brain pathology as represented by altered gene expres-

sion. Our study provides new insights into potential outcomes of subclinical in utero
ZIKV infection. It also emphasizes that further attempts to better understand silent

pathology and develop alleviative interventions in ZIKV-affected offspring should take

into account interactions of host factors, like sex, and environmental insults, like social

stress.

Introduction

Zika virus (ZIKV) infection during human pregnancy may lead to fetal death, brain lesions, in
utero growth restriction, and microcephaly in newborns resulting in severe life-long impair-

ments [1–4]. Critically, the majority of congenital infections in humans is subclinical [2,5] and

is not associated with easily identifiable brain lesions or birth defects. Deleterious and less

severe delayed neurodevelopmental, motor, and neurosensory abnormalities in apparently

normal at birth human offspring have been described later within one-two years of life [6,7].

Potentially detrimental life-long health outcomes in asymptomatic offspring evoke high con-

cerns [5–9]. Thus, animal models addressing sequelae in offspring may provide valuable infor-

mation. In a pigtail macaque model, maternal ZIKV inoculation during gestation resulted in

substantial brain lesions and silent brain pathology (i.e., periventricular T2-hyperintense foci

and loss of fetal noncortical brain volume, injury to the ependymal epithelium with underlying

gliosis, and loss of late fetal neuronal progenitor cells) in fetuses, even in the absence of micro-

cephaly [10,11]. Two very recent studies in immunocompetent mouse models reported neuro-

cognitive disorders and neurobehavioral deficits in offspring affected with mild congenital

ZIKV infection [12,13]. These pioneering studies provided critical information regarding out-

comes of mild congenital ZIKV infection in mouse offspring. Although, in these models,

ZIKV induced clinical disease with reduced fetal birth weight, postnatal growth impediments,

and neurobehavioral deficits. Thus, models reproducing subclinical in utero infection and

long-term silent health sequelae (e.g., molecular pathology which is difficult to identify with

diagnostic tests in clinical settings) in offspring in the absence of congenital Zika syndrome are
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not reported. While postnatal ZIKV infection in macaque infants resulted in altered emotional

reactivity to acute stress [14], the evidence is still lacking for the cumulative impact of subclini-

cal in utero ZIKV infection and postnatal environmental insults on health sequelae in off-

spring. This knowledge is important because secondary insults during postnatal life can

unmask consequences of in utero acquired silent pathology [15,16].

Pigs are relevant to model human in utero ZIKV infection [17–19] and associated immuno-

pathology and brain pathology in offspring because both species have similar physiology,

genetics, immunity [20–27], fetal brain development and postnatal brain growth [28–31]. We

and others have recently developed a fetal pig model which reproduces key aspects of in utero
ZIKV infection in humans with persistent infection in the fetal brain, fetal membranes, and

placenta [17–19]. Similarly to human and mouse infections [32,33], outcomes of infection in

the porcine model depend on the gestational stage. Zika virus inoculation at the early stage of

fetal development (25 gestation days, gd; the total duration of porcine gestation is 114 days)

resulted in fetal death [19]. In contrast, fetuses infected at the mid-stage of development (50

gd) did not show brain lesions 28 and 60 days later [18,19].

Congenital ZIKV infection in mice increased in utero levels of type I IFNs [34,35], which

was suggested to play a role in fetal demise [34]. In our porcine model studies, subclinical per-

sistent in utero infection in mid-gestation also increased interferon alpha (IFN-α) levels in

fetal blood plasma and amniotic fluid, while IFN-α was below the detection limit in all control

fetuses [18]. In addition, levels of IFN-α positively correlated with ZIKV titers in fetuses. Inter-

estingly, while fetuses did not have pathology or lesions, they showed persistent infection and

dysregulation of more than 600 genes in their brains [18].

In the present study, to establish subclinical in utero infection, we exposed porcine litters to

ZIKV at mid and late gestation, when similarly to humans, the fetal pig brain has a growth

spurt [28,30,31,36]. We defined whether subclinical in utero infection imposes IFN-α sequelae

and molecular brain pathology in offspring that did not have clinical signs of congenital Zika

syndrome. We also tested whether prenatal exposure to subclinical ZIKV infection and post-

natal social stress have a cumulative impact on immune responses and behavior in offspring.

Results

Exposure of fetuses to ZIKV at mid-gestation results in subclinical in utero
infection with no clinical signs of congenital Zika syndrome in offspring

To induce subclinical in utero infection, we directly inoculated two conceptuses (a fetus with

fetal membranes; on average pigs have 14–16 fetuses) from three sows with 105 TCID50/fetus

of the ZIKV PRVABC59 strain at 53–54 gd (S1 Video; Fig 1A and 1B; S1 Fig). Litters with

sham-inoculated conceptuses from three sows were used as controls.

Mothers did not show clinical signs. All pregnant pigs were synchronized and delivered at

term (114–115 days). Control and experimental litters contained 10.6% and 15.9% dead new-

borns, respectively (S1A Table; P = 0.67), which is in line with usual rates of fetal mortality in

pigs [38,39]. The number of weak piglets was also similar in both groups (S1A Table,

P = 0.85). In utero Zika virus exposure did not significantly affect cranium diameter in piglets

(P = 0.41; S1A Table). While body weights at birth were lower in the ZIKV group (ZIKV

group: 1.24±0.27 kg, control group: 1.36±0.35 kg, P = 0.05) (Fig 1C), body weight gain was not

affected (P = 0.92) (Fig 1C and 1D). Brain weights in the ZIKV group (Fig 1E) had a slightly

wider (P = 0.66) distribution (ZIKV group: coefficient of variation 7.9%, control group: coeffi-

cient of variation 4.2%). Brain to body weight ratio (Fig 1F) was also not affected (P = 0.08).

Placental samples collected at birth and offspring brains did not have histopathological lesions

(Fig 2A–2D).
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To confirm in utero infection, we demonstrated high loads of ZIKV in amniotic mem-

branes and placenta from all three ZIKV-exposed litters (Fig 2I; S1B Table). We also detected

ZIKV RNA by in situ hybridization in the placenta and by RT-qPCR targeting the negative

strand of ZIKV RNA in the placenta and amniotic membranes (Fig 2E and 2F; S1B Table).

These results confirm ZIKV transmission between siblings and productive, persistent infection

in fetal membranes and placenta.

All samples from control mothers and piglets were negative for ZIKV-specific IgG antibod-

ies (Abs) (S1C Table). In utero ZIKV exposure caused maternal infection as indicated by

virus-specific IgG Ab in maternal plasma (Fig 2J; S1D Table). Most probably, maternal infec-

tion was transient because maternal blood plasma samples were free for ZIKV RNA at all five

sampling time-points as determined by RT-qPCR (S1B Table). Moreover, in our previous

studies, where we induced more severe in utero infection with higher viral doses, maternal

endometrium and lymph nodes were free from ZIKV [18,19,37]. Next, we determined whether

ZIKV replicated in fetuses and persisted in offspring. ZIKV-specific IgG Abs were detected in

Fig 1. Animal experimental setup. (A) The actual number of experimental animals and sampling schedule for mothers and offspring. (B) A porcine uterus has multiple

fetuses (on average pigs have 14–16 fetuses) with each fetus possessing individual amniotic membrane and placenta. Two fetuses in each pregnant pig were directly

inoculated (I) with ZIKV. See S1 Video for ultrasound-guided inoculation. Afterward, ZIKV spreads (II) between siblings and causes productive infection in (1) amniotic

membranes, (2) placenta, and (3) fetal brains of directly inoculated and trans-infected not-manipulated fetuses [17–19,37]. (C) Body weight, (D) body weight gain, (E)

brain weight, and (F) brain/body weight ratio in control and ZIKV-exposed offspring. Solid lines represent mean values. Brains from offspring were collected at necropsy.

