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Abstract

The scale effect is an important research topic in the field of geography. When aggregating

individual-level data into areal units, encountering the scale problem is inevitable. This prob-

lem is more substantial when mining collective patterns from big geo-data due to the charac-

teristics of extensive spatial data. Although multi-scale models were constructed to mitigate

this issue, most studies still arbitrarily choose a single scale to extract spatial patterns. In

this research, we introduce the nugget-sill ratio (NSR) derived from semi-variograms as an

indicator to extract the optimal scale. We conducted two simulated experiments to demon-

strate the feasibility of this method. Our results showed that the optimal scale is negatively

correlated with spatial point density, but positively correlated with the degree of dispersion in

a point pattern. We also applied the proposed method to a case study using Weibo check-in

data from Beijing, Shanghai, Chengdu, and Wuhan. Our study provides a new perspective

to measure the spatial heterogeneity of big geo-data and selects an optimal spatial scale for

big data analytics.

Introduction

Scale is a fundamental concept in geography [1]. It has a great impact on the representation,

analysis, and aggregation of spatial data. Previous research [2–4] shows that nearly all geo-

graphical phenomena are scale-sensitive, which further highlights the significance of scale to

geographic research. Openshaw [5] described this ‘scale-sensitive’ phenomenon as the modifi-

able areal unit problem (MAUP), which has two forms—the scale effect and the zoning prob-

lem. The scale effect refers to the fact that using coarser/finer analysis units will inevitably lead

to different analysis results, whereas the zoning problem refers to the differences caused by the

division of the study area even at the same spatial scale (e.g., dividing the study area into rect-

angles versus hexagons). This study focuses on investigating the scale effect. Although ‘scale’

is an ambiguous term with different semantic meanings, it is often used to refer to the size of

the analysis unit or the spatial extent of the study area [6]. In spatial analysis, the size of units

directly determines the amount of details to be included in the analysis and the results gener-

ated. This process creates the scale effect.
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With the rapid development of information and communications technologies (ICTs),

researchers in spatial science have access to a large amount of spatial data with high spatio-

temporal resolutions. The significance of big geo-data on studying human mobility patterns

and the socioeconomic environment has been widely recognized [7–9]. When conducting

these urban-oriented studies, aggregating individual-level data into areal units is unavoidable,

which raises the issue of choosing an appropriate scale when analyzing big geo-data. For exam-

ple, in nationwide studies, it is common to use cities as the basic research unit. However, when

it comes to urban-scale studies, there is no universally adopted analysis unit. In addition,

many types of big geo-data used for urban studies, such as social media check-ins, are exten-

sive data, where the size of the analysis unit determines the amount of data to be included and

affects the value of each unit, whereas for intensive data, such as temperature and elevation

data, the values are independent of the size of the analysis unit. For intensive data, the mean

does not change with different analysis units and the variance declines when the analysis unit

gets coarser [10], whereas for extensive data, the mean value changes when applying different

analysis units and the variance can either increase or decrease with a coarser analysis unit.

Therefore, analyses relying on extensive data are more scale-sensitive and it is more important

to look into the scale effect of extensive data.

Previous work [11, 12] pointed out that the analytical results based on a single spatial scale

cannot provide a complete view of the actual spatial patterns. One potential solution is to build

multi-scale models [13–15] by aggregating the data at various scales. However, this solution

only applies to simple data handling (e.g., spatial statistics), data storage, visualization, and

sharing [15] due to its computational complexity. When discovering spatial patterns, research-

ers tend to arbitrarily choose one spatial scale for simplicity [8, 16–18]. For example, regular

grids are mostly used for urban-oriented studies, where the sizes can vary from 200 m [16],

250 m [8], 500 m [17] to 1,000 m [18]. There is insufficient research on how to optimize the

spatial scale in urban studies. Therefore, it is important to develop methods that can optimize

the choice of spatial scale when characterizing and comparing aggregated data.

Similar research was also conducted by remote sensing scientists to select appropriate spa-

tial resolutions for image processing [19]. The basic idea is that an appropriate spatial resolu-

tion can be determined by the spatial variation of land surface properties [19–24]. Various

statistical measures, such as the local variance [20, 24], the variograms [21, 22], the semivar-

iance at the lag of one pixel [23], and the scale variance [19], have been applied to solve this

issue. Compared with these methods, a semi-variogram, as a commonly used analysis tool in

geostatistics, provides measurable information regarding the variances of spatial units at differ-

ent lags. Previous work has demonstrated the feasibility of semi-variograms to quantify spatial

heterogeneity [25, 26] and explore spatial patterns at different scales [27]. For example, Garri-

gues et al. [25] constructed a normalize difference vegetation index (NDVI) variogram to

quantify the spatial heterogeneity of land cover patterns. The univariate variogram model was

extended by Garrigues et al. [26] to a multivariate variogram model that captures the spatial

heterogeneity in both red and near infrared bands. Laush et al. [27] studied the effects of spatial

and spectral scales on vegetation indices for different types of land cover.

