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Abstract

Scientific experimentation depends on the artificial control of natural phenomena. The 

inaccessibility of cognitive processes to direct manipulation can make such control difficult to 

realize. Here, we discuss approaches for overcoming this challenge. We advocate the incorporation 

of experimental techniques from sensory psychophysics into the study of cognitive processes such 

as decision making and executive control. These techniques include the use of simple 

parameterized stimuli to precisely manipulate available information and computational models to 

jointly quantify behavior and neural responses. We illustrate the potential for such techniques to 

drive theoretical development, and we examine important practical details of how to conduct 

controlled experiments when using them. Finally, we highlight principles guiding the use of 

computational models in studying the neural basis of cognition.

In Brief

Waskom et al discuss challenges of investigating the neural mechanisms of cognition. They 

explore the benefits of an outside-in approach that incrementally progresses from peripheral to 

central systems and ways to overcome prevalent challenges by adapting techniques from sensory 

psychophysics.

Introduction

The overarching aim of cognitive neuroscience is to understand, through experimental 

investigation, the mechanisms that give rise to intelligent behavior. Progress depends on 

many factors, with experimental design quality playing a central role. Effective experimental 

designs will induce controlled alterations in cognitive processes that can be related to 

changes in behavior and neural responses. The precision of the control determines the clarity 

of the theoretical insights that can be gained.

Experimental control is multi-faceted (Boring, 1954). Broadly, the objective is to produce a 

known change in some component of a system without directly altering any of its other 

aspects. When successful — and combined with an understanding of the system’s overall 

functional goal (Krakauer et al., 2017) — this will license conclusions about how 

component operations within the system give rise to its emergent properties. That is, it will 
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provide the basis for a mechanistic explanation (Bechtel, 2007). Conclusions about 

mechanism are limited when there is uncertainty regarding the character or magnitude of the 

change produced by a manipulation or in the presence of experimental confounds: failures of 

control that allow the values of other variables to change along with the component of 

interest.

Achieving precise control when investigating the neural basis of cognition can be fraught 

with difficulty. Cognitive processes are influenced by sensory inputs, and they are ultimately 

realized in behavioral responses. Yet they are situated at a far remove from the external 

variables that an experimenter can manipulate and measure. The intervening systems are 

complex, parallel, and interactive. At best, they are only partially understood. Without great 

care, there will be considerable uncertainty about the effects of an experimental 

manipulation on the cognitive process of interest, and confounding changes in other 

processes will concomitantly occur (Friston et al., 1996). Experimental remoteness therefore 

poses a fundamental challenge (Figure 1).

Neural recordings or interventions on neural activity may seem more proximal to internal 

processes. But clear interpretation of such data depends just as strongly on experimental 

control as do purely behavioral experiments. Further, neural activity is not directly 

interpretable in terms of cognitive processing without a theoretical framework that can 

bridge across cognitive and neural levels of analysis (Farrell and Lewandowsky, 2018; Marr, 

1982; Teller, 1984). Such frameworks can be formally instantiated in computational models, 

but the benefits of doing so are limited if an experiment does not permit quantification of 

behavioral and neural measurements.

This review discusses principles of experimental design and interpretation that can help to 

overcome the challenge of experimental remoteness. Our primary goal is to share insights 

from an approach that applies psychophysical techniques to investigate the mechanistic basis 

of cognition. We first introduce this cognitive psychophysics research program and 

demonstrate its potential for making progress on understanding cognitive processes in 

experiments that prioritize experimental control. We then identify important practical issues 

related to design and interpretation that arise in these experiments. We further illustrate the 

challenge of experimental remoteness and the utility of our proposed approach by examining 

a pervasive issue in cognitive neuroscience: the potential for uncontrolled task engagement 

confounds. Finally, we conclude with a brief discussion of how to develop and evaluate 

computational models. In raising theoretical and practical challenges, we share specific 

answers from the perspective of cognitive psychophysics, but we also identify general 

principles that, if applied in any research program, would help to ensure a successful 

progression of scientific insights.

Reducing experimental remoteness through cognitive psychophysics

Sensory psychophysics has a long history of using quantitative decision theory as a tool to 

aid the investigation of perceptual systems (Green and Swets, 1966; Link, 1992). The 

cognitive psychophysics research program inverts this basic logic, using experimental 

paradigms and models from sensory research as tools to aid the study of cognitive processes. 
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Doing so involves several important and mutually constitutive elements. The first is a focus 

on tasks where expert observers make threshold-level judgments about experimental stimuli 

that afford precise control. The second is a conceptual orientation towards quantification as a 

key goal of experimental design. The third is the centrality of formal computational models 

to the analysis and interpretation of behavioral and neural data. Individually, these 

components may not be unique to psychophysical research. But together, they allow one to 

approach questions about cognition from a position that remains deeply rooted in sensory 

psychophysics. Existing knowledge about perceptual systems then forms a bridge that can 

reduce experimental remoteness.

This approach has been applied successfully within the domain of perceptual decision 

making, often by adopting perceptual discrimination tasks directly from sensory 

psychophysics. Such tasks typically involve synthetic, parameterized stimuli (Rust and 

Movshon, 2005). For example, subjects might be asked to discriminate the relative 

frequency of two tactile vibrations (Hernández et al., 2000), the dominant odor in a mixture 

(Kepecs et al., 2008), or the direction of coherent motion in a random dot kinematogram 

(Shadlen and Newsome, 2001). The advantage of synthetic stimuli is that the information 

available to the subject can be precisely modulated along a continuous dimension, often with 

ratio scaling (Fechner et al., 1966). And efforts to model decision-making processes can 

reflect not just knowledge of the stimulus parameters themselves, but also the properties of 

the responses that those stimuli elicit in sensory cortex (Shadlen et al., 2006).