See S1A Table for individual values.

https://doi.org/10.1371/journal.ppat.1008038.g001
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Fig 2. Histology, viral loads, and ZIKV-specific Ab responses. Hematoxylin-eosin staining in the placenta (sampled at birth) (A: control sow #122; B: ZIKV-inoculated

sow #335) and neonatal brain (sampled at euthanasia, 37 days) (C: control piglet #2, sow 720; D: piglet #7 from ZIKV-inoculated sow 409). ZIKV-specific in situ
hybridization in the placenta (sampled at birth) from control (E) and ZIKV (F) litters. Positive cells were found in a sample from pig #335. An immunoperoxidase

monolayer assay (IPMA) to detect and quantify ZIKV-specific IgG Ab in porcine blood plasma. Blood plasma from control (G) and ZIKV-exposed (H) offspring (sampled

at birth). (I) ZIKV RNA loads in amniotic membrane and placenta determined by RT-qPCR. Solid lines represent mean values. The dotted line represents the limit of

detection (LOD). See S1B Table for individual values. ZIKV-specific Ab in offspring blood plasma detected by IPMA (J). All samples from the control litters were

negative. Black dots–Ab titers in maternal blood. Offspring blood at birth was collected before first colostrum feeding. Offspring were subdivided into two subgroups

based on ZIKV-specific serological status at birth: negative for Ab at birth–“N” and positive for Ab at birth–“P.” Solid lines represent mean values. The dotted line

represents LOD. See S1C Table for individual values.

https://doi.org/10.1371/journal.ppat.1008038.g002
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blood plasma from a subset of newborns in all three exposed litters (Fig 2J; S1C Table). In

pigs, maternal Abs do not pass to porcine fetuses through the placenta [40]; however, it is

being transferred passively to offspring via colostrum. Blood plasma samples from all new-

borns were collected before first colostrum ingestion, and high Ab titers demonstrated produc-

tive fetal infection and subsequent in utero Ab responses (Fig 2J; S1C Table). Two ZIKV-

specific RT-qPCR assays did not show viral RNA in the blood plasma, cerebrum, and cerebel-

lum from all exposed and control piglets (including stillborn and weak piglets) (S1B Table).

Altogether, we induced subclinical persistent in utero infection which did not cause readily

identifiable clinical pathology and productive infection in offspring.

Subclinical in utero ZIKV infection is associated with IFN-α sequelae in

affected offspring

Subclinical ZIKV infection in porcine conceptuses increases concentrations of IFN-α in amni-

otic fluids and fetal blood at 28 days after inoculation [18,37]. Here, we defined whether sub-

clinical in utero infection imposes IFN-α sequelae in affected offspring. Within 21 days after

birth, IFN-α (Fig 3A) as well as IL-1β, IL-6, IL-8, IL-10, IL-12, IL-13, IL-17A, TGF-β, TNF,

IFN-β, and IFN-γ levels (at birth) remained below or at the detection limit in control and

ZIKV-exposed piglets. The same levels in both offspring groups suggest that maternal IFN-α
(which could be transferred with milk within the first 21 days of life) equally affected offspring

in both groups during the nursing period. Two ZIKV piglets, however, showed an increase in

IFN-α levels already at 21 days (at weaning–separation of mother from offspring) (Fig 3A).

While piglets from both control and ZIKV litters had detectable IFN-α levels at 32 days, 19%

of ZIKV piglets showed considerably increased levels of IFN-α in their blood plasma (Fig 3A;

S1C Table). Next, we analyzed IFN-α responses in offspring subdivided into two subgroups

based on ZIKV-specific serological status at birth: negative for Ab at birth–“N” and positive

for Ab at birth–“P,” (Fig 2J; S1C Table). Remarkably, the increased IFN-α levels were mostly

attributed to the P subgroup with high ZIKV-specific Ab titers at birth (Fig 3B). IFN-α levels

in the P subgroup were significantly higher than in the control group and N subgroup, indicat-

ing that IFN-α increase may correlate with the serological status in offspring at birth. Maternal

IFN-α likely did not affect increased IFN-α responses in ZIKV offspring at 32 days because

maternal blood IFN-α levels in ZIKV litters were lower or equal to that in control litters

(P� 0.23) (the same was observed in colostrum, P = 0.4; S1D Table) and did not change sig-

nificantly throughout the study (S2 Fig). Moreover, the IFN-α increase in offspring was

detected at 32 days, eleven days after separation of piglets from mothers. In addition, maternal

IFN-α is unlikely to affect fetuses and offspring as it does not cross through the human [41] or

porcine placenta [18,42]. All of other eleven tested cytokines did not show the increase (Fig

3C; S1E Table), suggesting specific IFN-α pathology.

We do not know whether lower levels of IL-1β, IL-6, IL-8, IL-10, IL-12, IL-13, IL-17A,

TNF, and IFN-γ in ZIKV offspring at 32 days (Fig 3C; S1E Table) were caused by subclinical

in utero ZIKV infection or maternal cytokine background (S2 Fig). Maternal blood levels of

these cytokines were lower in the ZIKV group (although the difference was not statistically sig-

nificant) (S2 Fig) that could potentially contribute to the lower cytokine levels in offspring.

Previously described markers of maternal immune activation which may affect fetal health, IL-

6 [43] and IL-17A [44] in the ZIKV group were lower or equal to that in control litters

(P� 0.47); these data are in agreement with findings in pregnant women with acute ZIKV

infection [45] and mice [12]. Also, IL-6 and IL-17A levels in ZIKV group did not change sig-

nificantly throughout the experiment (S2 Fig); the same was found for maternal IL-1β, IL-8,

IL-10, IL-12, IL-13, IFN-β, and IFN-γ (S2 Fig).
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Overall, these data suggest that subclinical in utero ZIKV infection, without active maternal

infection and changes in maternal cytokines, may specifically affect IFN-α response in

offspring.

Combined exposure to subclinical prenatal ZIKV infection and postnatal

social stress induces a synergistic pathological effect on IFN-α responses in

affected offspring

We performed a mixing test (S2 Video) on control and affected piglets at 35 days of age to

identify whether subclinical in utero ZIKV infection and social stress have synergistic effects

on cytokine responses in offspring.

After the mixing test, piglets in the control group showed a slight, up to a 2-fold decrease

(1.3±0.3) in blood plasma IFN-α levels in comparison to the levels before the mixing test (Fig

4A; S1C Table). In contrast, piglets affected with subclinical in utero infection showed dra-

matic, up to a 31-fold decrease (6.8±8.5) in blood plasma IFN-α levels (Fig 4A). This abrupt

decrease in peripheral IFN-α was demonstrated by a considerable proportion of ZIKV-affected

offspring and did not depend on the initial IFN-α level before stress induction. For example,

ZIKV-affected offspring with exceptionally high IFN-α levels before mixing test showed simi-

lar or even lower IFN-α levels as in other groupmates after the mixing test (S1C Table, sow

#409, piglet #7; sow #109, piglets #8 and #10; sow #335, piglets #2 and #12). Also, the decrease

was observed not only in offspring with increased IFN-α levels. ZIKV-affected piglets which

initially had IFN-α levels comparable to control piglets also showed a dramatic decrease after

the mixing test (S1C Table: sow #409, piglet #13; sow #109, piglet #5; sow #335, piglets #5, #8

and #10). Next, we analyzed IFN-α responses in offspring subdivided into two subgroups

based on ZIKV-specific serological status at birth (Fig 4B; S1C Table). ZIKV offspring in both

P and N subgroups showed a statistically significant decrease in blood plasma IFN-α levels

(Fig 4B). In sharp contrast, stress did not induce a significant decrease in other tested cyto-

kines (0.96–1.38 mean fold change, Fig 4C; S1E Table). No difference in IFN-α shutdown was

observed between serological (N and P; P = 0.12) and sex (P = 0.29) subgroups.

Our findings reveal synergistic interactions between subclinical in utero ZIKV infection

and postnatal stress in promoting pathological IFN-α responses in affected offspring.

