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Diversity of Ocular Dominance Patterns in Visual Cortex
Originates from Variations in Local Cortical Retinotopy
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Department of Biological and Visual Sciences, State University of New York College of Optometry, New York, New York 10036

The primary visual cortex contains a detailed map of retinal stimulus position (retinotopic map) and eye input (ocular dominance map)
that results from the precise arrangement of thalamic afferents during cortical development. For reasons that remain unclear, the
patterns of ocular dominance are very diverse across species and can take the shape of highly organized stripes, convoluted beads, or no
pattern at all. Here, we use a new image-processing algorithm to measure ocular dominance patterns more accurately than in the past. We
use these measurements to demonstrate that ocular dominance maps follow a common organizing principle that makes the cortical axis
with the slowest retinotopic gradient orthogonal to the ocular dominance stripes. We demonstrate this relation in multiple regions of the
primary visual cortex from individual animals, and different species. Moreover, consistent with the increase in the retinotopic gradient
with visual eccentricity, we demonstrate a strong correlation between eccentricity and ocular dominance stripe width. We also show that
an eye/polarity grid emerges within the visual cortical map when the representation of light and dark stimuli segregates along an axis
orthogonal to the ocular dominance stripes, as recently demonstrated in cats. Based on these results, we propose a developmental model
of visual cortical topography that sorts thalamic afferents by eye input and stimulus polarity, and then maximizes the binocular retino-
topic match needed for depth perception and the light-dark retinotopic mismatch needed to process stimulus orientation. In this model,
the different ocular dominance patterns simply emerge from differences in local retinotopic cortical topography.
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Introduction
The human primary visual cortex needs to accommodate �3
million afferents from the lateral geniculate nucleus of the thala-
mus (Selemon and Begovic, 2007) and sort them by their recep-
tive field position within the retina. The afferent sorting along the
anteroposterior and mediolateral axes of the cortex creates a de-
tailed map of retinal spatial position known as the retinotopic

map (Daniel and Whitteridge, 1961). In species with high visual
acuity and large brains, such as humans and macaques, the reti-
notopic map splits into two intercalated copies for each eye form-
ing an ocular dominance map with a zebra pattern (LeVay et al.,
1975; Hubel and Wiesel, 1977). In addition, evidence from cat
visual cortex (Kremkow et al., 2016) indicates that the retinotopic
map for each eye also splits into two copies for each contrast
polarity (light and dark), forming an eye/polarity grid (Kremkow
and Alonso, 2018).

The ocular dominance pattern of primary visual cortex varies
across species (LeVay et al., 1985; Anderson et al., 1988; Spatz,
1989; Adams and Horton, 2003; Adams et al., 2007; Takahata et
al., 2014), within the same species (Adams and Horton, 2003,
2006), and across local cortical regions of the same individual
animal (Adams et al., 2007). Although this pronounced variabil-
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Significance Statement

Thalamocortical afferents segregate in primary visual cortex by eye input and light-dark polarity. This afferent segregation forms
cortical patterns that vary greatly across species for reasons that remain unknown. Here we show that the formation of ocular
dominance patterns follows a common organizing principle across species that aligns the cortical axis of ocular dominance
segregation with the axis of slowest retinotopic gradient. Based on our results, we propose a model of visual cortical topography
that sorts thalamic afferents by eye input and stimulus polarity along orthogonal axes with the slowest and fastest retinotopic
gradients, respectively. This organization maximizes the binocular retinotopic match needed for depth perception and the light-
dark retinotopic mismatch needed to process stimulus orientation in carnivores and primates.
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ity appears capricious (Adams and Horton, 2003), some ocular
dominance maps show consistent relations with cortical retino-
topy, suggesting a common organizing principle. For example, in
humans and macaques, ocular dominance stripes run orthogonal
to the cortical border between areas V1 and V2, which represents
the retinotopy of the visual vertical meridian (Hubel and Wiesel,
1974a; Tootell et al., 1988; Blasdel and Campbell, 2001; Adams et
al., 2007). Because cortical retinotopy changes slower along than
across the V1/V2 border (Blasdel and Campbell, 2001), the ocular
dominance stripes also run orthogonal to the cortical axis with
the slowest retinotopy gradient.

Hubel and Wiesel interpreted the organization of ocular dom-
inance stripes at the V1/V2 border as a cortical need to accom-
modate thalamic inputs sampling two copies of the same image
with two frontal eyes (LeVay et al., 1975; Hubel and Wiesel,
1977). In the ice-cube model of Hubel and Wiesel, each image
copy needs a square patch of cortex, and two image copies form a
rectangle with a length/width ratio of two. Under this interpreta-
tion, the longest axis of the ocular dominance stripes should run
orthogonal to the longest side of the retinotopic rectangle, which
is the V1/V2 border. Although this reasoning is compelling, the
relation between retinotopy and ocular dominance remained un-
clear. First, the length/width retinotopy ratio of the ocular dom-
inance stripes is considerably �2 and closer to 1.4 (Tootell et al.,
1982, 1988; Van Essen et al., 1984; Blasdel and Campbell, 2001).
Second, the relation between the ocular dominance domains and
the V1/V2 border is weak or absent in many species, including
cats and squirrel monkeys (Anderson et al., 1988; Horton and
Hocking, 1996). Third, ocular dominance maps are absent in
many animals with extensive binocular cortices, including some
squirrel monkeys (Adams and Horton, 2003, 2006), and adult
marmosets that did not experience monocular deprivation (De-
Bruyn and Casagrande, 1981; Spatz, 1989). Finally, the ocular
dominance map of an individual human can have diverse local
patterns with some regions resembling the organized stripes of
macaques and others the more disorganized stripes of squirrel
monkeys (Adams et al., 2007). There is currently no explanation
for this puzzling variability of ocular dominance patterns. Here,
we reveal a strong relationship between local cortical retinotopy
and ocular dominance in different species and different regions
of the same cortical map. Based on these results, we propose a
cortical model that generates variations in ocular dominance pat-
terns from variations in local cortical retinotopy. This model has
implications for cortical sampling in binocular vision and pre-
dicts systematic changes in eye dominance across the horizontal
axis of the visual field.

Materials and Methods
We used an image-processing algorithm to measure the image param-
eters that distinguish different ocular dominance patterns in nature.
We then used a difference-of-Gaussians filter to simulate the patterns
published in the scientific literature and replicate the measurements
obtained with the image-processing algorithm. The software is publicly
available on Github (https://github.com/LabAlonsoSunyOptometry/
NajafianODSoftware; RRID:SCR_017381).

Measuring ocular dominance patterns with an image-processing algo-
rithm. The image-processing algorithm can be applied to published oc-
ular dominance maps from different species of either sex (the sex is not
mentioned if it is not reported in the original publication). It starts by
selecting and counting all individual stripes within the pattern, each
stripe being defined as a group of white pixels surrounded by black pixels
or vice versa. Then, the algorithm uses the MATLAB “bwmorph” func-
tion to shrink the stripe to a minimally connected central line and mea-
sures the stripe length by counting the pixels within this central line. The

algorithm measures the average stripe width as the average length of
multiple lines orthogonal to the central line and connecting the two
stripe borders. It measures the average angle of the stripe with two dif-
ferent methods: pixel-by-pixel method and Fourier method. In the pixel-
by-pixel method, it measures the angle of a line crossing two neighboring
pixels within the central line of the stripe. In the Fourier method, it
measures the dominant angle of a cortical patch with Fourier image
analysis. We use the pixel-by-pixel method to describe the angle for each
pixel and the Fourier method to describe the dominant angle of a cortical
patch.