These elements have contributed to a basic understanding of the mechanisms that underlie 

decision making in simple discrimination tasks. Central to this understanding is the notion of 

a gradual accumulation — formally, integration with respect to time — of sensory 

“evidence”, producing a “decision variable” representation. The value of the decision 

variable can be used to select a response, and its computation appears to be reflected in the 

dynamics of trial-averaged firing rates recorded from neurons in multiple cortical and 

subcortical areas (Gold and Shadlen, 2007; Hanks and Summerfield, 2017; Schall, 2001). 

When aligned to the time of the response in a reaction time task, activity in these neurons 

converges onto a terminal rate (Roitman and Shadlen, 2002). This is consistent with the 

computational idea that a single mechanism — a decision bound or threshold — can explain 

both choice and decision time. The position of the bound determines the relative trade-off 

between the expected speed and accuracy of the decision (Ratcliff and Rouder, 1998). These 

observations demonstrate that the processes studied in simple discrimination tasks are both 

deliberative and flexible, bearing hallmarks of higher cognition.

Ongoing work continues to provide a more sophisticated understanding of these basic 

elements while also exposing current gaps in knowledge (Hanks and Summerfield, 2017; 

Najafi and Churchland, 2018). We focus here on two strands of work that illustrate the 

potential of the cognitive psychophysics approach. The first is the development of expanded 

perceptual judgment tasks and their use in quantifying the properties of cognitive systems 

that support deliberative reasoning. The second shows how understanding the neural 

mechanisms of the speed-accuracy trade-off provides a new view on a long-standing 

question in cognitive control research.
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Befitting their origins in the study of perception, classical tasks strongly associate the 

decision reported by the subject with a unified percept of the stimulus. Recent work in 

cognitive psychophysics has begun to develop tasks that solicit judgments about sequences 

or ensembles of stimuli, breaking the singular association between perception and decision 

while retaining the benefits of simple parameterization (Figure 2A). For example, subjects 

may be asked to discriminate the relative rate of discrete auditory clicks or visual flashes 

(Brunton et al., 2013; Raposo et al., 2014; Scott et al., 2017) or to infer something about the 

generating statistics of the contrast, orientation or other properties in a sequence of gratings 

(Cheadle et al., 2014; Drugowitsch et al., 2016; Waskom and Kiani, 2018).

These tasks have taken questions about the cognitive systems involved in deliberative 

reasoning and made them accessible to psychophysical quantification of the factors that limit 

threshold-level performance. For example, Brunton et al. (2013) leveraged the precise timing 

of stimulus information in a “Poisson clicks” task to determine that stochastic variability in 

choice is stimulus-dependent rather than time-dependent, implying that the accumulation 

process itself is virtually noiseless (Figure 2B). While this might suggest that expanded 

perceptual judgment tasks are still just studying sensory processes, Drugowitsch et al. (2016) 

used an orientation judgment task to show that sensory noise per se cannot account for the 

pattern of errors that humans make. Instead, the noise that limits behavior emerges during 

the cognitive process that transforms sensory representations into a common currency of 

decision evidence; that is, during inference (Figure 2C). Waskom and Kiani (2018) 

combined elements from each of these tasks to quantify the mnemonic properties of 

deliberation. By manipulating the times at which spatial contrast patches were presented, 

they confirmed that time-dependent noise is minimal and quantified the integration time 

constant of behavior as being on the order of tens of seconds or longer. This implies that 

deliberative reasoning can make use of a memory system that has considerable robustness in 

the temporal domain. (Figure 2D).

Developing and evaluating the computational models that contributed to these insights 

required precise knowledge about the timing and strength of the information available for 

the decision. Simple parameterized stimuli provide the necessary precision. And knowledge 

of how those stimuli are represented in sensory systems can aid interpretation by accounting 

for nuisance factors that might otherwise complicate the analysis. For example, Brunton et 

al. included auditory adaption in their model, and Drugowitsch et al. accounted for 

systematic biases in the representation of near-cardinal orientations, each helping to refine 

the quantification of cognitive factors that were the target of the investigation.

An important characteristic of the models used for research on perceptual decision making is 

that they link the parameters of each stimulus to the speed and accuracy of the 

corresponding perceptual judgment. That is, they are models of behavior (Krakauer et al., 

2017). The results highlighted above emphasize that these models are not limited to 

quantifying the properties of sensory representations: they can also inform our 

understanding of the cognitive processes that use those representations to reason about the 

world (Bogacz et al., 2006; Gold and Stocker, 2017; Link, 1992; Shadlen and Kiani, 2013). 

Therefore, they can be a tool for reducing experimental remoteness. And because evidence 

accumulation models portray behavioral responses as the product of a dynamical process, 
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they can provide a formal guide for interpreting the dynamics of neural responses in 

decision-making tasks. This is key, because understanding neural activity in terms of the 

computations that it implements is a prerequisite for developing a mechanistic explanation 

of complex behavior (Bechtel, 2007; Carandini, 2012; Krakauer et al., 2017).

Explaining neural responses in terms of their computational parameters also makes it 

possible to understand how those parameters are modulated by higher-order control systems. 

An illustrative example concerns strategic adjustments in the trade-off between speed and 

accuracy. As previously mentioned, the common pre-saccadic firing rate for decision-related 

responses evokes the concept of a terminal threshold or bound, suggesting that an emphasis 

on speed or accuracy would lead to changes in its amplitude. Surprisingly, this turns out not 

to be the case (Figure 3A). Instead, an emphasis on accuracy decreases the strength of an 

evidence-independent “urgency” signal, leading to a lower starting point and shallower rate 
of growth (Figure 3B, Hanks et al., 2014). This unexpected result might have been dismissed 

or misinterpreted had the neurally-derived urgency signal not quantitatively accounted for 

changes in behavior.

Experimental subjects can be encouraged to adopt different speed-accuracy policies either 

through direct instruction (Palmer et al., 2005; Ratcliff and Rouder, 1998) or by 

manipulating the temporal statistics of a task (Hanks et al., 2014; Heitz and Schall, 2012). 

Cognitive control processes also appear to enact endogenous adjustments in this balance. 