Subclinical in utero ZIKV infection is associated with sex-specific

molecular brain pathology in affected offspring

We sought to characterize whole genome expression in the prefrontal cortex (PFC) of clinically

normal offspring affected by subclinical in utero ZIKV infection. Brains from 30 ZIKV-

affected offspring and 12 control offspring with no history of in utero infection were sampled

at 37 days after birth and analyzed using RNA-seq (S1C Table). On a global transcriptional

level, gene expression differed considerably between PFC samples from ZIKV-affected and

control offspring (S3A and S3B Fig; S2A Table). Functional set enrichment of Gene Ontology

(GO) biological processes also showed significant effects in brains of ZIKV offspring (Fig 5;

S2B Table). Specifically, genes with altered expression in the PFC of virus-affected offspring

were positively enriched for processes related to cell death (29 GO pathways related to apopto-

sis and necrosis; false discovery rate (FDR)-adjusted P< 0.1, S2B Table), cytokine responses

Fig 3. Cytokine levels in offspring blood plasma. (A) Kinetics of IFN-α in offspring blood plasma. An arrowhead (▲)–weaning at 21 days after birth. (B) IFN-

α in offspring blood plasma at 32 days after birth. Solid lines represent means. The dotted line represents the limit of quantification (LOQ). See raw data in S1C

Table for individual values. (C) Cytokine levels in offspring blood plasma at 32 days after birth. See raw data in S1E Table for individual values. Offspring

subgroups: N–negative for endogenous ZIKV-specific Ab at birth; P–positive for endogenous ZIKV-specific Ab at birth.

https://doi.org/10.1371/journal.ppat.1008038.g003
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and immunity (61 GO pathways; FDR-adjusted P< 0.1, S2B Table) and organ/tissue morpho-

genesis, development, and regeneration (130 GO pathways; FDR-adjusted P< 0.1, S2B

Table). Whereas a large set of biological processes involved in neuronal function, i.e., synaptic

transmission, GABAergic signaling, calcium ion regulation, cerebral cortex neuron differentia-

tion, and others, were negatively enriched (64 GO pathways; FDR-adjusted P< 0.1, S2B

Table) (Fig 5). More stringent analyses of GO biological pathways related to neuronal and cell

death pathways with FDR-adjusted P< 0.05 is represented in Fig 6. Interestingly, “response to

type I interferon” (FDR-adjusted P = 0.0026), “positive regulation of type I interferon produc-

tion” (FDR-adjusted P = 0.026), “regulation of type I interferon production” (FDR-adjusted

P = 0.011) and “response to interferon beta” (FDR-adjusted P = 0.08) GO processes were posi-

tively enriched in the PFC of affected offspring (S3C Fig; S2B Table). Another upregulated

biological process was “response to corticosteroid” (FDR-adjusted P = 0.03) (S3D Fig; S2B

Fig 4. IFN-α shutdown in offspring after social stress. (A) IFN-α in offspring blood plasma before and after social stress (the mixing test). (B)

Fold decrease of IFN-α level after the mixing test. (C) Fold decrease of other tested cytokines after the mixing test. Offspring subgroups: N–negative

for endogenous ZIKV-specific Ab at birth; P–positive for endogenous ZIKV-specific Ab at birth. The dotted line represents LOQ. For negative

samples (below LOQ), fold change was calculated using LOQ value as a baseline. Solid lines represent means. See raw data in S1C and S1E Table for

individual values.

https://doi.org/10.1371/journal.ppat.1008038.g004

Fig 5. Transcriptional changes in the prefrontal cortex of offspring affected with subclinical in utero ZIKV infection (all Control offspring versus all ZIKV

offspring). Molecular pathology network in the prefrontal cortex of offspring affected with subclinical in utero ZIKV infection. Enrichment map of significantly altered

GO biological processes. Red are pathways with positive and blue are with negative enrichment. All subnetworks with FDR-adjusted P< 0.1 and at least three connected

nodes are shown. See raw data in S2B Table for individual GO biological processes.

https://doi.org/10.1371/journal.ppat.1008038.g005
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Table), which is in line with previously reported dysregulation in genes related to physiological

stress responses in porcine fetuses [18]. In support of the observed altered transcriptional pro-

file of corticosteroid-responsive genes, fetuses showed significantly elevated in utero cortisol

levels during persistent ZIKV infection [19]. To find out whether transcriptional and hor-

monal in utero cortisol disbalance associated with subclinical infection imposes sequelae in off-

spring, we measured cortisol concentrations in hair, a well-established test to assess chronic

stress throughout the lifespan [46]. The cortisol levels were higher in ZIKV piglets (S3E Fig;

S1F Table) providing considerable support of transcriptional findings in affected offspring. A

previous study in rhesus macaques demonstrated that even moderate increase in mean hair

cortisol levels (1.59 times) is indicative of chronic stress [47]. The difference in porcine off-

spring, however, was not statistically significant (mean—1.27 times; P = 0.17). Thus, the rela-

tion between subclinical in utero ZIKV infection and chronic stress in offspring remains to be

further confirmed.

Next, we generated gene sets compiled from MalaCards (http://www.malacards.org) and

previous publications [18] (S2C Table) linked to the following clinical disorders associated

with congenital Zika syndrome in human fetuses and neonates: microcephaly, epilepsy, dys-

phagia, clubfoot, and arthrogryposis. Additionally, we collected gene sets from MalaCards for

Guillain-Barré Syndrome, schizophrenia, attention deficit-hyperactivity disorder, psychotic

disorder, anxiety disorder, mood disorder, and learning disability (S2C Table) [18]. Like in

the previous fetal RNA-seq study [18], Gene Set Enrichment Analysis (GSEA) showed that

ZIKV-affected offspring were negatively enriched in the schizophrenia gene set (FDR-adjusted

P = 0.001) (S2D and S2E Table).

To determine whether offspring with the distinct ZIKV-specific serological status at birth

have molecular pathology in the brain, we compared RNA-seq data between N and P sub-

groups. Offspring in both subgroups showed a similar number of downregulated and upregu-

lated genes (Fig 7A; S2F and S2G Table). A considerable number of upregulated and

downregulated GO processes (Fig 7B; S2H–S2J Table), including neuronal and behavioral

processes (Fig 7C; S2J Table), were also shared between N and P subgroups, which is likely

reflective of the similar gene expression profiles. Collectively, this analysis suggests that sub-

clinical in utero ZIKV infection may cause similar molecular pathology in the brain of off-

spring both positive and negative for ZIKV-specific Ab at birth.

Next, we analyzed molecular pathology in female and male offspring affected with subclini-

cal in utero ZIKV infection. Female and male offspring showed a distinct transcriptional signa-

ture in the PFC (Fig 8A; S2K and S2L Table). The considerably larger number of upregulated

pathways in female offspring represented by developmental, differentiation, morphogenesis,

cell migration, transcription, catabolic, cell adhesion/junction, signaling, and tissue remodel-

ing processes (Fig 8B), may signify more intensive compensatory responses to sequelae of in
utero infection. While females and males shared 118 enriched biological processes (S2M

Table), considerably larger loss of affected neuronal and behavior pathways (FDR-adjusted

P< 0.05) was observed in males (Fig 8C). Enrichment analysis of significantly altered pro-

cesses also attributed neuronal and behavioral pathways to male offspring (Fig 8B and

Fig 8D). This suggests a greater loss of neuronal function in males, which is in a strong agree-

ment with more prominent ZIKV-induced neurocognitive pathology in male mouse offspring

[12].

Fig 6. Neuronal and cell death biological processes in the prefrontal cortex of offspring affected with subclinical

in utero ZIKV infection. FDR-adjusted P< 0.05. Blue bars–downregulated processes. Red bars–upregulated

processes. See raw data in S2B Table for individual values.

https://doi.org/10.1371/journal.ppat.1008038.g006
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Although humans and pigs have different placentation types (hemochorial and epithelio-

chorial, respectively) that prevents studies on mechanisms of virus and Ab transmission from

mother to fetus, a fetal placental mesenchyme in pigs has all major cell types found in the

human fetal side of the placenta (chorionic plate) and performs the same fundamental func-

tions [48–50]. Similar to replication in the human placenta [51], ZIKV replicates in the porcine

fetal placental mesenchyme [18,37]. Also, we have recently demonstrated that similar to

human placental infection [51], ZIKV infection in the porcine placental mesenchyme is associ-

ated with the increased number of CD163-positive cells [37]. Thus, to provide independent

support for the sex-specific pattern of transcriptional responses to ZIKV infection, we profiled

the whole genome expression in placental samples persistently infected with ZIKV (S1B

Table). We observed that on a global transcriptional level, gene expression signature in the

infected fetal placental samples also exhibited the considerable sex-specific pattern (Fig 9A;

S2N–S2P Table). After correcting gene expression data for sex the principal component analy-

sis showed that while female and male control samples were grouped close to each other,

ZIKV-infected samples had a strong sex-specific separation indicating a strong dependency of