Modeling the afferent-sorting filter (ASF). We model a family of ASFs to
accurate replicate the different ocular dominance patterns published in
the scientific literature. The ASFs are inspired by the work of Swindale
(1980) and simulate the sorting of thalamic afferents in visual cortex
during cortical development. We first measure the parameters of pub-
lished ocular dominance patterns with the image-processing algorithm
and then use these parameters to search for the ASF that best describes
each published ocular dominance pattern. We model ASFs with a differ-
ence of two multivariate Gaussian functions, as illustrated in Equations
1–3 as follows:

f� x,y,�X,�Y� �
1

2��X�X�1 � �2
exp

�� � 1

2�1 � �2�� ��x � �X�2

�X
2 �

�y � �Y�2

�Y
2 �

2��x � �X��y � �Y�

�X�Y
�� (1)

� �
X � Y

�X� �Y� (2)

ASF� x,y,�c,�sx,�sy� � fcenter� x,y,�c� � fsurround� x,y,�sx,�sy� (3)

Where x and y (lowercase) are positions in cortical space along the me-
diolateral (x) and anteroposterior (y) axis. X and Y (uppercase) are vec-
tors containing a subset of x (X vector) and y (Y vector) positions. �x and
�y are the standard deviations (SDs) of the X and Y vectors, and �x and �y

are the central positions. � is the angle of the filter (Eq. 2), which is
calculated as a dot product of the X and Y vectors divided by their mag-
nitudes (i.e., the square root of the sum of the squared elements of each
vector). The ASF results from the difference of two multivariate Gaussian
functions representing the filter center ( fcenter) and surround ( fsurround).
�c is the SD of the filter center. Because the filter center is always circular,
the SDs in the x and y coordinates are equal and can be described with a
single variable that is �c. �sx and �sy are the SDs of the filter surround for
the x and y coordinates. Unlike the filter center, the filter surround can be
elliptical and needs to be described with two different SDs for the x and y
coordinates, �sx and �sy. We experimented with different filter structures
to find the simplest one that could accurately replicate published ocular
dominance patters. Filters without surround allowed us to simulate oc-
ular dominance segregation but could not simulate the different shapes
of ocular dominance bands found in nature. Filters with elongated cen-
ters generated similar ocular dominance patterns to filters with circular
centers; therefore, we used the simplest center shape, which is a circle.

Modeling ocular dominance segregation with ASFs. We simulate ocular
dominance patterns in visual cortex by convolving the ASF with a 2D
cortical patch of white and black pixels ( C), each pixel representing an
afferent from the contralateral eye (white pixel with a value of 1) or the
ipsilateral eye (black pixel with a value of 0). In the convolution between
the ASF and the cortical patch (Eq. 4), the multivariate Gaussian func-
tions give a different weight to each afferent depending on its cortical
distance from the filter center. The center-surround difference of the
multivariate Gaussian functions simulates the attraction and repulsion
interactions between afferents mediated by molecular gradients and/or
neuronal activity. The convolution sum (CS) determines whether the
afferent at the center of the filter is replaced by an afferent of a different
type (r � 1) or not (r � 0), as shown in Equation 5. A replacement
simulates the retraction of the axon growth cone from one afferent type
and replacement by another afferent type. The central afferent remains
unchanged when surrounded by afferents of the same type (i.e., positive
CS when the central afferent is from the contralateral eye; negative CS
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when the central afferent is from the ipsilateral eye). The central afferent
is replaced by an afferent of different type when surrounded by afferents
of different type (e.g., negative CS when the central afferent is from the
contralateral eye; positive CS when the central afferent is from the ipsi-
lateral eye) as follows:

CS� x,y,s� � �
x,y

ASF� x,y,�c,�sx,�sy� � C� x,y,s� (4)

C� x,y,s � 1� � �C� x,y,s� � r�2

	 r � 1, if C� x,y,s� � 1 and CS� x,y,s� 	 0
if C� x,y,s� � 0 and CS� x,y,s� 
 0

r � 0, otherwise

 (5)

The convolution is performed across all cortical positions (x, y) and is
repeated for 10 developmental steps (s). In the first step (s � 1), the
cortical patch has randomly organized afferents from the contralateral
and ipsilateral eyes. In the following developmental steps (s � 1), the
cortical patch has afferents sorted at the previous developmental step
(Eq. 5). After 10 developmental steps, the arrangement of the afferents
becomes stable and does no longer change. We measure the amount of
change by calculating a pattern of similarity (PS) between cortical
patches from contiguous developmental steps (Eq. 6). PS equals 1 �
MSE, where MSE is the mean squared error difference between cortical
patches from contiguous developmental steps, C (x, y, s � 1) and C (x, y,
s). Each patch has n pixels that simulate different x, y positions in cortical
space. If the two contiguous patches are identical, MSE equals 0 and PS
reaches its maximum value, which is 1.

PS � 1 � MSE

MSE�s� �
1

n �
x�1,
y�1

n

�C� x,y,s� � C� x,y,s � 1��2 (6)

Generating an image database of diverse ocular dominance patterns. We
simulate different ocular dominance patterns by using ASFs that differ in
just four parameters: center diameter, ratio between surround and center
(surround/center ratio), ratio between longest and shortest surround
axes (x-surround/y-surround ratio), and angle of the longest surround
axis. The center diameter is defined as 2 �c in Equation 3. The
surround/center ratio is defined as the ratio between the SDs of
the shortest surround axis (minimum [�sx �sy]) and the center (�c).
The x-surround/y-surround ratio is defined as the ratio between �sx

and �sy. We calculate the angle of the longest surround axis as the
angle of the ASF (�). These four parameters are the minimum number
needed to reproduce the diversity of ocular dominance patterns found in
nature and provide a reasonable compromise between accuracy and speed
when searching for a specific ocular dominance pattern.

By using multiple combinations of these parameters, we generated
3000 different ocular dominance patterns with an image resolution of
31 	 31 pixels. We used six center diameters (2 �c: 6, 8, 10, 12, 14, 16), five
surround/center ratios (minimum [�sx �sy]/�c: 1, 2, 3, 4, 5), 10
x-surround/y-surround ratios (�fsx/�fsy: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), and 35
angles (�: 0 –175 in steps of 5 degrees). We first generated 300 different
patterns by using all possible combinations of center diameter, sur-
round/center ratio, and x-surround/y-surround ratio (6 	 5 	 10 �
300). We then repeated each of these 300 parameter combinations 10
times with different random noise seeds to generate 3000 different pat-
terns (300 	 10 � 3000 ocular dominance patterns). We then rotated
each pattern to match the angle of the cortical patch measured with
Fourier analysis. Therefore, when including the 35 possible pattern an-
gles, the number of possible patterns that we generate with the four filter
parameters is 105,000 (3000 	 35).

To simulate a specific ocular dominance pattern measured in primary
visual cortex, we first select an image of an ocular dominance map pub-
lished in the scientific literature. We then convert the map to a binary
scale of black and white pixels and divide it in multiple patches, each
patch containing an average of three ocular dominance cycles (six stripes:

three from the contralateral eye and three from the ipsilateral eye). We
then resize each patch to 31 	 31 pixels to match the image resolution in
our database. This resizing provides a resolution for each cortical patch of
4.78 pixels/mm for human, 10.31 pixels/mm for macaque, and 8.85
pixels/mm for cat (patch size: 6.48 mm for human, 3.01 mm for macaque,
and 3.5 mm for cat). We then search in our database for the pattern that best
matches the original published image. The search comparison is guided by
measures of four different parameters, all from ipsilateral-eye stripes: num-
ber, average length, average width, and average angle.

Searching for the best pattern match in our image database. We use a cost
function to search for the best match of a published ocular dominance
pattern in our image database. The cost function measures the error ( E)
between the original image and each image from our database (Eq. 7).
The error is calculated as the square difference between the average width
( W), length ( L), and number ( N) of ipsilateral stripes from the original
(Wo, Lo, No) and model images (Wm, Lm, Nm). We chose stripes from
the ipsilateral eye because they are more numerous than stripes from the
contralateral eye (see Results).

E � �Wo � Wm�2 � �Lo � Lm�2 � �No � Nm�2 (7)

The angle is not included in the cost function because patterns with different
angles can be simply replicated by rotating the ASF after finding the best
match for number, width, and length. We obtained 3000 different values of
E, one for each image in the database. After finding the best image match for
ipsilateral stripe width, length, and number (i.e., image with smallest E), we
rotated the angle of the image with 5 degree precision to match the original
and select the ASF that generated the best match. We repeated this search
process for each cortical patch to generate a full set of ASFs for each ocular
dominance map published in the scientific literature.