One such adjustment is evident when reaction times increase immediately following errors, a 

phenomenon known as “post-error slowing” (Rabbitt and Rodgers, 1977). A persistent 

challenge in understanding post-error slowing has been the rarity of observing 

corresponding improvements in accuracy, as would be expected by a simple application of 

the logic underlying the speed-accuracy trade-off (Danielmeier and Ullsperger, 2011). 

Purcell and Kiani (2016) addressed this question using model-based analyses of a simple 

perceptual discrimination task. They found that slower responses immediately following an 

error reflect an adaptive compensation for a temporary decrement in perceptual sensitivity. 

Both behavioral modeling and analyses of neural responses indicated that this compensation 

was accomplished via changes in the urgency signal’s amplitude (Figure 3C).

The goal of the preceding discussion has been to illustrate the potential of the cognitive 

psychophysics research program. The examples demonstrate that it is possible to gain 

understanding of cognitive mechanisms by taking an “outside in” approach that 

incrementally progresses from peripheral to central systems. Insights about sensory 

representation lead to models of the process underlying deliberative choice in discrimination 

tasks, which themselves suggest mechanisms for executive control. Each later stage 

leverages earlier insights for improved experimental design and interpretation. Despite this 

success, we do not mean to imply that there are no open questions or controversies relating 

to these topics. Indeed, there has been and will continue to be debate about both the structure 

of the computational models (e.g. Tsetsos et al., 2012; Drugowitsch et al., 2012; Hawkins et 

al., 2015; Miller and Katz, 2013; Moran, 2015; Ratcliff et al., 2016; Thura and Cisek, 2016) 

and the neural mechanisms that implement these computations (e.g. Scott et al., 2017; Huk 

et al., 2017; Servant et al., 2019). Yet even where controversy remains, the formal models 

elevate the process of reconciliation above a terminological dispute.
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There are also many important questions in cognitive neuroscience that are unlikely to be 

answered through further elaboration of the perceptual decision-making paradigm, and we 

would not suggest that aiming to do so is the best path forward in every case. The work 

described above was able to mitigate experimental remoteness through an intense focus on 

experimental control and by taking advantage of accumulated knowledge about peripheral 

sensory systems and intervening computations. A similar outside-in approach has been 

successfully pursued elsewhere. For example, recent computational insights into working 

memory have been enabled by a similar focus on simple tasks that permit incorporation of 

knowledge about sensory representations into models of capacity limitations (Ma et al., 

2014). Working from the other end of the system, the field of computational motor control 

has grown from studying the basic psychophysics of simple movements towards a 

quantitative account of cognitive operations such as learning, planning, and decision-making 

in skilled sensorimotor behavior (Gallivan et al., 2018; McDougle et al., 2016; Schall, 2001; 

Wolpert et al., 2011). We are optimistic that the cognitive psychophysics approach can be 

successfully pursued in other domains as well.

Investigations of executive functions that are rooted in either sensory or motor 

psychophysics would have particular advantages in both experimental control and 

interpretational clarity. The reason is that they can study the influence of higher-order 

processes on systems that are reasonably well understood from both a computational and 

physiological perspective. To motivate this idea, we observe that cognitive control is 

commonly thought of as involving a goal-directed parameterization of sensory, cognitive, or 

motor systems (Miller and Cohen, 2001). An outside-in approach begins with an 

understanding of the parameters that the control system should set, along with suggestions 

about how it might do so. The preceding discussion of the speed-accuracy trade-off 

illustrates this point: the computational construct of a decision bound generated clear 

predictions about how to model adaptive adjustments of decision policy. And the knowledge 

that changes in the bound height could manifest at the neural level through an urgency signal 

suggested a clear hypothesis about how those adaptive adjustments might be implemented in 

the brain.

In advocating for an outside-in approach, we do not envision a completely serial progression 

of research topics. The advantages of the approach do not require full understanding of each 

stage of information processing prior to or following those at which cognitive systems exert 

their influence. Nor do the resulting models need to include the full complexity of existing 

knowledge about sensory or motor systems. Indeed, an important benefit of working with 

first-order systems that are reasonably well-understood is a freedom to abstract away 

variables that are known to be unimportant. But the challenge of experimental remoteness 

will limit mechanistic insight when investigations into higher-level cognition are pursued 

without clear understanding of the lower-level processes that are closer to the variables one 

directly manipulates and measures.

Elements of psychophysical investigation

Having highlighted some of the scientific insights contributed by the cognitive 

psychophysics research program, we transition now to a discussion of more practical details 
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that arise during these investigations. We aim to highlight some key design choices that are 

important for achieving strong experimental control, especially ones that may not be obvious 

when reading papers that focus on novel theoretical advances. As before, most of our 

specific examples will be drawn from experiments on perceptual decision making, but many 

of the issues that we raise reflect general challenges that any investigation of cognition faces. 

Therefore, we have tried to extract general principles from our specific examples. These 

principles would be useful to incorporate more broadly, wherever possible.

To make best use the precise control offered by sensory stimuli, one needs to choose wisely 

when picking specific stimulus values to show. A best practice is to cover a broad range and 

to sample densely along it. Ideally, stimuli will range from completely non-informative — 

such as a random dot kinematogram with 0% coherence or two trains of auditory clicks with 

identical rates — to values that an attentive subject should be able to categorize correctly on 

every trial. Stimuli sampled between these extremes will vary in strength, and they should do 

so smoothly enough so as not to appear in discrete categories of difficulty. At intermediate 

values, stimuli will span a “threshold” where performance is limited by the properties of the 

sensory and cognitive systems that are used to perform the task. Explaining the factors that 

lead to a particular value of the threshold is a key goal of psychophysics (Green and Swets, 

1966; Parker and Newsome, 1998; Quick, 1974). But embracing the full range is critical for 

strong experimental design. There are two reasons for this.