Although the concepts are similar, there are fundamental differences between using semi-

variograms to identify a suitable spatial resolution (i.e., spatial unit) for remote sensing imag-

ery and using them for individual-level big geo-data. In remote sensing studies, researchers

mainly focus on calculating the semi-variances between image cells to classify land use patterns

and identify objects [19, 23]. Each image cell is considered a homogeneous unit, so it is not

common to look into the variances within a certain image cell. However, individual-level big

geo-data are often crowd-sourced point data, such as check-in data harvested from social

media sites. Aggregating such point data to areal units inevitably leads to a loss of information.
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A simple example of aggregating point data is to divide a study area into grid cells, count the

number of points in each cell, and use that count as the value of the cell. In this case, it is neces-

sary to look into the variances of points within each cell (i.e., the intra-unit variance) to under-

stand how much information was lost during aggregation. In addition, the cell values in

remote sensing imagery are mostly intensive data (e.g., NDVI), meaning that the cell values

are normalized and cannot be added up, whereas point-based big geo-data are extensive so the

aggregated cell values can be added up [28]. The mathematical operations are different for

these two types of data, therefore, the statistical measures for intensive remote sensing data

cannot be directly applied to extensive spatial data. Based on the above reasons, our study pro-

poses an innovative strategy to identify the optimal scale for extensive spatial data.

Methods

The semi-variogram and its key parameters

As an efficient tool in geostatistics, a semi-variogram γ(h) was defined as half of the average

squared difference of values between points separated at distance h [29], which is calculated as

half a variogram. A set of γ(h) values can be obtained for each pairwise distance h as shown in

Fig 1. The solid line represents a fitted semi-variogram (theoretical variogram) based on scat-

tered semi-variance values (empirical variogram).

A semi-variogram is normally an increasing curve of the distance h (Fig 1) since nearby

locations are more likely to be more similar than locations far apart. It consists of three main

parameters [30], the nugget (c0), the sill (c0 + c1), and the range (α), reflecting different charac-

teristics of spatial data variance.

Fig 1. A diagram of the semi-variogram with three key parameters: The nugget variance (c0), the sill (c0 + c1), and

the range of spatial autocorrelation (α).

https://doi.org/10.1371/journal.pone.0225139.g001
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As h increases, the semi-variogram may reach a steady point (i.e, the sill) or increase indefi-

nitely. In previous studies, most variograms can reach the sill within the study area, otherwise

the spatial variability of the data goes beyond the predefined spatial extent. The sill (c0 + c1)

represents the total variation of the spatial dataset being investigated. As the partial sill, the

structural variance (c1) reflects the intrinsic characteristic of data. The range (α), which is the

distance where the variogram reaches the sill, representing the maximum spatial distance at

which the dataset can still demonstrate spatial autocorrelation.

Theoretically, a variogram should go through the origin (0,0) because when the lag distance

is getting close to 0, the differences between locations separated by this distance also approach

0. However, in practice, it is common for a variogram to not go through the origin and result

in a positive intersect value at the y axis. This is called the ‘nugget effect’ and the non-zero

intercept is the nugget variance (c0). It is can be caused by measurement errors or micro-varia-

tions that occur at a distance h smaller than the spatial granularity of the analysis [25]. In other

words, the nugget variance (c0) either shows that there are errors during data collection, or

locations separated at short distances still have substantially different values.

Defining the nugget-sill ratio (NSR) for quantifying spatial data variance

structures

There are three categories of spatial variations of aggregated data based on the relation

between the lag distance and the size of the analysis unit: intra-unit variation if the lag distance

is smaller than the size of the unit; adjacent-unit variation if the two are equal, and inter-unit
variation if the lag distance is larger than the unit size. Intra-unit variation measures the infor-

mation loss when aggregating point data into areal units, but it cannot be calculated directly.