ZIKV-induced transcriptional changes on animal sex. Zika virus infection may cause discor-

dant clinical outcomes in human dizygotic twins, ranging from severe disease to asymptomatic

infection, and different whole-genome transcriptional responses in neuronal progenitor cells

of twins [52,53]. In accordance, among females, we found three low-responders which

grouped very closely with control samples (Fig 9A; S2N Table). Other three samples were

high-responders (Fig 9A; S2O Table). Non-responder female samples were from the same lit-

ter (#109). Interestingly, both low- and high-responder subsets had the high placental viral

loads (low-responders: 4.74–5.40 log10 ZIKV RNA copies/g, high-responders: 4.74–6.02 log10

ZIKV RNA copies/g; S1B Table). The number of differentially expressed genes in ZIKV-posi-

tive placental samples was considerably higher than in ZIKV-positive brain samples, which is

Fig 7. Molecular pathology in the prefrontal cortex of ZIKV offspring from N and P subgroups. (A) Volcano plots of the upregulated (red) and downregulated

(blue) genes in N and P subgroups. FDR-adjusted P< 0.05. See raw data in S2F and S2G Table for individual gene values. (B) Venn diagram of individual and shared

GO processes in the N and P subgroups. FDR-adjusted P< 0.1. See raw data in S2H–S2J Table for individual process values. (C) Bar plot of shared neuronal and

behavioral GO processes in the N and P subgroups. FDR-adjusted P< 0.1. See raw data in S2J Table for individual process values.

https://doi.org/10.1371/journal.ppat.1008038.g007
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in agreement with ongoing productive placental infection (Fig 2I; S1B Table). The high num-

ber of altered genes in both female and male samples is also in agreement with in vitro RNA-

seq studies in placental cells [54] and in vivo studies in human cells [55]. The higher number of

Fig 8. Sex-specific molecular pathology in the prefrontal cortex of offspring affected with subclinical in utero ZIKV infection. (A) Venn diagram of individual and

shared GO processes in the female and male subgroups. FDR adjusted P< 0.1. See raw data in S2K–S2M Tables for individual process values. Enrichment map of

significantly altered GO biological processes in the prefrontal cortex of female (B) and male (D) offspring affected with subclinical in utero ZIKV infection. Pathways

with positive (red) and negative (blue) enrichment are shown. All subnetworks with FDR-adjusted P< 0.1 and at least three connected nodes are shown. (C) Positive

(red) and negative (blue) enrichment of neuronal and behavioral GO processes in female and male subgroups. FDR adjusted P< 0.05.

https://doi.org/10.1371/journal.ppat.1008038.g008
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affected genes in samples from males (Fig 9B and 9C; S2O and S2P Table) might suggest a

stronger potential for pathological outcomes in males than in females [12]. A large set of

affected biological processes (FDR-adjusted P< 0.05) represented blood vessel and endothelial

development, proliferation, migration, and morphogenesis (Fig 9D, S2Q Table). This is in

agreement with studies in mice [56] and rhesus macaques [57] where ZIKV-induced vascular

pathology was described. Additionally, biological pathways related to actin, extracellular

matrix, and syncytium formation were enriched (S2Q Table).

Collectively, RNA-seq results in the brain of affected offspring and virus-infected placental

samples, which both did not show histopathology and lesions, provide strong evidence for

silent sex-specific molecular pathology.

Next, we tested whether molecular pathology in the brain of affected offspring is associated

with altered behavior in the normal environment and during stress. We did not observe differ-

ences between animal groups in the regular environment, in a pen with mother and littermates

(20 days after birth—38.2±4.4% of active control piglets; 38.5±1.1% of active ZIKV piglets),

after maternal removal (21 days after birth—25.5±4.7% of active control piglets; 29.6±3.9% of

active ZIKV piglets), or one day after maternal separation (22 days after birth—25.8±3.3% of

active control piglets; 25.5±0.5% of active ZIKV piglets). Then, we tested responses under

stressful conditions using the mixing test. Mixing unfamiliar piglets often results in aggressive

fighting to establish a dominance hierarchy [58]. Using this behavioral pattern, we compared

fighting in control and ZIKV offspring (S2 Video). The percentage of initiated and won fights

Fig 9. Sex-specific changes in the global transcriptional signature in the placenta with persistent ZIKV infection. (A) Principal-component analysis (PCA) of RNA-

seq data in the placenta with persistent ZIKV infection. Female low-responders are in the left low corner. Volcano plots display significantly affected genes (P< 0.05) in

female (B) and male (C) placental samples. Blue and red dots indicate downregulated and upregulated genes, respectively. (D) A sample size of male control placentae

(Fig 9A) motivated us to focus on GSEA analysis in only placental samples of female high responders (S2Q Table). GO biological vascular processes significantly altered

(FDR-adjusted P< 0.05) in the placenta with persistent ZIKV infection. See raw data in S2Q Table for individual GO biological processes.

https://doi.org/10.1371/journal.ppat.1008038.g009
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(individually for males and females) were compared against the expected value (50% versus

50%) in control versus ZIKV groups. The percentage of fights initiated by ZIKV male piglets

(mean 69.4%) was more than twice higher than the percentage of fights initiated by control

male piglets (mean 30.6%) (P = 0.13). (Fig 10; S1G Table). Won fights in males were evenly

distributed between control and ZIKV groups (51.8% versus 48.2%; P = 0.92). In contrast, con-

trol females demonstrated more aggressive behavior than ZIKV females as represented by

63.9% of initiated fights (P = 0.45) and 96.3% won fights (P = 0.0039) (Fig 10; S1G Table).

Altogether, the lack of behavioral differences between control and affected groups in the

regular environment and distinct behavioral patterns between groups during the mixing test

suggest that subclinical in utero ZIKV infection and altered gene expression in the PFC might

affect behavior in offspring in the stressful environment.

Discussion

We addressed a question of whether subclinical in utero ZIKV infection may pose health

sequelae in offspring in the absence of congenital Zika syndrome. There are two key findings

from this study. First, subclinical in utero ZIKV infection was associated with abnormal IFN-α
responses in apparently healthy offspring under normal environmental conditions and during

social stress. Second, offspring affected with subclinical in utero infection showed the pro-

foundly altered transcriptional signature in the brain free for ZIKV and lesions.

Here, like in previous mouse [35,59] and non-human primate ZIKV studies [60], we used

in utero inoculation because maternal inoculation in pigs does not cause fetal infection [17].

Fig 10. Behavioral stress responses in offspring. Mixing tests were performed between control and ZIKV-affected

offspring to induce social stress and assess behavior. See raw behavioral data in S1G Table.

https://doi.org/10.1371/journal.ppat.1008038.g010
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However, the present study in offspring clearly demonstrates that subclinical, relatively iso-

lated, ZIKV infection of the fetal-placental unit, without active maternal infection and changes

in maternal cytokines, may cause long-term silent immunopathology and brain molecular

pathology in offspring. This is the important finding suggesting that in addition to well-recog-

nized maternal immune activation [61], rationale combinatory therapeutic interventions

against congenital infections and long-term sequelae should also target specific fetal immuno-

pathology. Among others, ZIKV-agitated in utero IFN-α responses of the fetal and placental

origin [18,34,35] can be considered as therapeutic targets.

Based on our previous fetal studies and present findings in offspring, we suggest a link

between the fetal IFN-α pathways reprogrammed during in utero ZIKV infection [18,37] and

altered IFN-α responses in offspring (Figs 3 and 4). The hypothesis of fetal origins of adult dis-

ease was first described by David Barker, who proposed that disruptions to the in utero envi-

ronment during fetal development program increase risks for disease during adulthood [62].

Subsequently, many studies confirmed that adverse effects during fetal development may pro-

gram postnatal immune and neurological pathology which can be transferred across genera-

tions [63–66]. Our data also suggest age-specific IFN-α responses in the porcine model of

subclinical in utero ZIKV infection. During fetal development, IFN-α levels in fetal blood and

amniotic fluids are increased for several weeks after in utero inoculation [18], with a subse-

quent drop to undetectable levels at around 60 days after inoculation (S4 Fig). Afterward, off-

spring show elevated levels of IFN-α at around 21–32 days after birth (S4 Fig). In support of

our findings, the age-specific nature of in utero acquired neurodevelopmental, behavioral, cog-

nitive, and neuroimmune defects has been experimentally demonstrated [16,36,67–71]. For

example, immune activation during mouse pregnancy causes transiently elevated brain cyto-

kine levels in offspring at birth, decreased levels postnatally, and then elevated levels during

adulthood [67]. Presumably, maturation of the immune and endocrine systems is required to

trigger prenatally acquired neurodevelopmental pathology in offspring [72–74]. Factors deter-

mining the age-specific nature of the in utero acquired ZIKV-induced systemic immunopa-

thology remain to be defined. While cerebrum and cerebellum were negative for ZIKV, we

cannot fully exclude persistent infection in offspring because lymphoid tissues were not tested;

however, in our previous study newborn piglets inoculated with 105.8 TCID50 ZIKV intracere-

brally, intradermally, or intraperitoneally cleared the virus from lymphoid tissues within seven

days [75]. Additional studies, are required for comprehensive testing of multiple organs for

persistent ZIKV infection in offspring affected with subclinical in utero infection and its con-

nection with altered IFN-α responses.