Identifying ASFs associated with cortical retinotopic sections. We
searched for the ASFs that best described specific retinotopic sections
within an ocular dominance map. For this search, we first redrew the
retinotopic maps from human (Horton and Hoyt, 1991), macaque (Van
Essen et al., 1984), and cat (Tusa et al., 1978) published in the scientific
literature. We then stretched and rotated the retinotopic maps to match
the global shapes of the published ocular dominance maps. This process
was relatively simple when using human or macaque brains because the
general shapes of published ocular dominance and retinotopic maps are
very similar in these species. The process was more difficult (and more
prone to error) in the cat because the global shapes of published ocular
dominance and retinotopic maps are quite different (Tusa et al., 1978;
Kaschube et al., 2003). Therefore, to reduce the error, we restricted the
cat map comparison to a central 30 	 30 degrees patch. After finishing
the map alignment, we divided the ocular dominance map in retinotopic
sections and measured the retinotopic gradient asymmetries in each sec-
tion. We then searched in our image database for the best match of the
ocular dominance pattern from each retinotopic section and selected the
ASF that generated it.

Simulations of ocular dominance and ON-OFF afferent segregation in
visual cortex. Based on our experimental data in cats (Kremkow et al.,
2016; Kremkow and Alonso, 2018), we propose a developmental model
in which cortical retinotopy guides the segregation of thalamic afferents
by eye input and contrast polarity (ON and OFF) along orthogonal cor-
tical axes. In the model, thalamic afferents from contralateral and ipsi-
lateral eyes segregate along the cortical axis with slowest retinotopic
gradient to maximize the binocular retinotopic match between ocular
dominance stripes. In turn, ON and OFF afferents segregate along the
cortical axis with fastest retinotopic gradient to maximize the ON-OFF
retinotopic mismatch between ON and OFF domains. The model allows
us to simulate the map of ON-OFF cortical segregation if we know the
map of ocular dominance segregation. We first take an ocular dominance
map published in the scientific literature to obtain the full set of ASFs
associated with ocular dominance segregation. Then, we rotate all filters
by 90 degrees to obtain the ASFs for ON-OFF cortical segregation. Then,
we use the ON-OFF ASFs to segregate ON and OFF thalamic afferents
with an algorithm similar to that used for ocular dominance segregation.

To generate the ON-OFF cortical map, we first convolve the ASFs with
a 2D cortical patch of white and black pixels ( C), as shown in Equation 4,
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each pixel representing an ON afferent (white pixel with a value of 1) or
OFF afferent (black pixel with a value of 0). As for ocular dominance
segregation, the CS determines whether the afferent at the filter center is
replaced by an afferent of a different type (r � 1) or not (r � 0). However,
because the segregation for ON-OFF afferents is likely to occur later in
time than the segregation for ocular dominance (Kremkow and Alonso,
2018), we assume that is also weaker. To simulate a weak ON-OFF affer-
ent segregation, we add a randomization factor to the segregation algo-
rithm described in Equation 5 (Eq. 8). An ON afferent at the center of the
filter is replaced by an OFF afferent if the CS plus a random factor ranging
from 0 to 1 (rnd) is �0.5. An OFF afferent is replaced by an ON afferent
if the CS plus the random factor is �0.5. The CS is multiplied by a
constant factor (�) to simulate cortices with different ON/OFF afferent

balances. When ON and OFF afferents are balanced in number (50%
OFF, 50% ON), � equals 1. When OFF afferents dominate over ON
afferents (60% OFF, 40% ON), � equals 10, as follows.

C� x,y,s � 1� � �C� x,y,s� � r�2

	 r � 1, if C� x,y,s� � 1 and �rnd � �CS� x,y,s�� 
 0.5
if C� x,y,s� � 0 and �rnd � �CS� x,y,s�� 	 0.5

r � 0, otherwise

 (8)

The strength of ON-OFF segregation was measured by generating ON-
OFF maps in 101 consecutive developmental steps. We measured the

Figure 1. Image-processing algorithm used to quantify ocular dominance patterns in visual cortex. a, Description of the image processing algorithm used to measure ocular dominance patterns.
The algorithm is illustrated for zebra skin (first row) and leopard skin (second row). Both images are from public domain (Skin of a Grant’s Zebra from Hans Hillewaert and Leopard Skin from Alex
Borland). The algorithm includes the following stages, described from left to right: selection of single feature, tracing the central line of the feature with 1 pixel width, measuring the feature length
(686 pixels long), angle of the central line (average across pixels: 38 degrees), and width of the central line (average width: 69 pixels). b, Binary versions of the images shown in a (top) and histograms
illustrating distributions of length, angle, width (normalized by total number of pixels), and total area of white and black image features (bottom). The numbers on top of the histograms show
average (length, width) and normalized area for white and black features.
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segregation strength at each developmental step (Ss) as the MSE be-
tween the ON-OFF map at each step and developmental Step 100. We
measured the minimum possible segregation (Smin) as the MSE (Eq. 6)
between the ON-OFF maps at developmental Steps 0 and 100. The
strength of ON-OFF segregation was defined as Ss-Smin and ranged
from a value of 1 (strongest segregation) to 0 (no segregation).

Data analysis. Statistical significance was assessed with Wilcoxon tests
when comparing value averages and with linear correlation when com-
paring the relation between two variables. All average comparisons are
described as average 
 SD. Probability values are provided for all statis-
tical comparisons, and probability values �0.0001 are described as p �
0.0001.

Figure 2. Quantification of ocular dominance patterns in human, macaque, and cat cortex. a, Human ocular dominance map shown in a binary image. Reproduced with permission from Adams
et al. (2007). Unless specified differently, all ocular dominance maps and plots within the paper show the contralateral eye in white and ipsilateral eye in black. b, Histograms illustrating distributions
of length, angle, width, and total area of white and black image features. Contralateral-eye stripes (white) tend to be longer than ipsilateral-eye stripes (black). c, Same as in a, but for a male
macaque. Reproduced with permission from Adams et al. (2007). d, Same as in b, but for a male macaque. e, Same as in a, but for a cat. Reproduced with permission from Kaschube et al. (2003).
f, Same as in b, but for a cat. g–l, Comparison of ocular dominance stripes from contralateral- (x axis) and ipsilateral-eye stripes (y axis), shown for human (n � 3), macaque (n � 7; 4 males and 3
females), and cat cortical hemispheres (n � 1).
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Results
Thalamic afferents segregate by eye input in the primary visual
cortex of humans, macaques, and carnivores. The cortical pat-
terns formed by this afferent segregation are very diverse across
species and cortical regions for reasons that remain poorly un-
derstood. To investigate the origin of this pattern diversity and its
possible functional implications, we measured the statistics of
ocular dominance segregation with two new methods: an image-
processing algorithm and a filter that simulates each local ocular
dominance pattern.

Diversity of ocular dominance maps measured with image
processing analysis
We used an image-processing algorithm to quantify the different
ocular dominance patterns found in nature. The algorithm works
with any image that can be converted to a binary pattern of black
and white pixels (Fig. 1a). It starts by isolating a feature within the
pattern: an area of pixels with the same contrast polarity (e.g.,
white pixels) surrounded by pixels of opposite polarity (e.g.,
black pixels). Then, it traces the central line of the feature to
measure its length. Then, it traces multiple lines orthogonal to the
central line to measure the width and angle of the feature at each
pixel of the central line (Fig. 1a). Finally, the algorithm returns
histogram distributions of length, angle, width, and total area of
white and black features (Fig. 1b). The histograms show one mea-
sure of length per feature (e.g., 8 length measures for the white
stripes of Fig. 1b) and one measure of angle or width per pixel
(e.g., 4363 angle measures for the white stripes of Fig. 1b).

We started applying this algorithm to three ocular dominance
maps from three different species published in the scientific lit-
erature: human (Adams et al., 2007), macaque (Adams et al.,
2007), and cat (Kaschube et al., 2003). Before taking any mea-
surements, we removed all map regions that had weak or missing
ocular dominance patterns, such as the monocular crescent, op-
tic disk, and regions not properly reconstructed (Fig. 2a,c,e). We
then divided each ocular dominance map into multiple square
patches, each patch covering three contralateral-ipsilateral pairs
of ocular dominance stripes. To facilitate comparisons across
species, we aligned the longest axis of the map with the horizontal
axis of the image (Fig. 2a,c,e).