However, it is possible to use the γ(h) when h is smaller than the unit size to approximate the

magnitude of the intra-unit variation. To this end, the nugget variance (c0) is a good indicator

for estimating the intra-unit variation, because it is the lower limit of the intra-unit variation

when h approaches 0. In addition, the nugget variance (c0) is scale-related, so it can be a useful

indicator to quantify the intra-unit variation of aggregated spatial data at different scales. A

large nugget variance indicates more substantial information loss during the aggregation.

Therefore, researchers often prefer a small nugget variance if possible.

Geospatial big data, such as social media check-in data and taxi origin-destination data, are

extensive and additive [28], meaning that the most common way to aggregate the data is using

a simple sum operation. This aggregation process inevitably introduces an increasing intra-

unit variation and a larger nugget variance (c0) at a coarser scale. One solution to compare

indicators at different scales is to make extensive data intensive [28] (e.g., convert population

to population density). Another solution is to use a normalized and scale-free indicator. In

this work, we adopt the nugget-sill ratio c0/(c0 + c1) (NSR) as the measure of spatial data vari-

ance structures. The NSR contains information about both the intra-unit variation (i.e., the

nugget variance) and the inter-unit variation, as the sill (c0 + c1) is an approximation of the

limit of the inter-variation; therefore, it is an appropriate indicator of the scale effect in this

study.

The NSR refers to the ratio of the micro-variance as opposed to the total variance [31].

When point data are aggregated to areal units, attributes of all points within the same unit are

represented by the aggregated attributes of the unit. This inevitably causes information loss.

Previous studies [31–33] used this indicator to characterize the spatial dependency between

locations, i.e., a smaller NSR shows a stronger spatial dependency. It is based on the principle

that the closer two locations are, the more similar attributes they have. This study uses the NSR

to quantify the information loss and the scale effect when aggregating point data.
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Estimating semi-variances and calculating the NSR

Eq (1) is used to estimate the semi-variance ĝðhÞ. We use regular cells as the spatial unit, and

the cell size represents the scale of aggregation. In Eq (1), xi and xi + h are cells separated at dis-

tance h; z(xi) is the value of cell xi, which is the sum of properties of all points within that cell;

N(h) is the number of pairs of cells located distance h from each other.

ĝðhÞ ¼
1

2NðhÞ

XNðhÞ

i¼1

½zðxiÞ � zðxi þ hÞ�2 ð1Þ

Considering that the semi-variance value is not statistically reliable at large distances due to

the decreasing number of cell pairs N(h) [30], we chose to only calculate the semi-variance for

lag distances smaller than half of the extent of the study area [30, 34]. We also equally divided

the x-axis into several ranges of lag distances (instead of using a specific distance) to make sure

that we had enough grid pairs in each range. Therefore, Eq (1) is converted to the following

format:

ĝðdkÞ ¼
1

2NðkÞ

XNðkÞ

l¼1

½zðxl
1
Þ � zðxl

2
Þ�

2
ð2Þ

where k is the index of a given distance range (i.e., a ‘distance bin’) and dk is calculated as a rep-

resentative distance of the kth distance range as defined in Eq (3); N(k) is the number of cell-

pairs within the kth distance range; jxl
1
� xl

2
j 2 ½hk � �; hk þ ��, where hk is the median of kth

distance bin, � is a distance tolerance, xl
1

and xl
2

represent the lth cell pair within the distance

bin and zðxl
1
Þ, zðxl

2
Þ are values of cells xl

1
and xl

2
, respectively.

dk ¼
1

NðkÞ

XNðkÞ

l¼1

jxl
1
� xl

2
j ð3Þ

where jxl
1
� xl

2
j represents the Euclidean distance between the cell-pair (xl

1
; xl

2
) and dk is the

mean value of pairwise distances between all cell pairs in the kth distance bin.

According to Eq (2), we can obtain a series of discrete semi-variance estimates, but to calcu-

late the NSR, we still need to fit a continuous mathematical model to the empirical semi-vario-

gram. These models are usually selected from a set of predefined functions [3, 35], which

ensures that the predicted variances are non-negative, such as the Gauss, spherical, exponen-

tial, and power models. Although the polynomial model is not included in these models, it is

selected with the Gauss model in this study, as they can match the shape of empirical vario-

grams and also follow the aforementioned ‘non-negative’ principle. The Gauss is defined:

gðhÞ ¼ c0 þ c1ð1 � e�
h2

d2Þ ð4Þ

where d is the distance parameter; the practical range is
ffiffiffi
3
p

d [34]. The polynomial model is

gðhÞ ¼ �
c1

a2
h2 þ

2c1

a
hþ c0 ð5Þ

where a is the range (α).
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Research process

Fig 2 shows a scale-adaptive integrated method for scale effect evaluation with three steps:

(a) aggregating point data into areal units under multiple scales; (b) fitting the empirical vario-

gram models and calculating indicators; and (c) comparing quantitative results.