The first is that successfully predicting the particular shape of the psychometric function 

across a broad range of densely-sampled stimuli poses a high bar for candidate models to 

clear. Consider the differences between two classes of models. One class can predict the 

accuracy of choices about any stimulus between two broad extremes, along with predicting 

the accompanying reaction times and subjective confidence. The other can make only 

ordinal predictions about individual variables, such as that subjects would be more accurate 

when judging “easy” stimuli compared to “hard” stimuli. As a general principle, models are 

more powerful when they make more specific predictions, especially about multiple facets 

of behavior (Farrell and Lewandowsky, 2018; Smith and Little, 2018). But this will be true 

only if the experimental design generates rich enough data to properly evaluate the more 

sophisticated models.

The second reason has less to do with one’s theory of the sensory or cognitive process itself 

and more to do with characterizing how the subject is approaching the behavioral task: that 

is, the subject’s strategy. Staircase methods, by focusing on a specific level of performance, 

can efficiently estimate values of the subject’s psychophysical threshold (Cornsweet, 1962). 

But they reduce an experimenter’s ability to uniquely interpret the cause of errors. With 

designs that sample stimuli randomly and more broadly — ranging from chance 

performance to perfect accuracy — simple forced-choice data can provide rich information 

about confounding factors such as undesired strategies or inconsistent task engagement. 

Stimuli along the full range of the psychometric function can aid this level of understanding, 

albeit in different ways.

Even when subjects should be able to judge the easiest stimuli correctly on every trial, they 

may not always do so. It is common to refer to the deviation between asymptotic 
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performance and perfect accuracy as the subject’s “lapse rate” (Kingdom and Prins, 2010). 

The terminology is drawn from a typical explanation for this effect as reflecting momentary 

“lapses” in attention. An attentional lapse might cause a subject either to miss the stimulus 

and then guess randomly or to accidentally make a motor response that does not reflect their 

subjective judgment. As a practical matter, the lapse rate corresponds to the asymptote of the 

psychometric function, not just to performance in the highest stimulus strength condition. 

But to estimate this value well, the experimental design must sample appropriately extreme 

stimulus values. Doing so is important because frequent lapses can indicate more 

fundamental problems in an experiment. At best, occasional task disengagement might be 

thought of as adding random, unbiased noise to a dataset. Modest additional measurement 

noise may seem tolerable, but it is worth considering whether you would continue to use a 

response collection device that records random data on 10% of trials, as implied by 95% 

accuracy on the easiest trials (Fetsch, 2016).

Significant lapse rates in a perceptual discrimination task may also imply that the subject is 

selecting actions on the basis of factors other than the stimulus. For instance, subjects may 

be influenced by the recent history of choices and outcomes, even when trials are 

independent (Abrahamyan et al., 2016; Akrami et al., 2018). Alternatively, lapse rates may 

reflect exploratory responses made when subjects are uncertain of the task structure 

(Pisupati et al., 2019) or otherwise seeking information (Sugrue et al., 2005). Whether or not 

these factors pose a challenge for interpretation depends entirely on the goals of the 

experiment. In an experiment designed to investigate stimulus-guided behavior, exploratory 

or history-based responses represent confounding factors that will reduce interpretability. 

But in many natural environments, recent history is informative, and exploration is adaptive 

(Glimcher, 2003). Therefore, understanding how the decision-making process incorporates 

these factors is an important goal. Ideally, this effort would not just account for them in 

models but also bring them under experimental control and devise conditions where they can 

be eliminated. Doing so would represent a generalization of the logic behind lapse rate 

analysis: eliminating the influence of a process is a strong demonstration of the control that 

one has over it.

At the other end of the spectrum, perceptual discrimination experiments may also include 

trials where the stimulus is positioned exactly at the category boundary. Why include trials 

where there is, by definition, no correct answer? When characterizing a system, it can be 

useful to put in noise and see what comes out (Marmarelis and Naka, 1972). For example, 

non-informative stimuli will help to characterize directional or history-dependent response 

biases. More elaborate methods that leverage non-informative stimuli include 

psychophysical reverse correlation, which computes a choice-conditioned, temporally-

resolved average of stimulus intensities across trials. Reverse correlation estimates the 

“psychophysical kernel,” or weighting of the stimulus across time. The psychophysical 

kernel allows one to infer the internal dynamics of sensory and decision processes from 

simple forced-choice behavior (Neri and Heeger, 2002; Nienborg and Cumming, 2009; 

Okazawa et al., 2018).

Sometimes, the shape of the psychophysical kernel bears directly on the main research 

question. This is the case when it is used as an assay of primacy or recency biases, which 
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cause information presented earlier or later in the trial to exert a relatively larger influence 

on the decision (Cheadle et al., 2014; Kiani et al., 2008; Tsetsos et al., 2012). Even when 

such biases are not the focus of an experiment, however, determining whether or not they are 

present can be important for justifying assumptions about decision strategy. For instance, 

signal detection theoretic and drift diffusion models assume perfect integration across the 

duration of a stimulus. Departures from perfect integration, which can be identified using 

reverse correlation, can confound estimates of behavioral or neural sensitivity using these 

models (Okazawa et al., 2018). Such confounds can be removed post-hoc only if one knows 

the mechanisms that give rise to primacy or recency and can incorporate them during 

modeling. Neither requirement is trivial.

More generally, any model-based investigation depends on the validity of the assumptions 

underlying the model. This is broadly understood in the context of assumptions about 

statistical distributions, but investigating the neural mechanisms of cognition also entails 

assumptions about cognitive processes themselves. Finding ways to justify those 

assumptions through a characterization of the subject’s behavior is a critical part of 

experimental design and interpretation. This can be particularly challenging when the 

assumptions involve cognitive processes that lie outside the scope of the modeling 

framework itself. The previous example illustrates such a case, where analyses of perceptual 

sensitivity could be confounded by poor understanding of decision strategy, a more abstract 

(and less-well understood) construct. Behavioral characterization must therefore be more 

thorough than simply testing the hypothesis of interest: it should also validate assumptions 

about other cognitive processes that are implied by one’s computational framework.