A secondary insult during postnatal life may be necessary to unmask the silent conse-

quences of in utero immune activation [15,16]. Here, we used the mixing test, a validated

approach to model social confrontation in pigs [76–79]. Mixing a pair of unfamiliar individu-

als in a new environment induces stress, to which animals respond with physiological changes.

The test induces cumulative stress from the separation of littermates, confrontation with a

novel environment (a mixing chamber), confrontation with the unfamiliar conspecific and

aggression (fight)-induced stress (S2 Video). Possible effects of sex, body weight, and familiar-

ity with the environment, which may influence aggressive/social behavior and outcomes of the

test [76], were excluded by mixing piglets of the same sex and similar weights in unfamiliar

mixing chambers. We demonstrated that combined exposure to subclinical prenatal ZIKV

infection and postnatal social stress induces synergistic pathological effect promoting abrupt

IFN-α shutdown in affected offspring. Further attempts to better understand silent pathology

and develop alleviative interventions in ZIKV-affected offspring should take into account syn-

ergistic interactions of multiple environmental insults.
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The IFN-α increase and IFN-α shutdown apparently have different, yet unknown, mecha-

nisms as indicated by different responses between N and P subgroups in the normal environ-

ment (Fig 3B) and during stress (Fig 4B). Abrupt nature of both phenomena, however, is

most probably attributed to changes in peripheral blood cells. Because blood monocytes and

dendritic cells are the primary sources of IFN-α in humans [80,81] and pigs [82], these cells

should be studied in terms of in utero acquired ZIKV-induced IFN-α pathology. We also sug-

gest studying hematopoietic stem cells in affected fetuses and offspring since excessive IFN-α
may impact proliferation and reconstituting ability in hematopoietic stem cells and stem cell

niche [83–85]. Interestingly, in contrast to the altered molecular signature in the brain and pla-

centa, the increase of IFN-α in porcine offspring blood did not have the sex-specific nature,

suggesting that brain/placenta-specific phenomenon and described IFN-α immunopathology

in blood most probably have different mechanistic background.

To our knowledge, type I IFN profiles in human fetuses and offspring affected with ZIKV

infection were not addressed, yet. However, it has been shown that acute ZIKV infection is

associated with increased IFN-α levels in the blood sera of pregnant women [45]. Human

infections with other related flaviviruses (dengue virus and West Nile virus) were also associ-

ated with increased IFN-α levels in the blood plasma/sera [86,87]. The relevance of IFN-α
sequelae identified in porcine offspring affected with subclinical in utero ZIKV infection to

sequelae in humans remains to be established. If ZIKV-induced IFN-α sequelae persist in

human offspring, it might have dramatic health consequences. Excessive IFN-α levels were

previously associated with severe viral infection [88], immune dysfunction [89], major depres-

sive disorder [90,91], and dementia [92]. Importantly, cognitive impairment, severe neurologi-

cal sequelae, seizures, prefrontal hypometabolism, and psychiatric syndromes were described

in adult and pediatric patients treated with therapeutic doses of IFN-α [93–98]. Affected IFN-

α responses during stress, specifically, the stress-induced IFN-α shutdown, might also influ-

ence the susceptibility of offspring to other infections. Interestingly, we recently demonstrated

that similar to ZIKV infection [18,37], porcine circovirus 2 (a DNA virus of Circoviridae family

which causes pathology and death in fetuses) in utero infection is associated with consistently

increased fetal IFN-α levels (PCV2-positive fetuses—61.36±12.36 pg/ml of blood plasma;

PCV2-negative—below the detection limit). This proof of concept study is in agreement with a

hypothesis that type I IFNs is a common culprit of severe congenital viral infections and asso-

ciated grave complications in fetuses [34]. In addition, we suggest that in utero inflammation

induced by subclinical TORCH infections [99–108], including ZIKV, may evoke type I IFN

pathology in offspring which can be targeted to reduce long-term sequelae.

In agreement with previous histological, magnetic resonance imaging, and computed

tomography screening of porcine fetal brains [17,18], subclinical in utero ZIKV infection at

mid and late gestational periods did not cause brain lesions in offspring. However, we found

profound transcriptional changes in brains of offspring which did not show clinical signs of

congenital Zika syndrome. We do not know whether two hours-long social stress which was

induced two days before a necropsy could affect transcriptional signature in brains of Control

and ZIKV offspring. Although, the considerable number of tested brain samples, the obvious

difference of the whole genome expression between brains of Control and ZIKV offspring,

and independent confirmation of the altered transcriptional profile in placental samples,

clearly indicate effects of subclinical in utero infection.

Offspring brains were negative for ZIKV, suggesting that transcriptional changes in the

PFC may be a persistent representation of earlier ZIKV replication in their brains during sub-

clinical in utero infection. We believe that ZIKV caused brain infection in at least some off-

spring during their in utero fetal life and was subsequently cleared. In support, first, ZIKV-

specific Abs in newborns detected at birth (P subgroup) (Fig 2J) postulated productive
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infection in developing fetuses during in utero life and most probably in fetal brains because

fetal brain is the target for ZIKV in the porcine model [18,37]. Second, when porcine litters

inoculated at the mid of gestation, ZIKV replicates in the fetal brain for at least 28 days [18,37]

and cleared at 60 days [19]. The virus clearance from fetal brains of rhesus monkeys has been

also suggested [109]. Third, affected type I IFN processes (Fig 5) and “defense response to

virus” (FDR-adjusted P = 0.001) and “response to virus” (FDR-adjusted P = 0.009) (S2B

Table) in brains of offspring, strongly suggest previous infection in the fetal brain. Finally, in

offspring of the N subgroup, the lack of virus-specific Abs at birth (Fig 2J) does not rule out

earlier subclinical fetal and fetal brain infection because ZIKV can persist in brains of porcine

fetuses negative for Abs [18,37]. Even if ZIKV offspring in the N subgroup did not have virus

replication in their internal organs during in utero life, most of them had infection in their

individual amniotic membranes and placenta collected at birth (Fig 2I; S1B and S1C Table).

Fetuses and fetal membranes form a conceptus, a fetal-fetal membrane unit, because fetal,

amniotic membrane, and placental blood circulations are intimately interconnected. Replicat-

ing in individual amniotic membranes and placenta during persistent in utero infection, ZIKV

may distantly affect the developing fetal brain. This was previously described in herpesvirus

and malaria infections in mice and humans [110,111], where pathogens did not reach the

fetus, but the inflammatory process in the placenta affected the normal fetal development. The

role of immune responses to ZIKV at the maternal-fetal interface in birth defects has been also

suggested [112]. In strong agreement, numerous biological processes, including vascular pro-

cesses, were affected in the porcine placenta persistently infected with ZIKV (Fig 9D). Also,

offspring of both N and P subgroups had the altered whole-genome expression signature in

brains (Fig 7). In the fetal pig model of ZIKV infection, the cumulative negative effects origi-

nated in the developing fetal brain, fetal membranes, and placenta are also possible. Alternative

animal model approaches are required to discriminate the effects of local ZIKV replication in

the fetal brain and placenta on health in offspring.

Using RNA-seq, we defined sex-specific transcriptional changes in brains of affected por-

cine offspring, and subsequently confirmed sex-specific responses in infected placental sam-

ples. It is well-recognized that male fetuses are more vulnerable in affected pregnancies, with

more adverse long-term outcomes occurring after birth [66,113]. Accordingly, ZIKV-affected

male piglets demonstrated more dramatic molecular pathology both in the brain and placenta.