First, we aggregate discrete point data into cell units with different sizes. Values of discrete

points within each cell are accumulated as the attribute value of that cell. For example, the

number of check-ins in each cell is the sum of check-ins from all discrete points in that cell.

We then estimate semi-variances for each cell pairs in the study area.

Second, we fit the empirical variogram and calculate the NSR. For aggregated data at each

scale, we take the same steps as follows: Before estimating semi-variance values, we need to

decide the distance tolerance �. To investigate the scale effect, we assume that the � is only

proportional to the cell size, and define that the number of cell pairs within each distance

bin should be more than 30 as suggested by Huijbregts [34]. After calculating the discrete

semi-variogram estimates, we fit the Gauss and polynomial models and then calculate the

NSR.

Finally, we plot a diagram showing the correlation between the NSR and the scale. A small

NSR value means that the intra-cell variance accounts for a small percentage of the total vari-

ance, and thus it can be considered as a guide to the optimal scale (So). More detailed analyses

are presented in the ‘experiments with synthetic data’ section and the ‘case study’ section.

In general, this method builds a bridge between scales and observed spatial data and then

quantifies the scale effect by comparing a group of indicator values at different scales.

Experiments with synthetic data

We designed two sets of simulation experiments to verify the feasibility of the method. The

simulated data in this section are scale-free. The entire study area is a square-shaped

1,000 × 1,000 areal unit. The cell sizes were selected from 10 to 80 with a 5-unit interval. We

generated simulated points from a two-dimensional normal distribution N(μ1, μ2, σ1, σ2, ρ =

0). Centers of the generated points were fixed to the center of the study area (μ1 = μ2 = 500),

and σ (σ1 = σ2 = σ) is a variance parameter representing the spatial dispersion of the simulated

data. In addition, N denotes the number of discrete points generated. Fig 3 shows the spatial

distribution of the generated points and the corresponding heat maps at various scales. At a

finer scale, each unit is small and more similar to each other. As the scale gets coarser, it is eas-

ier to see the spatial heterogeneity of different cells. We conducted two simulations with differ-

ent N and σ to test the proposed method.

Fig 2. Process of quantifying the scale effect with a semi-variogram.

https://doi.org/10.1371/journal.pone.0225139.g002
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Setting σ = 150 ensures that 99% of the generated points can be included in the study area.

We set the number of points N as 1,000, 2,000, 3,000, 10,000, 20,000, and 30,000 to test differ-

ent parameter settings. To ensure reliable results, we generated data with the same parameters

20 times and calculated their average NSR. The correlation between the NSR and the cell size

are shown in Fig 4(a). Except for the last sub-figure where N = 30,000, the other sub-figures all

Fig 3. Generated point data follow a two-dimensional normal distribution. The right panel shows the

corresponding heat maps.

https://doi.org/10.1371/journal.pone.0225139.g003

Fig 4. Correlation between the NSR and the cell size. (a) σ = 150 and N varies; (b) N = 10,000 and σ varies. The gray

area represents the range of multiple experimental results and red lines mark the average value. The dotted lines mark

the first local minimum NSR.

https://doi.org/10.1371/journal.pone.0225139.g004
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show a U-shaped curve, where the NSR first decreases and then increases when the cell size

increases (i.e., when scale gets coarser).

At the finest scale (cell szie = 10), the whole study space is divided into fragmented small

units. Each cell only contains a small number of points. As a result, the intra-cell variation and

the inter-cell variation are very close, resulting in the NSR approaching 1. It is similar to the

‘pure nugget effect’ discussed in [3], where the semi-variance shows similar values at all lags.

The differences between cells are gradually revealed when the cell scale increases. When the

scale gets too coarse, the spatial information inside each cell is highly generalized, and the

variance of cell values decreases. The intra-cell variation is again getting close to the inter-cell

variation, which leads to an increase in the NSR. That proves that the NSR is effective in char-

acterizing the structure of spatial variances.

We defined the optimal scale (So) as the cell size when the NSR reaches the first local mini-

mum. Based on this definition, So = 45, 45, 30, 20, and 15 where N = 1,000, 2,000, 3,000,

10,000, and 20,000, respectively. However, we cannot find an So corresponding to when

N = 30,000, since the scale is less than the minimum scale (10) we considered. The So values

get smaller with an increasing N, which indicates the impact of data density on the scale

effect.