While identifying deviations from assumed task strategies is important, care must also be 

taken to avoid directly confounding task manipulations with changes in strategy. In the 

context of a perceptual discrimination experiment, this confound might arise if stimulus 

strengths are sampled too coarsely. Standard models assume that strategy is invariant to 

stimulus strength. This is a reasonable assumption when different difficulty conditions are 

randomly interleaved and treated as latent variables, known to the experimenter but not 

explicitly signaled to the subject. But conditions that are blocked or that differ too obviously 

in difficulty may cause a subject to adopt a mixture of strategies. This could be a relatively 

subtle confound, emerging as a condition-dependent speed-accuracy trade-off: a subject 

might wait to set the position of their decision bound until they have an initial sense about 

the reliability of a stimulus (Figure 4B). More dramatically, subjects might adopt entirely 

different computational solutions for the different conditions. For example, they might 

accumulate evidence only when faced with a weak stimulus, solving the task on easier trials 

through “snapshot” or “extrema detection” strategies, where choices are made based on 

single observations that are selected either randomly or when one sample exceeds a large 

decision criterion (Quick, 1974; Stine et al., 2018; Waskom and Kiani, 2018).

When parametric manipulations are implemented through explicit instructions to the subject, 

rather than by changing the latent parameters of a stimulus or task, it can elevate the 

probability of a confound with strategy. A classic example arises in the n-back working 

memory task, where subjects view a stream of stimuli and must indicate when the current 

stimulus matches the one presented n trials prior. In principle, parametrically manipulating n 
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allows one to alter the load on working memory along a continuous dimension. Bringing the 

logic of parametric manipulation to the cognitive neuroscience of working memory (Braver 

et al., 1997) represented an early advance beyond simple subtraction designs (Friston et al., 

1996). But direct instruction of the parametric variable makes it possible for subjects to 

adopt different strategies at each level. For example, a subject may comfortably perform a 1-

back or even 2-back task by maintaining each item in working memory but resort to using 

familiarity-based judgments — a long-term memory mechanism — when their capacity is 

exceeded (Kane et al., 2007).

Confounds that involve condition-dependent changes in strategy pose serious challenges for 

efforts to quantify cognitive processes or interpret neural responses. As an example, imagine 

attempting to test a model of how choice confidence is represented in the brain by using only 

two levels of stimulus difficulty. If the subject’s strategy changes between conditions, it 

would be impossible to attribute any differential neural activity to confidence per se rather 

than to those different strategies. When stimuli can be parametrically controlled, there is a 

relatively simple solution to alleviate the problem: sample stimulus strengths more densely. 

Dense sampling increases uncertainty about stimulus difficulty and reduces the likelihood 

that subjects will adopt stimulus-dependent strategies. As a general rule, the more subtle the 

experimental manipulation, the more difficult it will be for a subject to adopt condition-

dependent strategies.

It is also advisable to isolate cognitive variables through multiple orthogonal manipulations. 

For instance, modulating the duration of a perceptual stimulus will influence choice 

accuracy (and confidence) independently of its strength (Khalvati and Rao, 2015; Kiani and 

Shadlen, 2009). Stimulus duration manipulations are less likely to introduce strategy 

confounds, but their influence on confidence is also weaker. Implementing both 

manipulations can be a way to achieve a balance between power and control. Aiming for 

such a balance can be a useful general goal. Ideally, the effects of multiple manipulations 

will be explained within a unified computational framework.

As the previous point emphasizes, control over the temporal aspects of a task can have 

important consequences for cognitive processes. Under the assumption that subjects employ 

some form of accumulation or sequential sampling, stimulus duration influences the amount 

of information available for the choice. But showing a stimulus for a long duration does not 

guarantee that the subject will use all of that information. Actively engaging with and 

accumulating sensory information is costly (Drugowitsch et al., 2012), encouraging subjects 

to satisfice by using only partial information (Kiani et al., 2008). With long, fixed duration 

trials, it may not be possible to know when the subject was or was not engaged. This can 

complicate both quantification of behavior and analyses of neural data. Variable-duration 

designs enhance experimental control, although the choice of duration statistics is important 

(Ghose and Maunsell, 2002; Nobre and Ede, 2018). Uniform distributions prevent a subject 

from predicting the duration of an event before it begins, but they have an increasing hazard 

function, meaning that the subject can anticipate the end of the event as it progresses. Such 

anticipation will not be possible if durations are distributed exponentially (or geometrically, 

in the case of discrete stimulus presentations), but this choice implies that most trials will be 

relatively short.
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In a reaction time task, the subject controls the duration of each trial. But experimenters can 

still exert influence through stimulus sampling. Doing so is important because, while many 

models make predictions about temporal aspects of cognitive processing, reaction time is not 

a pure measure of processing time. This is partly due to sensory and motor latencies — 

“non-decision time” in the parlance of drift diffusion models — and also because subjects 

may vacillate between choices or hesitate before responding. The advice about sampling 

stimulus strengths broadly is useful on both points. Increasing stimulus strengths until 

reaction times asymptote will help to estimate the duration and variability of non-decision 

time. And the difference in reaction times between non-informative and very weak stimuli 

can help to diagnose vacillation.

Experimental design traditions in perceptual and cognitive science differ in an important 

respect (Smith and Little, 2018). Perceptual experiments often recruit only a few subjects; 

these subjects are highly trained, and each contribute a large number of observations. In 

contrast, cognitive experiments typically recruit larger samples, train for task comprehension 

rather than for expertise, and focus analyses on population-level parameters. The cognitive 

psychophysics work discussed in the previous section has largely taken the first approach. 

An investigation that emphasizes quantification is most effective when subjects consistently 

perform at threshold, such that their behavior reflects the properties of the computational 

system engaged by the task rather than their strategy or level of engagement. This requires 

training. And many techniques for behavioral characterization must be applied at the level of 

the individual subject, because the adoption of undesired strategies or inconsistent levels of 

task engagement are likely to be expressed idiosyncratically across a population.