Our algorithm demonstrates that the contralateral eye occu-
pies a larger cortical territory than the ipsilateral eye in the ocular
dominance maps of the three species. We demonstrate this con-
tralateral dominance with measurements of overall cortical area
(Fig. 2a– g), as shown in the past (Shatz and Stryker, 1978; An-
derson et al., 1988; Adams et al., 2007). In addition, we demon-
strate an even stronger contralateral bias with measurements of
stripe length and number (Fig. 2a–l). The stripes from the con-
tralateral eye connected more frequently with each other than the
stripes from the ipsilateral eye. Indeed, many cortical maps had
nearly all contralateral-eye stripes connected forming a labyrinth
that created multiple isolated ipsilateral-eye stripes (Movie 1).
The average stripe length in cortical patches with three
contralateral-ipsilateral stripe cycles was 1.6 –3.9 times greater for
the contralateral eye than ipsilateral eye (Fig. 2h; human: 6.4 

5.96 vs 4.13 
 3.73 mm, p � 0.0001, n � 3 ocular dominance
maps; macaque: 4.88 
 4.95 vs 1.75 
 1.14 mm, p � 0.0001, n �
7 ocular dominance maps; cat: 6.73 
 4.85 vs 1.74 
 1.01 mm,
p � 0.0001, n � 1 ocular dominance map, Wilcoxon tests). The
average stripe length in the entire cortical map was also 2.3–10.5
times greater for the contralateral than the ipsilateral eye (human:
19.03 
 143.77 vs 8.14 
 54.17 mm, p � 0.0085, n � 3 ocular
dominance maps; macaque: 18.02 
 112.44 vs 2.55 
 9.73 mm,

p � 0.0001, n � 7 ocular dominance maps; cat: 33.5 
 168.5 vs
3.2 
 5.78 mm, p � 0.0001, n � 1 ocular dominance map, Wil-
coxon tests). Because the contralateral stripes were longer and
more connected with each other than the ipsilateral stripes, they
were also 2–7 times fewer in number (Fig. 2j). In addition to the
pronounced contralateral bias for stripe length, the average stripe
width was also slightly greater for the contralateral than ipsilateral
eyes in most cortical maps (Fig. 2k; but see exception in Fig. 2b;
0.806 
 0.449 vs 0.817 
 0.353 mm, p � 0.0001, Wilcoxon test).
Finally, many ocular dominance stripes showed a strong tendency to
be orthogonal to the longest axis of area V1 (Fig. 2a–f,l).

Correlation between stripe width and eccentricity
We hypothesize that the orthogonal relationship between the
longest axes of the ocular dominance stripes and the longest axis
of area V1 is a consequence of asymmetries in cortical retinotopy.
Because the V1 area of humans and macaques is more elongated
along its horizontal than vertical dimension, the two eye copies of
each retinotopic position should be better accommodated along
the horizontal cortical dimension. Moreover, because cortical
retinotopy changes faster as visual eccentricity increases, the
amount of cortical space needed to accommodate an ipsilateral-
contralateral stripe-cycle should decrease with eccentricity, af-
fecting stripe width. Consistent with this prediction, we found
that the stripes from the ipsilateral eye become increasingly thin-
ner as azimuth eccentricity increases, even within central vision
(Fig. 3). This eccentricity thinning could be demonstrated in both
macaques (Fig. 3a–f) and humans (Fig. 3g– h), and was very ro-
bust, even within the central 16 degrees (Fig. 3a– h). Contrary to
the ipsilateral-eye stripes, the width of the contralateral-eye
stripes increased with azimuth eccentricity (Fig. 3a–f,h) or did
not change (Fig. 3g). The relation between eccentricity and
ipsilateral-eye stripe width could be accurately fit with a power func-
tion, and the power values across different hemispheres were tightly
constrained within 15% of the mean range (between �0.12 and
�0.16 in macaque maps and �0.06 and �0.08 in human maps).

Movie 1. Analysis of single stripes from contralateral (white) and
ipsilateral eyes (black) in human cortex. The red outline shows the se-
lected stripe. The top label shows the stripe number and length. The
bottom panel shows histograms with the distribution of stripe width
(left) and angle (right) measured at each image pixel and the mean
stripe width and angle (top label).
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The increase with eccentricity of contralateral-ipsilateral stripe width
differences matches the increase of nasal-temporal cell-density dif-
ferences within the retina (Curcio and Allen, 1990). The nasal and
temporal retina feed the contralateral- and ipsilateral-eye stripes,
respectively. Therefore, the relation between nasal-temporal retinal
differences and contralateral-ipsilateral cortical differences supports
our hypothesis that cortical retinotopy shapes ocular dominance
segregation.

Similar ocular dominance patterns between left and
right hemispheres
If V1 retinotopy shapes ocular dominance segregation, the over-
all pattern of ocular dominance should be similar between left
and right hemispheres. Because the cell density of the two nasal
retinas is similar (Curcio and Allen, 1990), the organization of the
contralateral-eye stripes from the two hemispheres should also be
similar (the same argument applies to the two temporal retinas
and ipsilateral-eye stripes). At the same time, because the number
of retinal ganglion cells can vary by more than twofold across
individuals (Curcio and Allen, 1990), the pattern of ocular dom-
inance should also show great individual variability. To test this
hypothesis, we compared the ocular dominance patterns of the
two hemispheres from 3 macaques and 1 human (Fig. 4a) pub-
lished in the scientific literature (Horton and Hocking, 1996;
Adams et al., 2007). To quantify the comparison, we divided each
hemisphere in multiple eccentricity sections, and calculated the
different parameters for each section (Fig. 4a,b). Consistent with

our prediction, nearly all measures of ocular dominance patterns
were correlated between hemispheres, including the stripe length
and width (Fig. 4c,d), stripe number (Fig. 4e), and stripe angle
(Fig. 4f). All correlations were highly significant, except the cor-
relations for stripe width in Macaques 2 and 3 (Fig. 4d), which
were constrained to a very narrow range of values. The correla-
tions for stripe angle were also weaker but significant for all 3
macaques.

Similar ocular dominance patterns in upper and lower
V1 halves
If cortical retinotopy shapes ocular dominance segregation, the
overall pattern of ocular dominance should be also similar be-
tween the lower and upper halves of area V1 within each hemi-
sphere. Similar ocular dominance patterns are expected because
the two V1 halves receive input from the same two eyes, and the
two eyes from the same individual animal have similar density of
retinal ganglion cells (Curcio and Allen, 1990). To test this hy-
pothesis, we used the same approach described above. We di-
vided each hemisphere in multiple eccentricity sections and
compared the different ocular dominance patterns from the
lower and upper V1 halves (upper and lower visual field fields)
across cortical sections with similar azimuth eccentricity (Fig. 5).
As for left and right hemispheres, we found strong correlations
between the ocular dominance patterns of upper and lower V1
halves. Unlike for left and right hemispheres, most correlations
for stripe length did not reach significance (Fig. 5c). This lack of

Figure 3. Correlation between cortical stripe width and eccentricity. a, Cortical map of ocular dominance from a male macaque (left) and scatter plot showing a reduction in the width of
ipsilateral-eye stripes (ipsi, in black) with eccentricity. The contralateral-eye stripes (contra, in white) tend to increase with eccentricity but the width change is not as pronounced as for the
ipsilateral-eye stripes. Lines indicate fits to the power functions (equations shown in white for contralateral eye and black for ipsilateral eye). Scale bars: human, 10 mm; macaque, 5 mm. Ocular
dominance map reproduced with permission from Horton and Hocking (1996). b–f, Same as in a, but for other male (b– d) and female (e, f ) macaques. Reproduced with permission from Horton
and Hocking (1996). g, h, Same for other human ocular dominance maps. Reproduced with permission from Adams et al. (2007).
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significance for stripe length is likely to reflect a sample size lim-
itation (4 –5 data points for each eye in Fig. 5 vs 8 –10 in Fig. 4)
since most correlations for stripe number were strong (Fig. 5e).