Based on the results from the previous step, we set N = 10,000 and explored the role of σ in

determining the scale effect. The six graphs in Fig 4(b) demonstrate a similar U-shaped curve,

which is consistent with results from the previous step, and So = 20, 20, 25, 25, 25, and 30 when

σ = 140, 160, 180, 200, 220, and 240, respectively. As σ increases, the minimum NSR appears at

a coarser scale, which implies that σ also has an impact on the scale effect. In other words,

when aggregating data with a larger variance, each analysis unit naturally contains more infor-

mation compared to when the variance of the data is smaller, thus it is preferable to use a finer

analysis unit. On the contrary, when σ is smaller, the corresponding analysis unit should be

coarser.

Case study

Data description

In addition to the simulated experiments, we selected two major cities, Beijing and Shanghai,

and two medium-sized cities, Chengdu and Wuhan, to test the methodology. Because human

activities are mainly concentrated in the urban area of these cities, we defined the study areas

with the same dimensions (30 km by 30 km) in all cities (Fig 5(a)). The study area of Beijing

covers the districts within the 5th ring road and the study area of Shanghai covers the central

area within the outer ring road. For Chengdu, the study area covers the area within the 4th ring

road and the study area of Wuhan consists of the area within 3th ring road and partial regions

within the 4th ring road.

To mitigate the zoning effect, we used regular grids as the analysis unit in this case study,

with cell sizes from 300 m to 2,000 m with a 100 m interval. The actual study area may be

slightly smaller than 30 km × 30 km, as the number 30 km is not divisible by certain cell sizes

(e.g., 700 m, 800 m, etc) (Table 1).

We used the point of interest (POI) check-in data in Beijing, Shanghai, Chengdu, and

Wuhan from Sina Weibo in 2014. Sina Weibo is the biggest microblog service in China func-

tionally similar to Twitter. We collected our dataset using the official Weibo Application Pro-

gramming Interface (API) (https://open.weibo.com/wiki/2/place/nearby/pois). For each POI,

the record includes its place name, address, geographical coordinates, and the number of

check-ins at this POI. After data filtering, we obtained 88,886, 78,864, 26,907, and 24,542 valid

records for Beijing, Shanghai, Chengdu, and Wuhan, respectively.
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Fig 5. The study areas in Beijing, Shanghai, Chengdu, and Wuhan. (a) the study areas; (b) satellite imagery; (c) spatial

distributions of check-in data at varying scales in these cities.

https://doi.org/10.1371/journal.pone.0225139.g005

Table 1. Cell sizes and the corresponding basic attributes.

Cell size Cell Number Row Column

300 m×300 m 10,000 100 100

400 m×400 m 5,625 75 75

500 m×500 m 3,600 60 60

� � � � � �

1,800 m×1,800 m 256 16 16

1,900 m×1,900 m 225 15 15

2,000 m×2,000 m 225 15 15

https://doi.org/10.1371/journal.pone.0225139.t001

Quantifying the scale effect using semi-variograms

PLOS ONE | https://doi.org/10.1371/journal.pone.0225139 November 14, 2019 9 / 18

https://doi.org/10.1371/journal.pone.0225139.g005
https://doi.org/10.1371/journal.pone.0225139.t001
https://doi.org/10.1371/journal.pone.0225139


We calculated the number of check-ins within each cell at different scales. Fig 5(c) shows

the heat maps of check-ins at varying spatial scales. As can be seen, the spatial distribution of

check-ins demonstrates very different patterns in each city. In Beijing, the data show a poly-

centric pattern where there are multiple clusters of check-ins in different parts of the city. Beij-

ing’s polycentric urban activity pattern has been discussed in many previous studies [36, 37].

In addition, there are more check-ins in the north than in the south. This is potentially because

the northern side of Beijing is more developed with better facilities and infrastructures [38].

Unlike Beijing, Shanghai shows a monocentric pattern [39, 40] where the check-ins are con-

centrated in the southwest of the study area (i.e., the central urban area of Shanghai). For

Chengdu, cells with a higher check-in density are mainly clustered in the center and to the

south of the city, and there are a few high density cells in the outer areas of the city. Check-ins

in Wuhan show a morphologically polycentric pattern [41], which is potentially due to its

complex configuration of water bodies. As shown in Fig 5(b), the Yangtze River and the Han

River divide the urban center of Wuhan into three sections. There are also a large number of

lakes and other water bodies that contribute to the discontinuity of the central urban area in

Wuhan.