In the brains, most affected biological processes related to neuropathology were represented

by male offspring. In the placenta, a higher number of differentially expressed genes was

showed by male offspring (Fig 9B and 9C). Our findings are in agreement with a study in

mice, where male offspring affected with mild ZIKV infection showed higher risks of develop-

ing neurocognitive disorders [12]. Moreover, in a recent study on the prospective human

cohort of ZIKV-exposed children, male gender was identified as a potential predictor of

delayed developmental alterations [7]. Observed behavioral differences between groups during

social stress also had a sex-specific trend (Fig 10). Zika virus-affected male offspring showed

more aggressive social behavior than affected female offspring as represented by a higher per-

centage of initiated and won fights (Fig 10). Altered behavior conveyed by ZIKV-affected por-

cine offspring during stress is in high agreement with findings in macaques [14], where

postnatal ZIKV infection of infants resulted in altered functional connectivity between brain

areas involved in emotional behavior and arousal functions, as well as in distinct alterations in

the species-typical emotional reactivity to acute stress. It is difficult to compare our sex-specific

data in pigs with the macaque model study due to different experimental approaches [14].

While ZIKV-affected offspring showed the trend to behavioral differences (Fig 10), the statisti-

cal significance was not attained in both female and male animals, which is not surprising in

the context of subclinical in utero infection and silent pathology. Delayed neurodevelopmental
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abnormalities identified at the only second year of life have been described in the most recent

study on the prospective human cohort of ZIKV-exposed children [7]. Thus, to further con-

firm and better understand behavioral sequelae in the porcine model, its functional connection

to molecular pathology in the brain and placenta, and the relevance of the model to study

delayed childhood neurodevelopment described in affected human offspring [7], future exper-

iments should utilize the larger sample size, the longer observational periods, and a broader

panel of standardized methods for behavioral and cognitive research in pigs [114–119].

Collectively, our results provide strong evidence for long-term silent immunopathology

and sex-specific brain molecular pathology in porcine offspring and novel insights into patho-

genesis of subclinical in utero ZIKV infection. We also demonstrated that subclinical prenatal

ZIKV exposure and postnatal social stress may cumulatively induce immunopathology in

affected offspring. These findings should encourage further efforts to better understand silent

pathology in fetuses and offspring, monitor ZIKV-affected human cohorts, and develop strate-

gies to prevent and alleviate long-term sequelae.

Materials and methods

Virus

We used low-passage, contemporary, Asian-lineage Zika virus (ZIKV) strain PRVABC59

[GenBank: KU501215.1] isolated from human serum specimen (Puerto Rico, 2015) [120]. After

two passages on C6/36 cells, cell culture media containing ZIKV was centrifuged (12,000g, 20

min, +4˚C), and the supernatant was collected. Media from virus-negative C6/36 cells was used

for mock-inoculation. The absence of mycoplasma contamination in all inoculums and cell cul-

tures was confirmed using LookOut Mycoplasma PCR Detection Kit (Sigma-Aldrich).

Animal experimental design

Animal experiments were performed in strict accordance with the Canadian Council on Ani-

mal Care guidelines for humane animal use. All animal protocols were approved by the Uni-

versity of Saskatchewan’s Animal Research Ethics Board. Six, pregnancy-matched Landrace-

cross pigs, were obtained from a high-health status herd free for porcine reproductive and

respiratory syndrome virus and porcine parvovirus (viruses which can cause fetal infection in

pigs). To exclude porcine circovirus 2 (PCV2) in utero infection (another pig virus which can

cause infection in fetuses) we tested blood plasma collected from all newborns at birth, before

feeding colostrum, for PCV2 antibodies (Ab) [121]. All samples were negative for anti-PCV2

Ab. Pregnant pigs were housed at the Vaccine and Infectious Disease Organization-Interna-

tional Vaccine Centre (VIDO-InterVac) level 3 facilities. Pregnant pigs were randomly

assigned into control (three animals) and ZIKV (three animals) groups and housed in identi-

cal, but isolated rooms. Housing conditions and diet were the same for all sows and offspring.

In utero inoculation was performed at 53–54 gestation days (gd) (the total duration of por-

cine pregnancy is 114–115 days) as previously described [18] with some modifications. Briefly,

to establish subclinical infection, we manipulated only two conceptuses per pregnant pig. Two

conceptuses from three experimental pigs (pig #109, #335, #409) were inoculated intraperito-

neally + intra-amniotic (IP+IA; 100 μl+100 μl) with 105 TCID50 (tissue culture infectious dose

with 50% endpoint) of ZIKV. Two conceptuses from three control pigs (pigs #122, #179, #720)

were inoculated with virus-free media. For precise inoculation, we used an ultrasound-guided

technique which verifies fetal viability before and after injection by visualizing heart beating

(S1 Video). Two fetuses close to the uterine bifurcation (S1 Fig) were directly inoculated. This

fetal location was selected in order to maximize the virus spread within the uterus. Fetuses in

the only one uterine horn were inoculated to reduce manipulation.
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We collected blood samples (in sterile EDTA tubes with vacutainer blood-sampling system

(BD)) from mothers at 53–54 and 112 gestation days (at 0 and 59 days post-fetal inoculation),

on the day of parturition, and 14 and 21 days after parturition. After blood centrifugation

(2,000g, 20 min, +4˚C) plasma was aliquoted and immediately frozen (-80˚C). Colostrum was

collected at delivery day, centrifuged (2,000g, 20 min, +4˚C), and immediately frozen at -80˚C.

Births were monitored closely. Rejected after birth placental tissues and individual amniotic

membranes surrounding each newborn were collected and immediately frozen on dry ice or

preserved in 10% buffered formalin. At birth (day 0), we tagged piglets, recorded gender, and

measured cranium, body dimensions and body weight. After birth, piglets were monitored for

36 days for clinical signs by veterinarians. Placental, amniotic membrane and brain tissues

from stillborn and weak piglets were tested for ZIKV. Weak piglets were euthanized at day 2

after birth and excluded from the study (S1A Table). Mothers were separated from piglets at

21 days after birth. Piglets were weighed at birth and at 32 days after birth. Blood from piglets

was collected at 0 (immediately after birth, before the first colostrum uptake), 14, 21, 32, and

35 days after birth. Blood was collected in sterile EDTA tubes with vacutainer blood-sampling

system (BD) by puncture of the vena cava. After blood centrifugation (2,000g, 20 min, +4˚C)

plasma was aliquoted and immediately frozen (-80˚C).

Piglets were euthanized at 37 days of age. Animals were euthanized by licensed veterinari-

ans with an anesthetic overdose followed by exsanguination: After injecting the anesthetic,

complete unconsciousness was confirmed by loss of pedal and palpebral reflexes and pigs were

rapidly exsanguinated to ensure a quick death. This method minimizes animal distress, and is

consistent with the recommendations of the Panel on Euthanasia of the American Veterinary

Medical Association and approved by the University of Saskatchewan’s Animal Research Eth-

ics Board. At euthanasia, we weighted piglets. Brains were removed, weighed, and preserved in

liquid nitrogen (left hemisphere) or formalin (right hemisphere) within 4–5 minutes after

euthanasia. To avoid the effects of circadian rhythms on gene expression in the brain, animals

from both groups were sampled at the same time within a short period.

Individual activity in offspring

Cameras were mounted above the home pens with mothers and offspring for continuous

video recording. Behavior of each piglet was recorded to determine whether in utero ZIKV

infection affects individual activity in a regular environment, i.e., in a home pen in the pres-

ence of their mother (at 20 days after birth, the whole day), during a novel situation in a famil-

iar environment, i.e., after removal of the mother from the home pen (the second half (12:00

pm -12:00 am) of the 21st day), and at a later time point (at 22 days, the whole day) as previ-

ously described [79]. We analyzed video recordings and quantified the activity of the whole lit-

ter using sampling at 5-min intervals. The number of lying down, and sitting events (passive

behavior), and the number of standing, walking, playing, interacting, and running events

(active behavior) was registered for each litter [79]. The number of active piglets was divided

by litter size and expressed as a percentage at each moment of observations [79].

The mixing test

The mixing test [76–79] was performed at 35 days after birth to determine effects of subclinical

in utero ZIKV infection on blood cytokine levels and aggressive behavior in a stressful environ-

ment—during a social confrontation with an unfamiliar piglet. We used following criteria to

form mixing pairs: (i) A piglet from the ZIKV group was mixed with a piglet from the control

group; (ii) males were mixed with males, females with females; (iii) the piglets’ body weight

differences did not exceed 1 kg.
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Mixing pairs were individually marked with numbers on their backs, relocated to the mix-

ing room and simultaneously released into individual unfamiliar mixing pens (2.5 m x 0.7 m).