Diversity of ocular dominance maps measured with ASFs
To study the diversity of ocular dominance patterns in further
detail, we simulated the pattern of each local cortical patch pub-
lished in the scientific literature with a difference of multivariate
Gaussian functions. We call this function afferent sorting filter or
ASF because it simulates the sorting of thalamic afferents from
contralateral and ipsilateral eyes during cortical development.
The filter size simulates the cortical region receiving afferents
with the same retinotopy (i.e., overlapping receptive fields), and
the surround elongation simulates local retinotopic cortical
asymmetries (e.g., slower change in retinotopy along the longer
than shorter surround axis of the filter). The size of the cortical
region receiving afferents with overlapping receptive fields is ap-
proximately constant across different eccentricities, as demon-
strated by measurements of cortical regions representing the
same point in visual space (Hubel and Wiesel, 1974b; Albus,
1975; Harvey and Dumoulin, 2011). Therefore, the filter size
should remain constant across the entire cortex and independent
of changes in receptive field size and spatial frequency preference
with visual eccentricity. The ASF has a center-surround structure
(Fig. 6a), which can be circular (Fig. 6b) or elliptical (Fig. 6c). The

center diameter simulates the spread of attraction between affer-
ents of the same type and determines the width of the ocular
dominance bands. The surround simulates the spread of repul-
sion between afferents of different type and its elongation deter-
mines the band shape (e.g., stripes or beads).

We simulate a patch of afferents in the cortical plate (i.e.,
cortex at earliest developmental stage) as a binary-noise image.
White pixels represent afferents from the contralateral eye, and
black pixels represent afferents from the ipsilateral eye (Fig. 6b,c).
The sorting process changes the polarity of the pixel at the center
of the filter when the polarity of the surrounding afferents is
different (e.g., change from white to black when the average con-
volution is negative). This process aims to simulate the retrac-
tion/expansion of axonal growth cones from contralateral- and
ipsilateral-eye afferents in the cortical plate (Rakic, 1977; Shatz
and Stryker, 1978; Huberman et al., 2008). The sorting of tha-
lamic afferents is simulated through sequential convolutions be-
tween the noise image representing the cortical patch and the ASF
(Fig. 7a). In the first convolution (developmental Step 1), we
convolve the filter with an image of random noise (i.e., randomly
arranged afferents from contralateral and ipsilateral eyes). In the
second convolution (developmental Step 2), we convolve again
the filter with the image resulting from the first convolution, and
we continue performing these sequential convolutions for 10 de-
velopmental steps. Ocular dominance patterns emerge at the first

Figure 4. Correlation between ocular dominance patterns from left and right V1 hemispheres. a, Maps of ocular dominance from the right hemisphere (RH) and left hemisphere (LH) obtained
from the scientific literature for a human (Human 1; reproduced with permission from Adams et al., 2007) and 3 macaques (male macaques: 1–2, female macaques: 3, reproduced with permission
from Horton and Hocking, 1996). Red lines indicate the retinotopic sectors from human and macaque retinotopic maps used to calculate the different ocular dominance parameters. Scale bars:
human, 10 mm; macaque, 5 mm. b, Correlations between LH and RH area for human 1 (top) and macaques 1–3 (bottom). Each circle represents a measurement from a different retinotopic sector
for the contralateral eye (white) and ipsilateral eye (black). c–f, Same as in b, but for stripe length (c), stripe width (d), stripe number (e), and stripe angle (f ).
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Figure 5. Correlation between ocular dominance patterns between the two V1 halves representing lower and upper visual fields. a, Maps of ocular dominance from the V1 halves representing
the lower visual field (LF) and upper visual fields (UF), obtained from the same brains shown in Figure 4. Scale bars: human, 10 mm; macaque, 5 mm. b, Correlations between UF and LF areas for
Human 1 and Macaques 1–3. Each circle represents a measurement from a different retinotopic sector for the contralateral eye (white) and ipsilateral eye (black). c–f, Same as in b, but for stripe
length (c), stripe width (d), stripe number (e), and stripe angle (f ).
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convolution between the filter and afferent image and become
increasingly similar at subsequent convolutions (Fig. 7b). Be-
cause the patterns become nearly identical at developmental
Step 10 (Fig. 7b; pattern similarity � 1), we used 10 convolu-
tions for all simulations (for more details, see Materials and
Methods). As illustrated in Figure 7, the shape of the filter
determines the shape of the ocular dominance pattern. Circu-
lar filters generate ocular dominance patterns with random
orientations (Fig. 7a, top row), whereas elliptical filters gen-

erate ocular dominance stripes orthogonal to the filter orien-
tation (Fig. 7a, bottom three rows).

A large diversity of ocular dominance patterns can be gener-
ated by manipulating just four filter parameters: the center diam-
eter, the ratio between surround and center diameter (surround/
center ratio), the ratio between the longest and shortest axes of
the surround (x-surround/y-surround ratio), and the angle of the
filter (Fig. 8a). Circular surrounds generate bead patterns (Fig.
8a; x-surround/y-surround � 1) and elliptical surrounds gener-

Figure 6. The ASF. a, ASFs are modeled as a difference of two multivariate Gaussian functions. The filter has a positive center (orange) and a negative surround (purple). b, c, Top, View of circular
(b) and elliptical (c) filters superimposed on cortical space. The filter sorts contralateral (white pixels) and ipsilateral afferents (black pixels) over the mediolateral (ML) and anteroposterior (AP) axes
of cortical space.

Figure 7. ASFs generate realistic ocular dominance patterns. a, The ASF is convolved with randomly organized afferents (Step 1), the result is convolved again (Step 2), and this process repeated
for 10 sequential convolutions (Steps 1–10). The value of the convolution determines whether the polarity of the afferent changes or remains the same in each developmental step. Circular filters
generate ocular dominance stripes with random orientations, and elliptical filters generate ocular dominance stripes oriented orthogonal to the longest axis of the filter. b, The ocular dominance
pattern becomes increasingly similar as the number of sequential convolutions increases.
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ate stripe patterns (Fig. 8a; x-surround/y-surround � 2). As we
increase the center diameter, the surround/center ratio, or the
x-surround/y-surround ratios, stripes and beads become wider,
start intersecting with each other, and increase their total length
(Fig. 8b). By systematically manipulating these four filter param-
eters, we generated a database of multiple ocular dominance pat-
terns resembling those found in nature. We then used this
database to identify the filters associated with different local pat-
terns of ocular dominance segregation in ocular dominance maps
published in the scientific literature.

We divided each published ocular dominance map in multi-
ple patches, each patch containing three cycles of contralateral
and ipsilateral stripes. We then searched our image database for
the best match for each ocular dominance patch (i.e., similar
number of stripes, average length, width, and angle) and selected
the ASF that generated the best match. The selected filters gener-
ated patterns very similar to the originals, as verified by visual
inspection (Fig. 9a) and parameter correlations (Fig. 9b; n � 6
ocular dominance maps). Elongated filters reproduced stripe

patterns, circular filters reproduced beaded patterns, filters with
large center diameters reproduced patterns with wide features,
and those with small diameters reproduced patterns with thin
features (Fig. 9a). At the end of the search, we obtained a set of
local filters (Fig. 10a– c) with diverse sizes, elongation ratios, and
angles for each ocular dominance map. The average elongation
ratio of the filters was constrained between 2 and 3 in the three
species (Fig. 10d–f; long/short average filter axis: 3 in human, 2.3
in macaque, and 2.5 in cat). The longest axes of the filters also
showed a strong tendency to be parallel to the longest axis of area
V1 in humans and macaques but not in cats (Fig. 10g–j).