In addition, the spatial distribution of check-ins varies at different scales. At a finer scale,

high-value cells scatter across the whole study area, whereas at a coarser scale, high-value cells

are more clustered. For example, the heat map of Shanghai when the cell size equals 1,400 m

shows a monocentric pattern; however, at other scales, the heatmaps show a polycentric

pattern.

Quantitative results of the scale effect

As mentioned in the methodology, we used the NSR to quantify the scale effect of POI check-

ins in the four cities. We applied several strategies to ensure the robustness of the experiment

design. First, to mitigate the impact of the actual study area, at each scale, we chose ten slightly

different 30 km × 30 km study areas within each city and calculated the average NSR. Second,

we tested different models that can be used to fit into the estimated semi-variance values, and

we chose the polynomial model due to its better fitting performance. The fitted models were

evaluated based on the goodness of fit R2, which is a commonly used indicator to measure the

performance of a statistical model.

Fig 6 illustrates the correlation between the NSR and the spatial scale in the four Chinese

cities. As can be seen, all four curves are U-shaped and the maximum NSR values appear at the

finest scale (i.e. 300 m). The optimal scale So for Beijing, Shanghai, Chengdu, and Wuhan are

600 m, 600 m, 900 m, and 700 m, respectively. Due to the differences in city sizes and the

amount of data, we will compare two large cities (Beijing and Shanghai) and two medium-

sized cities (Wuhan and Chengdu) separately to better interpret Fig 6.

As shown in Fig 6, Beijing has a slightly larger NSR range than Shanghai, indicating that the

spatial characteristics of Beijing are more affected by spatial scales.

Both curves can be divided into two parts with 600 m as the cut-off point. The former half

of both curves show a rapid decline, but the latter half indicates an increasing trend. Specifi-

cally, the NSR in Shanghai first drops rapidly and then rises slowly with slight fluctuations;

while the NSR has more fluctuations in Beijing after the first local minimum. This suggests

that urban configuration of Beijing is more complex than that of Shanghai. For Chengdu, the

NSR values are generally lower than those in Wuhan. This shows that POI check-in data in

Chengdu are more spatially dependent. Moreover, it should be noted that the NSR for

Wuhan shows a more fluctuated pattern. This is probably because check-in data in Wuhan

demonstrate a more dispersed pattern due to the large number of lakes and ponds in Wuhan
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(Fig 5(b)). In addition, the So for Chengdu and Wuhan are coarser than for Beijing and Shang-

hai, which further demonstrates the impacts of data density on the scale effect discussed in the

experiments using synthetic data.

Evaluation of the optimal scale So
To further evaluate the results, we introduced an indicator (the homogeneity within a cell,

denoted by Hom) based on the q-statistic [42, 43]. Q-statistic is a statistical method for measur-

ing the degree of spatial stratified heterogeneity and uncovering its possible determinants [42,

43]. Spatial stratified heterogeneity refers to the phenomenon that occurs when dividing a

study area into sub-regions, the within region variance is smaller than the between region vari-

ance. A typical example of the spatial stratified heterogeneity is the differences between climate

zones. The division of the sub-regions inevitably affects the degree of spatial stratified hetero-

geneity. In the scope of this study, a smaller Hom represents a greater spatial stratified hetero-

geneity, which further indicates a more homogeneous pattern within the sub-regions (units)

and less information loss during the aggregation. It provides a feasible measure for validating

whether the obtained optimal scale, So, corresponds to the least amount of information loss.

The Hom indicator is defined as:

Hom ¼
SVI
SVT

¼

Pn
i¼1

Nis
2
i

Ns2
ð6Þ

where s2
i is the variance of POI check-ins within cell i and σ2 is the variance of all POI check-

ins; Ni is the number of POIs within cell i, N is the number of all POIs, i.e. N ¼
Pn

i¼1
Ni. SVI

and SVT are the sum of intra-unit variances and the total sum of variances, respectively. For

given spatial point data, SVT is fixed while SVI varies with the scale.