Cameras were mounted above each pen. The room was left, and videos were recorded for 120

min, as most fights between unfamiliar pigs occur during the first few hours after mixing

[58,122,123]. Then immediately after the mixing test, we collected blood samples as described

above. We used video recordings to score fighting activities (S2 Video). A fight, i.e., a ‘bout’ of

fighting, was defined as a period of time lasting at least 10 s during which (i) two pigs showed

close physical contact and (ii) five or more head knocks or bites were shown by one or both

pigs. A fight was deemed to have ended when aggressive acts ceased after the retreat of one or

both pigs and pigs were staying separated for 60 s or more. For every fight, we scored the initia-

tor, i.e., the pig that first bites or head knocks. In addition, we recorded the winner and loser of

every fight. The pig that first stopped fighting, retreated, turned away from its opponent or

tried to flee was considered to be the loser of the fight. From these observations, we calculated

the ratio of initiated fights and the ratio of winners within the group. Three blinded investiga-

tors performed analyses of behavioral data (S1G Table). Observations were compared (initia-

tors: Fleiss’ kappa = 0.81, winners: Fleiss’ kappa = 0.98) and averaged both in males and

females [124].

Sample testing

RNA extraction, RT-qPCR assays, serology, Bio-Plex assay, cortisol assay, histology, and

ZIKV-specific in situ hybridization were performed as previously described [18,19,75,125–

131]. The sandwich ELISA (LSBio LS-F23292) to quantify porcine IFN-β in blood plasma sam-

ples was performed as per the manufacturer’s instructions. All details on sample testing are

provided in S1 Appendix.

RNA-seq and bioinformatics

RNA was isolated using TRIzol (Thermo Fisher Scientific) lysis and extraction, and then

cleaned using Total RNA Purification Kit (Norgen Biotek). RNA was assessed on a Bioanalyzer

and all samples had RNA Integrity above 8.5. Complementary DNA (cDNA) libraries for

sequencing were prepared using NEBNext Ultra II Directional RNA Library Prep Kit for Illu-

mina with rRNA depletion (New England Biolabs). Libraries were sequenced on a NovaSeq as

paired-end reads using the 150 base read kit. Over the whole experiment, there was an average

of 26 million paired-end reads per sample. Sequencing data were mapped and quantified using

the pseudo alignment method of Kallisto [132]. A sequence database of coding and non-cod-

ing transcripts was generated from ENSEMBL Sus scrofa 11.1. The count table was assembled

using tximport in R and normalized using EdgeR then converted into a normal distribution

using the voom function and differential expression was calculated using linear and Bayes

models as part of the R package limma. Gene set enrichment was done using human annota-

tion of Gene Ontology using the R function camera.

Confirmation of sex in placental samples was accomplished using the expression of the Y

chromosome and expression of the X chromosome gene KDM6A as it escapes X inactivation

and gives a higher signal in females. Correction for sex was done directly in the linear model

by setting sex as a variable in the model. Before visualization corrected expression values were

generated using the R function remove BatchEffects for data represented in heatmaps (gener-

ated using the R package pheatmap) or principal component plots (generated using the R func-

tion princomp and the ggplot2 package).

The set enrichment results from camera were graphed in Cytoscape using the Enrichment-

Map plugin. All networks were generated using a Jaccard + Overlap with a cutoff of 0.375 and
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a Combined Constant of 0.5. Sub-networks were discovered using GLay cluster and annotated

using the WordCloud plugin of the top 4 words with a bonus of 8 for word co-occurrence.

Gene expression data are provided in S2 Table. An accession number for RNA-seq data is

PRJNA573521 in NCBI BioProject.

Statistical analysis

We used GraphPad PRISM7 software (GraphPad Software Inc., San Diego, CA, USA) for statisti-

cal analyses. Results were considered significantly different when P< 0.05. All data were

expressed as mean ± standard deviation (M ± SD). All raw animal data for this study are provided

in S1 Table. Prevalence of stillborn and weak piglets was compared using Pearson’s chi-squared

test with Yates’ correction for continuity. Body and brain weights and body dimensions were

compared with Mann-Whitney U-test. Maternal cytokines levels between control and ZIKV

groups and within groups were compared with Bonferroni-corrected repeated measures analysis

of variance (rANOVA). IFN-α levels in offspring blood plasma sampled at birth, 14, 21, and 32

days after birth were compared between control and ZIKV groups with Mann-Whitney U-test.

Unpaired Student’s t-test was used to analyze cortisol in hair samples. IFN-α levels in blood

plasma sampled before and after the mixing test were compared between control and ZIKV

groups by ANOVA with Tukey’s post-test. We also assessed fold change between IFN-α levels

before and after the mixing test within N and P subgroups and in sex subgroups—Mann-

Whitney U-test. In the mixing test, within each pair, we quantified a percentage of fights initi-

ated and a percentage of fights won by control piglet or ZIKV piglet. The percentage of initi-

ated and won fights—individually for males and females—were compared against the

expected value (50% versus 50%) in control versus ZIKV groups with two-sided Wilcoxon

signed-rank test.

Supporting information

S1 Appendix. Supplementary materials and methods.

(DOCX)

S1 Fig. A porcine uterus and in utero inoculation of fetuses with ZIKV. (A) A porcine

uterus consists of the uterine body and two horns. (B) Each horn contains multiple fetuses

with each fetus possessing individual amniotic membrane and placenta. Two fetuses

(highlighted in red) in each pregnant pig were directly inoculated with ZIKV or control

media. (C) Afterward, ZIKV spreads between siblings within the horn containing inoculated

fetuses and between fetuses in the opposite horn. (D) As a result, most conceptuses (a fetus

with fetal membranes) within the uterus are infected. In utero ZIKV infection kinetics and in
utero ZIKV tropism in the porcine model is comprehensively described in previous publica-

tions [17–19,37].

(TIF)

S2 Fig. Cytokine levels in maternal blood plasma. Circles represent data from individual

sows. Boxes represent the highest and lowest observations. A horizontal line inside the box is

the mean. An asterisk (�) represents a statistically significant difference (P< 0.05) between

control and ZIKV groups. An arrowhead (▲) represents statistically significant difference

within groups, versus day 0. Dpi–days post-inoculation, gd–gestation days. The dotted line

represents LOQ. See raw data in S1D Table for individual values.

(TIF)

S3 Fig. Transcriptional changes in the prefrontal cortex of offspring affected with subclini-

cal in utero ZIKV infection (all Control offspring versus all ZIKV offspring). Heatmaps of
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310 upregulated (A) and 143 downregulated (B) genes with FDR-adjusted P< 0.05. X and Y

axes represent sample identification and genes, respectively. #122, #179, and #720—control lit-

ters; #109, #335, #409 –ZIKV litters. See raw data in S2A Table for individual gene values. Vir-

alPCR—represents viral loads in amniotic membranes (S1B Table) (C) Enrichment plots of

gene sets of “response to type I interferon” (FDR-adjusted P = 0.0026), “positive regulation of

type I interferon production” (FDR-adjusted P = 0.026), “regulation of type I interferon pro-

duction” (FDR-adjusted P = 0.011) and “response to interferon beta” (FDR-adjusted P = 0.08)

GO processes (S2B Table). (D) Enrichment plot of gene sets of “response to corticosteroid”

GO process (FDR-adjusted P = 0.03) (S2B Table). (E) Chronic cortisol in offspring hair col-

lected at necropsy. Whiskers denote 95% confidence interval. See raw data in S1F Table for

individual values.

(TIF)

S4 Fig. Kinetics of IFN-α in the blood of ZIKV-affected porcine fetuses and offspring. IFN-

α levels (M±SE) were measured in the blood plasma of ZIKV-affected and control porcine

fetuses and offspring. Data for the fetal period (at 78 gestation days, gd) were compiled from

our published study [18], where 53 virus-infected and 22 control fetuses were tested. Data for

110 gd are from study where 14 virus-infected and 16 control fetuses were tested (S1C Table).

Elevated IFN-α levels at 78 gd were significantly higher in ZIKV infected fetuses (P = 0.0068,

Mann-Whitney test) [18].

(TIF)

S1 Table. Birth outcomes, virology, immunology results and the mixing test.