Ocular dominance bands segregate along the cortical axis
with the slowest local retinotopy gradient
The cortical representation of visual space is much more dis-
torted in humans and macaques than cats. For example, a patch
of primary visual cortex representing the 10 	 10 central degrees
is an order of magnitude more elongated in humans and ma-
caques. We hypothesize that the more distorted cortical represen-

Figure 8. Different filter parameters generate different ocular dominance patterns. a, Ocular dominance patterns generated by systematically changing two parameters of the ASF: the
X-surround/Y-surround ratio and the surround/center ratio. ASFs with a X-surround/Y-surround ratio of 1 generate beaded patterns that resemble the ocular dominance patterns of cats. ASFs with
surround/center ratios �1 generate ocular dominance stripes resembling ocular dominance patterns of macaques and humans. Increasing the surround/center ratio or the X-surround/Y-surround
ratio makes the ocular dominance stripes and beads wider and longer (i.e., more frequently connected with each other). b, Changes in the length of ocular dominance stripes as a function of changes
in X-surround/Y-surround and surround/center ratios.
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tation of visual space makes ocular dominance bands to segregate
along the longest axis of area V1. The longest axis helps to maxi-
mize the retinotopic match between adjacent stripes from con-
tralateral and ipsilateral eyes. To test this hypothesis, we divided
each ocular dominance map into multiple retinotopy patches
drawn from retinotopic maps published in the scientific litera-
ture (Tusa et al., 1978; Van Essen et al., 1984; Horton and Hoyt,
1991). We then searched in our database for the filters that best
replicated the ocular dominance patterns associated with each
retinotopic patch. To reduce the measurement errors as much as
possible, we restricted our analysis to large retinotopic patches,
which included most of the cortex in humans and macaques and
a central patch of 30 	 30 degrees in cats (Fig. 11a,b).

Consistent with our hypothesis, the angle of the ASF associ-
ated with each ocular dominance patch (Fig. 11a, purple ellipses)
tended to be parallel to the axis of slowest retinotopy gradient
within the patch (Fig. 11b, dotted purple lines). The angle differ-
ence between the filter and gradient axes was constrained within
�20 degrees in example hemispheres from the three species (Fig.
11c; number of retinotopic sectors: 14 for human, 10 for ma-
caque, and 17 for cat). The median angle difference was con-
strained to �25 degrees across all macaque and human
hemispheres that we measured (macaques: 12.93 
 14.06, n �
116 retinotopic sectors from 7 macaque hemispheres; humans:
22.7 
 22.61, n � 123 retinotopic sectors from 3 human hemi-
spheres; p � 0.0001 that the angle difference is due to chance,
Wilcoxon tests). The filter angle is measured with Fourier analy-
sis and is independent of the other filter parameters. Therefore,
the results from Figure 11 would be identical if the angle of each
retinotopic patch was calculated directly with Fourier analysis
without using ASFs.

The tight relation between ocular dominance segregation and
retinotopy that we demonstrate is particularly remarkable given
the potential large sources of measurement error. The measure-
ments require aligning published retinotopic and ocular domi-
nance maps that have different shapes, are not from the same
individual animal, and are measured with different methods:
postmortem histology (Kaschube et al., 2003; Adams et al., 2007),
electrophysiology (Tusa et al., 1978; Van Essen et al., 1984), or
MRI (Horton and Hoyt, 1991). The large variability in V1 shape
and size across individuals of the same species also introduces
measurement errors (Tusa et al., 1978; Van Essen et al., 1984).
The errors should be even larger in cats because the cortical dis-
tortions of visual space are smaller and the published retinotopic
and ocular dominance maps have very different shapes (compare
Fig. 10a– c with Fig. 11b). Despite these measurement errors, the
relationship between ocular dominance segregation and local
cortical retinotopy was very robust. Therefore, we conclude that
ocular dominance segregation is closely associated with cortical
retinotopy and that this association is present in the entire corti-
cal map of different species, including humans.

Simulations of ocular dominance segregation in visual cortex
Our ASFs can be used to simulate differences in ocular domi-
nance segregation across species. The cortical area covered by the
ASF represents the cortical region receiving input from thalamic
afferents with overlapping receptive fields (i.e., cortical region
representing the same binocular point in visual space). There-
fore, we can simulate an evolutionary increase in cortical area per
binocular visual point simply by increasing the size of the ASF
(Fig. 12a). For simplicity, we perform these simulations with a
circular filter that generates randomly oriented ocular domi-

Figure 9. Reproducing the ocular dominance pattern of each local cortical patch published in the scientific literature with ASFs. a, Ocular dominance patterns of cortical patches published in the
scientific literature (top) and selected best matches from a database (middle) of patterns generated with ASFs (bottom). b, Ocular dominance comparison between mean parameters of the original
cortical patches (x axis) and best matches obtained from our database (y axis), shown for mean length (left), mean width (middle), and number of features (right).
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nance bands and has a center/surround ratio of 2.5, which is the
average ratio obtained with our measurements (Fig. 10). We ap-
ply ASFs of different sizes to images of binary white noise repre-
senting afferents in the cortical plate. We then assign a value of 1
to the smallest filter, which represents a species with a very small
cortical area per binocular visual point (e.g., mouse cortex), and
measure relative changes in ocular dominance segregation with
filter size.

This simple simulation demonstrates that increasing the cor-
tical area per binocular visual point (i.e., size of ASF) strengthens
ocular dominance segregation through a power law function.
With the filter parameters that we used, doubling the size of the
filter increases the strength of ocular dominance segregation by
3.6 times (Fig. 12b) and the stripe width by 2– 4 times depending
on filter size (Fig. 12c). These simulations explain the weaker
ocular dominance segregation in New World monkeys and their
thin (0.4 – 0.2 mm) or absent ocular dominance stripes (Adams
and Horton, 2003; Takahata et al., 2014). The simulations also
reproduce the strong ocular dominance segregation of cortices
that represent each binocular visual point with a large cortical
area, such as humans and macaques (Fig. 12a– c). In this model,
the large cortical region per binocular visual point allows accom-
modating many afferents from the two eyes with the same reti-
notopy. Within this cortical region, afferents from each eye fire
together more often and cooperate to connect neurons that are
also close together. Consequently, the afferent segregation by eye

input helps reduce the total amount of axon needed to make their
connections (Fig. 12d). In contrast, ocular dominance segrega-
tion is weak and random in the visual cortex of rodents and
lagomorphs because they have a small cortical region per binoc-
ular visual point and a limited number of afferents from the two
eyes sharing the same retinotopy (Fig. 12e). The cortices of ro-
dents and lagomorphs also have to represent large panoramic
visual fields that are mostly monocular, leaving limited cortical
resources to represent binocular visual points. For example, al-
though ferrets and rabbits have cortices with very similar surface
area (�80 mm 2), rabbits have lateral eyes, sample a much larger
visual field and, unlike ferrets, do not have ocular dominance
segregation in cortex (Mazade and Alonso, 2017).

Simulations of ON-OFF afferent segregation in visual cortex
Thalamic afferents segregate in visual cortex not only by eye input
(contralateral or ipsilateral) but also by contrast polarity (ON or
OFF). This ON-OFF segregation is thought to be important in
the development of cortical maps (Miller, 1994; Paik and
Ringach, 2011; Jang and Paik, 2017), has been demonstrated in
cats, ferrets, minks, and tree shrews (McConnell and LeVay,
1984; Norton et al., 1985; Zahs and Stryker, 1988; Jin et al., 2008;
Kremkow et al., 2016), and is likely to be also present in primates
(Kremkow et al., 2016; Kremkow and Alonso, 2018). In cat visual
cortex, ON-OFF polarity and ocular dominance segregate along
orthogonal cortical axes (Kremkow et al., 2016). Because of this