At the same time, the perceptual science approach is limited in its ability to quantify 

population level parameters or the (co)variation of individual differences, as doing so 

requires larger sample sizes at the subject level. This is unfortunate because, in bridging 

between cognitive phenomena and neural mechanisms, the models used in cognitive 

psychophysics would have much to contribute to the growing field of computational 

psychiatry (Wang and Krystal, 2014). Therefore, a focus on individual-level performance 

from expert subjects remains important to quantitative experimental control, but relaxing this 

limitation should be considered an important goal. How could our approach be scaled up to 

larger samples and populations that can provide only moderate amounts of data per subject? 

Experimental tasks that are more intuitive and naturally engaging might require less training, 

but developing tasks that gain these features without sacrificing the control of synthetic 

stimuli will not be trivial. Some of the techniques for behavioral characterization could be 

integrated with unsupervised learning methods to identify sub-groups of subjects with 

particular characteristics, allowing diagnosis of idiosyncratic strategies from limited 

individual-subject data. These are only vague ideas at the moment, but we hope that broader 

adoption of our approach will drive innovation on this front.

Variable task engagement as a persistent confound risk

To perform a cognitive task, a subject must engage with it. As a consequence, any 

experiment that involves an explicit task will recruit higher-order processes related to 

cognitive engagement, whether or not those processes are the experiment’s intended target. 
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A manipulation that causes one task condition to be relatively more demanding than another 

might therefore become confounded with the subject’s level of engagement. This poses 

particular challenges for investigating neural mechanisms of cognition, because responses in 

numerous cortical regions have been shown to correlate either positively (Cabeza and 

Nyberg, 2000; Corbetta and Shulman, 2002; Fedorenko et al., 2013) or negatively (Anticevic 

et al., 2012; Buckner et al., 2008; Raichle, 2015) with engagement. Many of these regions 

exhibit a high base rate of reported effects across the human fMRI literature (Poldrack, 

2011; Yarkoni et al., 2011), suggesting that such confounds could be widespread. It is 

therefore important to understand how to identify, reason about, and control task 

engagement confounds. In this section, we highlight notable cases where the risk of task 

engagement confounds has been raised in the literature. We then argue that the cognitive 

psychophysics approach can help to ameliorate that risk.

Discussions of task engagement confounds have often centered on the role of processing 

time. Many techniques for measuring neural activity have the potential for confusing 

differences in the duration of a response with differences in its amplitude. This risk is 

particularly acute with fMRI, which measures a temporally-integrated surrogate of neural 

activity (Boynton et al., 1996; Logothetis and Wandell, 2004). The concern is that, when 

subjects engage with a task for different durations across conditions, regions that implement 

general task-directed computations could exhibit different response amplitudes without 

explicitly representing anything about the variable that was manipulated. A notable example 

of this concern has arisen in debates about the anterior cingulate cortex and its role in 

cognitive control processes such as conflict detection and performance monitoring 

(Botvinick et al., 2001; Brown, 2011; Grinband et al., 2011; Yeung et al., 2011). The risk is 

not limited to fMRI experiments, however. Electrophysiological methods have finer 

temporal resolution, but they can also mistake differences in duration for those in amplitude, 

particularly if task engagement is not consistent across the window used to aggregate 

signals. Therefore, this confound is likely to emerge in experiments that lack behavioral 

control over the subject’s temporal engagement with the task.

Analyses of neural data increasingly use multivariate decoding techniques to characterize the 

information represented by distributed patterns of neural responses (Haynes, 2015). An 

advantage of this approach is that tasks can be designed to manipulate representational 

content rather than computational process. For example, instead of designing conditions that 

differ in demands on cognitive control, control can be investigated by studying 

representations of task rules that specify arbitrary stimulus-response associations (e.g., Bode 

and Haynes, 2009; Waskom and Wagner, 2017; Woolgar et al., 2011). It may appear that 

such experiments would be less likely to encounter task engagement confounds, but this is 

not necessarily the case. Even when cognitive processes are not intentionally manipulated, 

task demands might endogenously vary between conditions, leading to differences in 

engagement that are expressed idiosyncratically across subjects. These idiosyncratic 

differences would average out in population-level analyses of response amplitude. But 

decoding analyses are typically evaluated in terms of accuracy, an unsigned measure that 

does not benefit from counterbalancing (Todd et al., 2013; but see Woolgar et al., 2014). In 

effect, decoding analyses trade specificity for sensitivity, leaving them vulnerable to 
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surprising confounds with task engagement. The risk will be reduced if the demands of a 

task can be quantitatively controlled at the level of individual subjects.

Model-based analyses offer another way to test more sophisticated hypotheses about the 

relationship between task manipulations and neural activity (Mars et al., 2012). In principle, 

formalizing variables that relate to engagement within a computational model can allow one 

to better separate them from constructs of interest. For example, cognitive demands in a 

value-based decision-making experiment should be highest when two options are most 

similar, allowing one to separate engagement from other representations of value (Glimcher, 

2003). Yet subjects might construe the option values differently from the way that they are 

specified in the model, reintroducing a confound with engagement. This issue has prompted 

a recent debate about whether neural responses in a foraging context actually reflect domain-

general control signals rather than the process of value comparison (Kolling et al., 2012, 

2016; Shenhav et al., 2014). It reiterates the importance of rich behavioral characterization 

for validating the assumptions of one’s modeling framework.

These examples demonstrate that potential confounds between experimental manipulations 

and task engagement can arise in multiple forms. Even when investigations of cognition 

pursue an outside-in approach, they will need to grapple with these higher-order phenomena. 

While they may be possible to mitigate during analysis, engagement confounds are best 

handled during experimental design. Conditions can be chosen to carefully separate 

variables, ideally using the predictions of formal models. Experimental subjects can be 

trained so that they understand the task and consistently employ an effective strategy. Tasks 

that afford better control over engagement and richer quantification of behavior can be 

employed to actively balance conditions for each subject. But it will also be important to 

understand the mechanisms of task engagement more fully. Why are there such widespread 

correlations between neural activity and cognitive demands (Shenhav et al., 2017)? Is task 

engagement an important cognitive construct in its own right, such that it should be 

incorporated into models? Or will a more complete mechanistic understanding explain it 

away? Resolving this uncertainty will be key for pursuing questions about more complex 

cognitive processes.