(XLSX)

S2 Table. RNA-seq data.

(XLSB)

S1 Video. Ultrasound-guided fetal inoculation. To confirm fetal viability, fetal heart beating

was verified. First, a needle was inserted into the fetal peritoneal cavity for intraperitoneal (IP)

injection. Second, the needle was pulled into the amniotic cavity for intraamniotic (IA) injec-

tion. After injections, fetal viability was confirmed by heart beating. The left panel represents

the original video. The right panel is the same video with descriptive information. The video

footage is slowed down (1.5x) for better perception.

(MP4)

S2 Video. Aggressive behavior during a social confrontation with an unfamiliar piglet.

Video footage of the mixing test demonstrates the social confrontation between Control and

ZIKV piglets, the fight initiator (piglet #12), typical fight (piglets #8 and #10) and the winner

(piglet #8).

(MP4)
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85. Prendergast ÁM, Kuck A, van Essen M, Haas S, Blaszkiewicz S, Essers MAG. IFNα-mediated remod-

eling of endothelial cells in the bone marrow niche. Haematologica. 2017; 102: 445–453. https://doi.

org/10.3324/haematol.2016.151209 PMID: 27742772

Sequelae of subclinical in utero Zika virus infection in offspring

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008038 November 14, 2019 29 / 32

https://doi.org/10.1016/j.bbi.2012.07.008
http://www.ncbi.nlm.nih.gov/pubmed/22841693
https://doi.org/10.1016/j.neubiorev.2016.05.035
https://doi.org/10.1016/j.neubiorev.2016.05.035
http://www.ncbi.nlm.nih.gov/pubmed/27260127
https://doi.org/10.1016/j.bbi.2016.04.002
http://www.ncbi.nlm.nih.gov/pubmed/27058163
https://doi.org/10.1016/j.bbi.2015.09.015
http://www.ncbi.nlm.nih.gov/pubmed/26408796
https://doi.org/10.1016/j.neubiorev.2009.05.001
http://www.ncbi.nlm.nih.gov/pubmed/19442688
https://doi.org/10.1038/nrn2639
http://www.ncbi.nlm.nih.gov/pubmed/19401723
https://doi.org/10.1016/j.neuroscience.2006.08.004
http://www.ncbi.nlm.nih.gov/pubmed/16973297
https://doi.org/10.1016/j.pnpbp.2009.09.019
http://www.ncbi.nlm.nih.gov/pubmed/19782715
https://doi.org/10.1038/emi.2016.133
https://doi.org/10.1038/emi.2016.133
http://www.ncbi.nlm.nih.gov/pubmed/28196970
https://doi.org/10.1016/j.anbehav.2004.09.013
https://doi.org/10.1016/j.anbehav.2004.09.013
https://doi.org/10.1111/j.1365-2885.2007.00884.x
http://www.ncbi.nlm.nih.gov/pubmed/17803732
https://doi.org/10.1016/j.physbeh.2007.10.002
http://www.ncbi.nlm.nih.gov/pubmed/17991496
https://doi.org/10.1016/j.yhbeh.2005.12.008
http://www.ncbi.nlm.nih.gov/pubmed/16488416
https://doi.org/10.1016/j.clim.2008.01.014
https://doi.org/10.1016/j.clim.2008.01.014
http://www.ncbi.nlm.nih.gov/pubmed/18342575
https://doi.org/10.1126/science.284.5421.1835
https://doi.org/10.1126/science.284.5421.1835
http://www.ncbi.nlm.nih.gov/pubmed/10364556
https://doi.org/10.1111/j.1365-2567.2003.01755.x
http://www.ncbi.nlm.nih.gov/pubmed/14632641
https://doi.org/10.1016/j.leukres.2004.03.012
https://doi.org/10.1016/j.leukres.2004.03.012
http://www.ncbi.nlm.nih.gov/pubmed/15380348
https://doi.org/10.1038/nature07815
https://doi.org/10.1038/nature07815
http://www.ncbi.nlm.nih.gov/pubmed/19212321
https://doi.org/10.3324/haematol.2016.151209
https://doi.org/10.3324/haematol.2016.151209
http://www.ncbi.nlm.nih.gov/pubmed/27742772
https://doi.org/10.1371/journal.ppat.1008038


86. Tobler LH, Cameron MJ, Lanteri MC, Prince HE, Danesh A, Persad D, et al. Interferon and Interferon-

Induced Chemokine Expression Is Associated with Control of Acute Viremia in West Nile Virus–

Infected Blood Donors. J Infect Dis. 2008; 198: 979–983. https://doi.org/10.1086/591466 PMID:

18729779

87. Kurane I, Innis BL, Nimmannitya S, Nisalak A, Ennis FA, Meager A. High Levels of Interferon Alpha in

the Sera of Children with Dengue Virus Infection. Am J Trop Med Hyg. 1993; 48: 222–229. https://doi.

org/10.4269/ajtmh.1993.48.222 PMID: 8447527

88. Davidson S, Crotta S, McCabe TM, Wack A. Pathogenic potential of interferon αβ in acute influenza

infection. Nat Commun. 2014; 5: 3864. https://doi.org/10.1038/ncomms4864 PMID: 24844667

89. Cha L, Berry CM, Nolan D, Castley A, Fernandez S, French MA. Interferon-alpha, immune activation

and immune dysfunction in treated HIV infection. Clin Transl Immunol. 2014; 3: e10. https://doi.org/10.

1038/cti.2014.1 PMID: 25505958

90. Mostafavi S, Battle A, Zhu X, Potash JB, Weissman MM, Shi J, et al. Type I interferon signaling genes

in recurrent major depression: Increased expression detected by whole-blood RNA sequencing. Mol

Psychiatry. 2014; 19: 1267–1274. https://doi.org/10.1038/mp.2013.161 PMID: 24296977

91. Huckans M, Fuller B, Wheaton V, Jaehnert S, Ellis C, Kolessar M, et al. A longitudinal study evaluating

the effects of interferon-alpha therapy on cognitive and psychiatric function in adults with chronic hepa-

titis C. J Psychosom Res. 2015; 78: 184–192. https://doi.org/10.1016/j.jpsychores.2014.07.020 PMID:

25219976

92. Rho MB, Wesselingh S, Glass JD, McArthur JC, Choi S, Griffin J, et al. A potential role for interferon-α
in the pathogenesis of HIV-associated dementia. Brain Behav Immun. 1995; 9: 366–377. https://doi.

org/10.1006/brbi.1995.1034 PMID: 8903853

93. Shakil AO, Di Bisceglie AM, Hoofnagle JH. Seizures during alpha interferon therapy. J Hepatol. 1996;

24: 48–51. https://doi.org/10.1016/s0168-8278(96)80185-1 PMID: 8834024

94. Lieb K, Engelbrecht MA, Gut O, Fiebich BL, Bauer J, Janssen G, et al. Cognitive impairment in patients

with chronic hepatitis treated with interferon alpha (IFNα): results from a prospective study. Eur Psy-

chiatry. 2006; 21: 204–210. https://doi.org/10.1016/j.eurpsy.2004.09.030 PMID: 16632167

95. Murray DM, Hensey OJ, O’Dwyer TP, King MD. Letter to the editor: Further evidence of neurological

sequelae associated with interferon therapy in the pediatric population. Eur J Paediatr Neurol. 2000; 4:

295–296. https://doi.org/10.1053/ejpn.2000.0388 PMID: 11277372

96. Schaefer M, Engelbrechta MA, Gut O, Fiebich BL, Bauer J, Schmidt F, et al. Interferon alpha (IFNα)

and psychiatric syndromes: A review. Prog Neuro-Psychopharmacology Biol Psychiatry. 2002; 26:

731–746. https://doi.org/10.1016/S0278-5846(01)00324-4

97. Juengling FD, Ebert D, Gut O, Engelbrecht MA, Rasenack J, Nitzsche EU, et al. Prefrontal cortical

hypometabolism during low-dose interferon alpha treatment. Psychopharmacology (Berl). 2000; 152:

383–389. https://doi.org/10.1007/s002130000549 PMID: 11140330

98. Raison CL, Demetrashvili M, Capuron L, Miller AH. Neuropsychiatric adverse effects of interferon-

alpha: recognition and management. CNS Drugs. 2005; 19: 105–23. https://doi.org/10.2165/

00023210-200519020-00002 PMID: 15697325
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