Figure 10. ASF set associated with each ocular dominance map. a, Map of ocular dominance (left, same as Fig. 2a) and the associated set of ASFs (right) obtained from human cortex. b, Same
as in a, but for male macaque (same ocular dominance map as Fig. 2c). c, Same as in a, but for cat (same ocular dominance map as Fig. 2e). d–f, Distribution of ASF lengths obtained from human
(d), macaque (e), and cat (f ) ocular dominance maps, shown separately for the longest (left) and shortest (right) axes of the filter. g–i, Distribution of filter angles and mean (purple number)
obtained from ocular dominance maps from human (g), macaque (h), and cat (i). j, Distribution of filter angles obtained from other ocular dominance maps from human (left) and macaque (right).
Most filter angles tend to be parallel to the longest axes of area V1 in macaques.
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orthogonal relationship, we can simulate an ON-OFF map with
our ASFs if we know the ocular dominance map and make two
main assumptions. First, the orthogonal relationship between
ocular dominance and ON-OFF polarity is similar in cats, ma-
caques, and humans. Second, the afferent segregation by ON-
OFF polarity is weaker than the afferent segregation by ocular
dominance because ON-OFF afferents segregate later (Speer et
al., 2010; Kremkow and Alonso, 2018). To simulate the ON-OFF
cortical map, we first took an ocular dominance map published
in the scientific literature (Fig. 13a) and generated the set of ASFs
for ocular dominance (Fig. 10a– c). We then rotated all ASFs by
90 degrees to obtain the set of ASFs for ON-OFF dominance (Fig.
13b– d). The algorithm for ON-OFF segregation is similar to the
algorithm used for ocular dominance segregation but has a ran-
domization factor that makes the ON-OFF afferent segregation
weaker (see Materials and Methods). In these simulations, the
afferent segregation for ocular dominance is already very pro-
nounced at the first convolution (developmental Step 1) as pre-
viously shown in Figure 7. In contrast, the ON-OFF afferent
segregation is nearly absent at developmental Step 1, particularly
when there is an equal number of ON and OFF afferents (Fig.
13b,d,e). When OFF afferents dominate (e.g., 60% OFF and 40%
ON), the ON-OFF afferent segregation is stronger (Fig. 13c– e).

The eye/polarity grid: a developmental model of visual
cortical topography
Together, our results support a developmental model of visual
cortical topography that sorts thalamic afferents by eye input and
contrast polarity along orthogonal cortical axis with different
retinotopic gradients. The model assumes that afferents showing

the strongest correlated firing are more likely to make connection
with the same cortical targets and become closer together in the
cortex. In the model, images perceived by the two eyes are very
similar and positively correlated (Fig. 14a,b), making afferents
from the two eyes fire together when they have overlapping re-
ceptive fields (Fig. 14b, inset). Consequently, afferents from the
two eyes with overlapping receptive fields tend to be close to-
gether within the cortex, making the ocular dominance segrega-
tion align with the cortical axis of slowest retinotopy gradient.
Conversely, images of light and dark features are negatively cor-
related (Fig. 14c,d), making ON and OFF afferents from the same
eye fire together when they have partially overlapping receptive
fields (Fig. 14d, inset). Consequently, ON and OFF afferents from
the same eye with partially overlapping receptive fields tend to be
close together within the cortex, making the ON-OFF segregation
align with the cortical axis of fastest retinotopy gradient. This
orthogonal arrangement of afferent segregation by eye input and
contrast polarity (Kremkow et al., 2016) simply reflects the fact
that the same point in visual space can be seen by both eyes but
cannot be both dark and light at the same time.

Discussion
We have demonstrated that the diversity of ocular dominance
patterns in visual cortex is closely associated with asymmetries in
cortical retinotopy. We show that ocular dominance stripes run
across the cortical axis with slowest retinotopy gradient, an ar-
rangement that maximizes the cortical retinotopic match across
the ocular dominance border. The close relationship between
retinotopy and ocular dominance is demonstrated in different
regions of an individual cortical map, different species, and is

Figure 11. Ocular dominance bands segregate along the cortical axis with slowest local retinotopy gradient. a, Set of ASFs obtained from the same ocular dominance maps illustrated in Figures
2 and 10, but for larger cortical patches. Each ASF was obtained from a patch of an ocular dominance map that matched the size and position of a cortical retinotopic sector. Retinotopic sectors were
estimated from published cortical retinotopic maps from human (Horton and Hoyt, 1991), macaque (Van Essen et al., 1984), and cat (Tusa et al., 1978). b, Axis of slowest retinotopy gradient (dotted
purple line) shown for each retinotopic sector. Gray lines indicate axes of slowest retinotopic gradient in sectors that could not be properly measured. Because the retinotopic sectors in cat are small
and the alignment with the ocular dominance map is prone to large error, only central large sectors are measured. c, Comparison of distributions for axis of slowest retinotopy gradient (dotted purple
line) and longest axis of ASFs (solid purple line).
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particularly pronounced in macaques and humans. We also dem-
onstrate that the ocular dominance stripes from the ipsilateral eye
become thinner as visual cortical eccentricity increases, even
within central vision. This thinning of ipsilateral-eye stripes fur-
ther supports a close relationship between retinotopy and ocular
dominance because retinal ganglion cell density decreases more
with eccentricity in the temporal retina (that feeds ipsilateral-eye
stripes) than the nasal retina (that feeds contralateral-eye stripes)
(Curcio and Allen, 1990).

We use these results to propose a developmental model of
visual cortical topography that segregates thalamic afferents by
eye input and ON-OFF polarity along orthogonal cortical axes.
Eye input segregates along the axis of slowest retinotopic gradient
to maximize the binocular retinotopic match across the border of
ocular dominance stripes, which is needed for depth perception.
ON-OFF polarity segregates along the axis with fastest retino-
topic gradient to maximize the retinotopic mismatch across the
border of ON and OFF domains, which is needed to process
stimulus orientation.

Relationship between cortical retinotopy and
ocular dominance
Hubel and Wiesel were the first to predict a close relation between
ocular dominance and cortical retinotopy. In their ice-cube
model, Hubel and Wiesel represented each portion of visual
space with a rectangular piece of cortex that has a length/width
ratio of 2, one cortical square for each eye (Hubel and Wiesel,
1977). To accommodate the cortical machinery for the two eyes,
retinotopy needs to change two times slower along the length

than the width of this cortical rectangle. This prediction is con-
sistent with the finding that ocular dominance stripes run or-
thogonal to the border between areas V1 and V2 because
retinotopy changes slower along than across this border (Hubel
and Wiesel, 1974a, 1977; Tootell et al., 1982, 1988; Blasdel and
Campbell, 2001; Adams et al., 2007). However, the prediction is
inconsistent with careful measurements of cortical patches near
the V1/V2 border showing retinotopic ratios considerably lower
than two. The retinotopic ratio within an ocular dominance
stripe can range from 1.2 (Tootell et al., 1982) to 1.7 (Blasdel and
Campbell, 2001), and the average cortical patch representing a
square of visual space has a length/width ratio of 1.37 
 0.15
(Blasdel and Campbell, 2001) (ratios averaged from V/H column
in Table 1). The ratio of the cortical lines representing vertical/
horizontal meridians in visual cortex is also 1.34 
 0.09 (Tootell
et al., 1988) (ratios averaged from Figure 13 using grabit from
MATLAB to extract the data).

Comparative measurements of ocular dominance and retino-
topy have been restricted in the past to the neighborhood of the
V1/V2 border (Hubel and Wiesel, 1977; Blasdel and Campbell,
2001). Therefore, it has been suggested that the limited retino-
topic distortion demonstrated at the V1/V2 border is a special
case that cannot be generalized to the entire cortex (Tootell et al.,
1982). The retinotopic ratio at the V1/V2 border could be larger
than one simply because the cortical line representing the vertical
meridian (V1/V2 border) is elliptical and longer than the straight
line representing the horizontal meridian (Tootell et al., 1982,
1988). Contrary to this explanation, our results demonstrate a
tight relation between cortical retinotopy and ocular dominance

Figure 12. Simulations of ocular dominance segregation in visual cortex. a, Simulation of cortical patches processed with different ASFs, from the smallest filter on the left (size 1) to the largest
on the right (size 32). The size of the filter represents the cortical region receiving afferents with overlapping receptive fields. Afferents at the borders of the filter have nonoverlapping receptive fields
(RF), as illustrated at the top of each figure panel. b, Strength of ocular dominance segregation (measured as maximum power in Fourier space) as a function of ASF size. The segregation strength
increases with filter size following a power function with an exponent of 1.85. Top, Equation. c, Same as in b, but for stripe width. The model assumes a normalized stripe width of 1 for human visual
cortex, which is used as reference to estimate the relative values for macaques and squirrel monkeys in c and then b. d, The model assumes that animals showing ocular dominance segregation have
many afferents from the contralateral (C) and ipsilateral (I) eyes with overlapping receptive fields. Afferents with the same retinotopy from the same eye tend to fire together, connect to common
targets and become neighbors in cortex, which reduces the axon needed for their connections. e, The model assumes that animals lacking ocular dominance segregation have very few afferents from
the two eyes with overlapping receptive fields. Because the number of afferents from the two eyes with the same retinotopy is very limited, they remain randomly distributed in cortex.
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that is not restricted to the V1/V2 border but includes multiple
cortical regions and different species. The strong relationship be-
tween retinotopy and ocular dominance that we demonstrate is
also consistent with the asymmetric shapes of axonal arbors from
thalamic afferents, which tend to run orthogonal to the V1/V2
border, even in cats (Kremkow and Alonso, 2018).