Cautionary notes on developing and evaluating computational models

While computational models are central to our approach, care must be taken during model 

development and evaluation. The results of an individual experiment rarely provide 

unequivocal support for one model. But a clear understanding of the predictions made by 

different models can help tailor experimental designs so that competing models become 

maximally discriminable. The strongest model comparisons will focus on qualitative 

predictions: those that are robust to variations of parameters that the experimenter does not 

control or test. Invariance to uncontrolled or uninteresting model parameters is necessary for 

generalizing beyond specific model instances. Such generalizations are essential because 

limitations of existing knowledge about cognitive processes introduce significant 

uncertainties about model details, such as how different parameters are implemented or 

interact with each other (Busemeyer and Diederich, 2010).
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The ability of computational models to generate quantitative predictions makes it easy to 

overlook these inherent uncertainties. If doing so leads to a strong dependence on 

uncontrolled or poorly understood parameters, one may arrive at incorrect conclusions. 

Commonly used techniques for model comparison, including those based on information 

criteria such as AIC, BIC, or DIC (Burnham and Anderson, 1998), penalize models for 

complexity but remain ignorant about the broader causes of uncertainty (Churchland and 

Kiani, 2016). A key point to emphasize is that statistical methods for model comparison 

evaluate specific model instances, but theoretical debates often revolve around distinctions 

between model classes. Therefore, the outcome of a formal comparison, even when 

statistically correct, may not generalize in the way needed to make theoretical progress.

Challenges also arise when accounting for novel experimental observations by extending 

existing models or starting de novo. Insights will be limited if these extensions or new 

models are generated arbitrarily. In a large model space, it is always possible to find features 

that will account for particular new experimental observations. Without clear guidelines for 

selecting these features, the success of one particular model instance will be only weakly 

informative.

Detailed guidelines for model development must be informed by expert knowledge and can 

vary across domains, but a few general principles are worth highlighting. First, new or 

extended models should explain the full set of reproducible experimental results, not just the 

new observations. Models that ignore (or fail to account for) past observations should be 

penalized. This principle may seem obvious, but it is easy to overlook in practice given that 

empirical studies are often highly focused on novel results. A second general principle is 

that model extensions should be supported by multiple aspects of the experimental results, as 

by explaining distinct facets of behavior (Palmer et al., 2005; Smith and Little, 2018), by 

jointly accounting for behavioral and neural data (Kiani and Shadlen, 2009; van 

Ravenzwaaij et al., 2017), or by using neural data to constrain fits to behavior (Hanks et al., 

2014; Turner et al., 2018). A third principle is that new models, or their extensions, should 

have some motivation within a normative framework (Geisler, 2011; Griffiths et al., 2010; 

Helmholtz, 1867; Jaynes, 2003). Normative models can provide a principled starting point or 

direction within a large modeling space, which helps to avoid arbitrary choices. Using them 

to motivate model development does not require the assumption that cognitive or neural 

processes are themselves optimal (Rahnev and Denison, 2018; Stocker, 2018; Summerfield 

and Tsetsos, 2015). Indeed, when made with care, comparisons to a normative model can 

generate valuable insights even if behavior or neural computations fall short of optimality.

Conclusions

In this Review, we have discussed the challenges of investigating cognition and suggested 

some approaches that can help to overcome them (Box 2). We have argued that a 

psychophysical approach — studying threshold-level judgments about synthetic stimuli that 

are parameterized on a continuous scale — can produce generalizable insights about 

cognition and drive progress towards understanding complex executive processes. This 

approach features tasks that afford rich, quantitative behavioral characterization while 

remaining grounded in knowledge of sensory and motor systems. When used judiciously, 

Waskom et al. Page 14

Neuron. Author manuscript; available in PMC 2020 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



such tasks can help to constrain and diagnose a subject’s strategy and level of engagement, 

avoiding confounds from uncontrolled higher-order processes. We have also emphasized the 

important role of computational models in design and interpretation while highlighting 

potential pitfalls in their use. We hope that these suggestions will be helpful beyond our own 

narrow domain.

Experimental control is essential for scientific progress. Yet it can easily be overshadowed 

by excitement about new tools for measurement, manipulation, or analysis. Fortunately, the 

growing concern about reproducibility has renewed interest in experimental methods. There 

are now widespread calls for an increased focus on transparency, sample size, and meta-

analysis (Munafò et al., 2017). These issues are certainly important. But an open, highly-

powered, and replicable experiment might nevertheless contain a fatal confound or other 

source of uncertainty that prevents it from generating novel insights. Therefore, the effort to 

understand the mechanistic basis of intelligent behavior will continue to involve — as it long 

has (Boring, 1954) — innovations in the experimental control of phenomena that reside deep 

within our minds.
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Box 1: Mechanistic insights require constraint

Psychophysical methods constrain behavior and neural computations in multiple ways. 

These range from studying forced choice judgments about synthetic stimuli to providing 

subjects with extensive instruction and training before data collection. Such practices, 

which are relatively noncontroversial for researchers who study sensation and perception, 

may strike those who work in other areas as unusual. Aren’t we missing something by 

studying highly constrained and arguably artificial behaviors?

Our answer is that we are almost certainly missing things, but those things are not 

answers to the questions that we are asking. Building models of computational processes 

and their neural mechanisms requires us to treat many interesting aspects of cognition as 

sources of error variance that must be controlled. For example, humans often adopt 

heuristic strategies to avoid reasoning their way through a difficult problem (Tversky and 

Kahneman, 1974). Describing the heuristics that people tend to use in the real world is an 

important goal, as is identifying the situations in which they are likely to do so. But if our 

aim is to study the computations that underlie reasoning, it is essential that our 

experiment not be one of those situations! Descriptive investigations that do not constrain 

computational solutions are highly valuable; they should certainly be pursued, and it is 

advisable to do so with a broad scope. But when one wishes to infer mechanism from 

limited experimental data, constraint is paramount.
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Box 2: Principles of the cognitive psychophysics approach

Cognitive psychophysics

Experimental designs and stimuli that were originally developed to study perceptual 

systems can be useful for investigating cognition. Simple parameterized stimuli afford 

strong experimental control. This control facilitates an approach that prioritizes 

quantification and the development of formal computational models.