Fig 6. The correlation between the NSR and the cell size in Beijing, Shanghai, Chengdu, and Wuhan. The gray

shades represent the range of multiple runs. The solid lines mark the average value of all experiments.

https://doi.org/10.1371/journal.pone.0225139.g006
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The Hom indicator ranges from 0 to 1. It represents the degree of intra-cell variability at

different scales, which is reflected by not only the number of points within an analysis unit,

but also the variance of attributes at these points. A lower Hom indicates that the analysis

units are more homogeneous internally and the intra-unit variances are lower, and therefore

we have less information loss. As the scale gets coarser, the number of POIs within each cell

increases. This results in an increase in intra-cell variability. Moreover, spatial point patterns

can be a result of a complex urban configuration or multiple spatial processes, thus there

may be more than one local minimum value of the Hom indicator (i.e., the optimal scale). In

this paper, we adopt the same idea as the elbow method [44] when deciding the number of

clusters and use local minimums to identify the optimal scale based on the Hom indicator

(Shom).

Fig 7 shows the evaluation results for four Chinese cities. According to these results, we can

conclude that for Beijing, Shanghai, Chengdu, and Wuhan, the Shom values are 500 m, 700 m,

700 m, and 800 m, respectively. These results are slightly different from the So values calculated

from the NSR because the Hom indicator only measures the intra-unit variability and does not

consider the inter-unit variability. In other words, at each given scale, if we randomly switch

the locations of cells, the Hom indicator remains constant, because the parameters in Eq (6)

(i.e., N, Ni, σ, s2
i ) do not change as long as the cells are still divided the same way. The city with

the biggest difference between the Shom and the So values is Chengdu. For other cities, the opti-

mal scales recommended by the NSR and the Hom indicator are very similar. In addition, the

orders of the So and the Shom values for these cities are consistent. Both the So and the Shom val-

ues for Beijing and Shanghai are smaller than those for Chengdu and Wuhan. This further val-

idates the robustness of our method.

Fig 7. Evaluation of optimal scales based on the Hom indicator. The dotted lines mark the Shom value, which is the

elbow point when the scale is optimized.

https://doi.org/10.1371/journal.pone.0225139.g007
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Discussion

Influence of different fitting models

Considering that fitting different models to the same semi-variogram may lead to different

results, we adopted multiple models to fit the same data to investigate how the model selection

may impact the scale effect. We employed the polynomial model and the Gauss model to fit

the simulated data in the ‘experiments with synthetic data’ section 3 to compare the results.

Because the results are similar, we only discuss one set of data (N = 10,000, σ = 150) as an

example. As illustrated in Fig 8, the solid and dashed lines are results fitted by the Gauss and

polynomial models, respectively. It can be seen that the NSRs fitted by the Gauss model are

generally higher than those fitted by the polynomial model, which is potentially due to the dif-

ferent characteristics of the models. Although the absolute values are different, both curves fol-

low the same trend. In addition, the optimal scale So values are consistent. These results show

that the choice of models does not have a substantial impact on the results in our analysis.

Experiments with dual-centered data

The patterns in the ‘experiments with synthetic data’ section are mostly single-centered point

patterns where the points show one central cluster of high density values. We also designed

two comparative experiments to investigate how the number of centers affects the scale effect.

As shown in Fig 9, we extended the single-centered simulated data (Fig 9(a)) to dual-centered

patterns (Fig 9(b)) and calculated their So. The So for dual-centered patterns when N = 10, 000

and 20,000 are both coarser than the So from single-centered patterns with the same N, which

implies that the increase of the number of centers leads to a coarser So. The So for the dual-cen-

tered pattern when N = 10,000 is coarser than that when N = 20,000. This is consistent with

the conclusions from single-centered data regarding the impact of N on the optimized scale.

Fig 8. Influence of different fitting models on the NSR. Data used are single-centered data in the ‘experiments with

synthetic data’ section where N = 10,000, σ = 150. The solid and dashed lines represent results fitted by the Gauss and

polynomial models, respectively.

https://doi.org/10.1371/journal.pone.0225139.g008
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Potential applications and limitations

The MAUP is a pervasive phenomenon for both intensive and extensive geographical data.

However, there is insufficient research on how to quantify the scale effect caused by the

MAUP. Due to the rapid development of ICTs, more and more individual-level crowd-

sourced data are generated on a daily basis, and many of these datasets are point-based. To this

end, this paper defined a series of indicators (e.g., the NSR and the Hom indicator) to quantify

how the MAUP manifests itself when aggregating point data into areal units.