The eye/polarity grid of visual cortical topography
Hubel and Wiesel (1977) predicted that cortical retinotopy
should abruptly change at the border between ocular dominance
stripes. However, we could not find evidence for such abrupt
retinotopic disruptions in multielectrode recordings from cat vi-
sual cortex (Kremkow et al., 2016). Also contrary to this predic-

Figure 13. Simulations of ON-OFF segregation in visual cortex. a, V1 maps of ocular dominance used to obtain the ASFs for ON-OFF segregation (same maps of Fig. 2). b, Simulation of ON-OFF
segregation for the V1 ocular dominance maps shown in a. c, Same as in b, but using 40% of ON afferents and 60% of OFF afferents instead of 50% of each. d, Detail of cortical square patch shown
in b and c to illustrate better the more pronounced ON-OFF segregation when the cortex is OFF dominated (40% of ON and 60% of OFF afferents vs 50% of each). e, Strength of ON-OFF segregation
for consecutive developmental steps showing the stronger segregation for the OFF dominated cortex. Top, Images represent example square patches from the macaque maps used to obtain the
values in the plot below.
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tion, the receptive fields from the left and right eyes of binocular
neurons are exquisitely overlapped in visual space (Ohzawa et al.,
1996; Tsao et al., 2003; Kara and Boyd, 2009; Wang et al., 2015;
Kremkow et al., 2016). Therefore, in our model, retinotopy does
not change rapidly at the border of ocular dominance stripes. It
does exactly the opposite. It changes at the slowest rate across the
ocular dominance border to minimize differences in retinotopy
between neighboring afferents from the two eyes.

Unlike ocular dominance stripes, ON and OFF cortical do-
mains need to be mismatched in retinotopy to process stimulus
orientation and help build cortical receptive fields with spatially
separate ON and OFF subregions (Reid and Alonso, 1995; Alonso
et al., 1996, 2001; Lien and Scanziani, 2013; Sedigh-Sarvestani et
al., 2017). In cat visual cortex, ON and OFF domains are corti-
cally segregated, retinotopically mismatched, and run orthogonal
to ocular dominance bands (Kremkow et al., 2016). Therefore,
our model adopts this orthogonal relationship in what we call the
eye/polarity grid (Kremkow and Alonso, 2018). In the eye/polar-
ity grid, thalamic afferents segregate both by eye input (eye axis)
and ON-OFF contrast polarity (polarity axis) along orthogonal
cortical axes. The eye axis shows the slowest changes in retinotopy
and the polarity axis the fastest changes. In the eye/polarity grid,
ocular dominance stripes run parallel to iso-eccentricity lines
(Hubel and Freeman, 1977; Adams et al., 2007) simply because
cortical retinotopy changes faster along than across these lines.
Moreover, the average length/width ratio of the local cortical
retinotopy is 1.4 and not 2 because cortical retinotopy changes
faster along the polarity than the eye axes.

Our model predicts that ocular dominance stripes should be
present in any brain structure that can accommodate a large
number of afferents with overlapping receptive fields from both
eyes. Moreover, it predicts that variations in ocular dominance

patterns should correlate with variations in the density of retinal
ganglion cells that feed the cortex through the thalamus (Mazade
and Alonso, 2017). Because retinal ganglion cell density can be
300% higher in the peripheral nasal than temporal retina (Curcio
and Allen, 1990), the ocular dominance stripes from the ipsilat-
eral eye should be thinner in the visual periphery. Moreover,
because the density differences between nasal and temporal ret-
ina can be already present within 5 degree eccentricities (Curcio
and Allen, 1990), the decrease in ipsilateral-eye stripe width
should be already present within central vision, as our results
demonstrate.

Our results indicate that, as retinal eccentricity increases, the
cortex compensates limitations in retinal sampling by enhancing
the dominance of the contralateral eye, a topographic adjustment
that should have direct consequences in human vision (e.g.,
contralateral-eye dominance should increase with azimuth ec-
centricity). In our model, the decrease in retinal sampling with
eccentricity makes cortical retinotopy change faster. In turn, the
faster retinotopy gradient limits the ability of the cortex to ac-
commodate a full ipsilateral-contralateral cycle of afferents with
overlapping receptive fields. Therefore, in our model, ocular
dominance segregation vanishes in the visual periphery of human
and macaque cortex for the same reason that it vanishes in the
cortex of some squirrel monkeys (Adams and Horton, 2003);
because the number of afferents from the two eyes with overlap-
ping receptive fields is reduced. In support of our model, adding
more afferents from the ipsilateral eye to the cortex causes affer-
ent segregation by eye input, even in rodents (Merlin et al., 2013;
Laing et al., 2015). Moreover, directing retinal afferents from the
two eyes into the same optic tectum causes ocular dominance
segregation in frogs and fish (Constantine-Paton and Law, 1978;
Boss and Schmidt, 1984).

Figure 14. The eye/polarity grid. A model of visual cortical topography. a, Stereogram illustrating the image of a bicycle processed by the contralateral eye (left, gray frame) and ipsilateral eye
(right, black frame). Images from public domain (http://vision.middlebury.edu/stereo/). b, Correlation between the two images illustrated in a, measured when the images are aligned (0 at x axis)
and misaligned within a range between �1500 and 1500 pixels. The correlation between images seen by two frontal eyes is positive. Therefore, neighboring afferents from the two eyes should be
most strongly correlated when they have overlapping receptive fields (inset). c, Stereogram illustrating the image of the bicycle processed by OFF (left, blue frame) and ON (right, red frame) cortical
pathways. d, Image correlation of the two images illustrated in c. The correlation between images processed by ON and OFF cortical pathways is negative. Therefore, ON and OFF neighboring
afferents should be most strongly correlated when they have partially overlapping receptive fields (inset). e, Simulation of the eye/polarity grid in human cortex shown for the entire map (top) and
a cortical patch (gray square). Bottom, The cortical patch is shown in more detail. Thalamic afferents from contralateral (contra) and ipsilateral eyes (ipsi) segregate in a cortical axis (eye axis)
orthogonal to the axis for ON and OFF thalamic segregation (polarity axis). The retinotopic gradient within the cortical patch is slowest along the eye axis to maximize the binocular retinotopic match
across the ocular dominance border, which is needed for depth perception. It is fastest along the polarity axis to maximize the retinotopic mismatch across the ON-OFF border, which is needed to
process stimulus orientation.
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Our model predicts close relationships among the V1 maps
for retinotopy, ocular dominance, and ON-OFF polarity. Unfor-
tunately, experimental measures of these relationships are still
rare. Accurate reconstructions of individual V1 maps are avail-
able for ocular dominance but not for retinotopy or ON-OFF
polarity. Maps with enough spatial resolution to measure retino-
topy are only available as averages from multiple animals, and
ON-OFF polarity maps are restricted to small cortical patches
(Jin et al., 2008; Smith et al., 2015; Wang et al., 2015; Kremkow et
al., 2016; Lee et al., 2016). Therefore, future experiments and new
tools will be needed to reconstruct more precisely the organiza-
tion of visual cortical maps and the relationship among the rep-
resentation of different stimulus dimensions (Hübener et al.,
1997; Nauhaus et al., 2016). These maps are crucial to understand
how the cerebral cortex represents visual information and to
guide future implants of cortical prosthesis in the blind.
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