Outside-in approach

Multiple systems mediate between experimental manipulations and the cognitive 

processes that they target. Experimental control is enhanced when the intervening 

complexity is minimized and limited to systems where there is existing understanding. 

This can be achieved by grounding investigations of cognition in sensory or motor 

psychophysics.

Rich behavior

Behavior should be assayed from multiple perspectives across a broad range of 

experimental conditions. Rich behavior enhances model comparison by requiring more 

precise predictions, and it can provide opportunities for checking assumptions about 

strategy and task engagement. Behavioral assessments are more informative when made 

at the level of individual subjects.

Strategy assessment

Subjects must adopt a particular strategy to solve any experimental task. Conclusions 

about mechanism require knowledge of this strategy, or at least assurances about its 

consistency across conditions. Strong experimental designs will aim both to constrain the 

subject’s strategy and to provide opportunities for its assessment through model-free 

analyses.

Task engagement

Subjects should maintain high levels of engagement throughout the task. Inconsistent 

engagement can be diagnosed by the lapse rate, but only when strong enough stimuli are 

sampled. Variations of engagement across experimental conditions can introduce 

challenging confounds, especially when interpreting neural responses.

Subtle manipulations

Making experimental manipulations subtle (from the subject’s perspective) can help to 

avoid confounds with strategy. It is preferable to manipulate latent variables rather than 

task elements that are directly instructed. Dense sampling of stimulus space is one way to 

implement a subtle manipulation.

Orthogonal manipulations

Manipulating a cognitive variable through multiple independent channels provides a 

stronger guard against confounds. For example, confidence can be manipulated by 
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changing either the strength of a stimulus or the duration of its presentation. The best 

models will account for both manipulations through a unified mechanism.

Model-based design

Computational models are necessary for bridging across levels of analysis. Experimental 

design should aim to craft conditions that maximize the discriminability of competing 

models. Ideally, models will be distinguished on the basis of qualitative (parameter-

independent) predictions, not just quantitative fits.
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Figure 1: The challenge of experimental remoteness
(A) Cognitive processes are less accessible to manipulation and measurement (experimental 

remoteness), posing difficulties for experimental control.

(B) In general, an experimenter’s uncertainty about manipulation, measurement, and 

interpretation increases with remoteness. But good experimental design choices can reduce 

the strength of this relationship.
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Figure 2: Expanded perceptual judgment tasks enable quantification of deliberative reasoning 
behavior
(A) The components of an expanded perceptual judgment task. Subjects make inferences 

about the latent state of the world using multiple pieces of unreliable sensory information 

(i.e., “are these stimuli drawn from category A or B?”). Stimulus strength influences the 

internal sensory response, which must be converted into a representation of evidence that 

bears on the specific inference problem. Stimulus-dependent noise can be introduced at 

either stage of processing. Normative inference can be achieved by integrating information 

from multiple stimuli, but this process may be limited by time-dependent factors such as 

leak or noise in memory.

(B) A rate discrimination task using auditory “clicks”. Behavioral quantification shows that 

the source of internal noise is dependent on the appearance of stimuli rather than on the 

passage of time. From Brunton et al. (2013).

(C) An orientation judgment task with high-contrast gratings. Separately quantifying sensory 

and inferential contributions to choice variability suggests that stimulus-dependent noise 

arises primarily from cognitive systems. From Drugowitsch et al. (2016).

(D) A contrast judgment task where long (1–8 s) gaps separated each appearance of a 

hyperplaid stimulus. Minimal influence of time-dependent limitations reveals that evidence 

integration can make use of a robust memory system. From Waskom and Kiani (2018).
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Figure 3: Models of perceptual discrimination suggest mechanisms for cognitive control
(A) Schematic illustrating a class of computational models that attribute trade-offs between 

speed and accuracy to the strength of an evidence-independent “urgency” signal. The 

urgency signal exerts an additive influence on the decision variable, pushing it towards a 

termination bound. When urgency is high, decisions are made faster, but they are less likely 

to be correct. The urgency signal is a potential mechanism for higher-order control processes 

to act through.

(B) Behavioral and neural data from an experiment where monkeys made perceptual 

discriminations while prioritizing either speed or accuracy. The model fits to behavior in the 

first two panels were constrained by deriving an urgency signal from neural activity, which 

is shown in the final panel. From Hanks et al. (2014).

(C) Decisions following an error are slower but no more accurate. Behavioral quantification 

shows that this post-error slowing can be explained by an error-dependent reduction in 

sensory sensitivity along with a compensatory decrease in urgency. From Purcell and Kiani 

(2016).
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Figure 4: Experimental design can both constrain and reveal decision strategy
(A) Schematic illustrating how the psychometric function affords rich characterization of 

behavior. Densely sampling stimulus strengths produces a narrow target for model 

development. Strong stimuli can be used to estimate the lapse rate, while uninformative 

stimuli can be used to estimate the psychophysical kernel.

(B) Schematic illustrating how sparse sampling of conditions can produce mistaken 

interpretations. The dashed lines indicate psychometric functions that arise from condition-

dependent strategies. For example, the subject’s speed-accuracy trade-off might vary for 

easy and difficult stimuli if they are the only stimuli used in the experiment. Sparsely-

sampled designs are limited in their ability to distinguish different factors that influence 

behavior, and they may even induce confounds.

(C) Control involves both enforcing and avoiding dependencies between the experimental 

design and internal processes. When investigating the mechanisms of decision making, it is 

best if task instructions and training alone determine the subject’s strategy. Strategy should 

not vary along with other experimental conditions, but poor design choices might introduce 

such a dependency (red arrow). Strategy can also change from trial to trial depending on the 

outcome of each choice (gray arrow). Whether or not this is a confound depends on the 

goals of the experiment.
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