The methodology can be used to select the optimal scale for aggregation in various applica-

tions in geography. For example, similar to the Weibo case study, many researchers have used

various types of point-based location data (e.g., social media check-in data, georeferenced

mobile phone records, and taxi pick-up/drop-off data) to analyze the magnitude of human

mobility in different urban districts [8, 16–18]. Research questions can range from basic sum-

mary statistics like “Which part of New York has the most Twitter check-ins during Christ-

mas?” to a more complex one like “How should we quantify the mobility flows between urban

regions based on taxi data?” In all these studies, a crucial data pre-processing step is to deter-

mine the size of the spatial unit for aggregating the point data. The proposed method provides

a feasible way to quantitatively assess the influence of the scale of analysis units when applying

crowd-sourced data to urban studies.

The application of the proposed method is not limited to using crowd-sourced mobility

data in urban geography. In demographic studies, a remaining challenge is to mitigate the

MAUP caused by aggregating population data based on different spatial units. In physical

geography, a similar problem exists for animal tracking data, where researchers need to deter-

mine the optimal scale for aggregating location points from tracking devices [45]. This study

takes a first step in providing a feasible solution to the aforementioned research problems.

The proposed method has several limitations. First, through trial and error, we found that

this method does not work well when the data is very sparsely distributed. Sparsely distributed

data shows no clear spatial pattern, so it is difficult to find a suitable model to fit the estimated

semi-variance values. This may limit the application of this method to sparse datasets, such as

taxi pick-up data after midnight or check-in data in a remote rural area. In addition, the quality

Fig 9. Spatial distribution of simulated data and the corresponding results of the scale effect. (a) single-centered data; (b) dual-centered

data. N represents the number of points for each center.

https://doi.org/10.1371/journal.pone.0225139.g009
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of the check-in data may be influenced by various factors such as the representativeness of

social media data and the strategy of data collection, which inevitably affect the results in

the case study. Social media sites like Weibo are more likely to attract users with a certain

demographic profile (e.g., young people), which leads to a biased sampling of the population.

For the Weibo POI data used in this study, users are allowed to check in to a POI when they

are within a certain distance of the location, which naturally leads to data accuracy issues.

Because this study aims to propose a methodology instead of generating empirical results,

we did not directly address the data quality issues. In practice, researchers should be aware

of the influence of data quality issues on the results when applying our method to their own

data.

Conclusion

The scale effect is an important issue in geography. With the development of ICTs, massive

high-resolution geo-tagged data is available for investigating human mobility patterns and the

socioeconomic environment. Spatial aggregation is necessary to investigate collective patterns

from individual-level big geo-data, and this inevitably leads to the challenge of selecting an

optimal scale in spatial analysis.

We proposed a method to quantitatively evaluate the scale effect of extensive data, which is

a common type of big geo-data. Because semi-variograms can provide rich spatial information

at different lag distances, we employed the nugget-sill ratio as a quantitative measure to charac-

terize the structure of spatial data variance at multiple scales. Two sets of simulated experi-

ments showed that both very fine and very coarse scales lead to high NSR values, and a low

NSR tends to appear at a medium scale. This observation is consistent with the structures of

spatial variances. In addition, we defined the scale where the first local minimum NSR occurs

as the optimal scale (So), the results show that as σ (i.e., the dispersion of spatial data) increases,

the So value gets coarser. The conclusion is consistent with our perception that a finer analysis

unit is more appropriate for data with a higher spatial heterogeneity, otherwise a coarser scale

is more suitable. It demonstrates the rationality of our method in quantifying the scale effect.

We also used Weibo check-in data from four Chinese cities (Beijing, Shanghai, Chengdu, and

Wuhan) as a case study. The results suggest that the optimal scale So for these cities are 600 m,

600 m, 900 m, and 700 m, respectively.

Overall, a very fine scale indicates that the analysis units are too small and there are not

enough points to be aggregated in each unit; however, a scale too coarse will lead to over-gen-

eralization of the data and a substantial loss of information. Therefore, it is important to find a

balance point between the level of detail and the degree of aggregation, which is the main con-

tribution of this study. We adopted a classic geostatistical method (i.e., the semi-variogram)

and provided a new perspective to quantify intra-unit variation and inter-variation at different

scales. The method in this study offers a useful data processing strategy to optimize spatial

scales when aggregating big geo-data in urban studies.

Geospatial big data have many potential issues, such as data sparsity, data representative-

ness, and other data quality issues, which can lead to non-stationary results. In fact, the semi-

variogram contains much more information than we explored in this study and may be useful

for improving our results in the future to optimize the scale of spatial analysis. In addition, the

proposed method focuses on quantifying intra-unit variation when exploring the scale effect,

but in practice, different datasets and urban studies may need to adopt different indicators

based on their specific needs. Future studies should focus on expanding this framework by

exploring the choice of indicators for different datasets.
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