Investigational New Drugs (2019) 37:1127-1134
https://doi.org/10.1007/510637-018-00721-z

PRECLINICAL STUDIES

@ CrossMark

LEF1-AS1 contributes to proliferation and invasion through regulating

miR-544a/ FOXP1 axis in lung cancer

Ansheng Wang' - Chengling Zhao? - Yuan Gao'
Kangwu Wang'

« Guixin Duan’ - Yuming Yang' - Bo Fan’ - Xiaojing Wang? -

Received: 30 October 2018 / Accepted: 26 December 2018 /Published online: 8 February 2019

© The Author(s) 2019

Abstract

Long non-coding RNAs (IncRNAs) are increasingly recognized as important regulators in tumor development. This study aims
to investigate the potential role ofncRNALEF1-AS1, in the progression of lung cancer. Quantitative real-time PCR (qQRT-PCR)
and western blot assays showed that LEF1-AS1 was upregulated while miR-544a was downregulated in lung cancer specimens
and cells. Overexpression of LEF1-AS1 led to the enhancement of cell proliferation and invasion, revealed by CCK-8 assay and
transwell assay. A negative correlation was found between LEF1-AS1 and miR-544a. BLAST analysis and dual-luciferase assay
confirmed that FOXP1 is a downstream effector of miR-544a. Therefore, the LEF1-AS1/miR-544a/FOXP1 axis is an important
contributor to lung cancer progression. Collectively, our novel data uncovers a new mechanism that governs tumor progression in
lung cancer and provides new targets that may be used for disease monitoring and therapeutic intervention of lung cancer.
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Introduction

Lung cancer is the most common cause of cancer-related
deaths in the globe and accounts for an estimated 1.6 million
deaths each year [1]. The majority (85%) of lung cancer pa-
tients suffers from non-small cell lung cancer, including ade-
nocarcinomas and squamous cell carcinomas [2]. Due to the
high mortality and morbidity of lung cancer, it is imperative to
understand the underlying molecular mechanism of lung can-
cer tumorigenesis to develop new prognostic markers and ef-
fective therapeutic strategies [3-5].
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LncRNAs, defined as oligonucleotides with lengths of
greater than 200 nucleotides [6, 7], are transcribed by RNA
polymerase II and frequently originate from intergenic re-
gions. LncRNAs make up a considerable component of the
mammalian transcriptome [6], which do not possess substan-
tial open reading frames and can be spliced, capped and
polyadenylated [8, 9]. Fundamentally, the location, abundance
and distribution of IncRNAs throughout the genome provides
the organism with an additional method to control the expres-
sion of thousands of proteins, by transcriptional and posttran-
scriptional modifications. Recently, Long non-coding RNAs
(IncRNAs) have recently been uncovered in the human ge-
nome and found to play a pivotal role in regulating many
oncogenic pathways in various cancer types, including those
found in lung cancers 6. Many IncRNAs have been shown to
play crucial roles in at least one hallmark of cancer and can
behave as either oncogenes or tumor suppressors [10, 11].

Human lymphoid enhancer-binding factor 1 antisense
RNA 1 (LEF1-AS1) is a newly discovered IncRNA located
on the plus strand of chromosome 4 [12]. LEF1-AS1 was
previously shown to be upregulated in glioblastoma (GBM)
tissues and its dysregulation was postulated to correlate with
poor overall survival in patients [13]. Additionally, knock-
down of LEF1-AS1 demonstrated tumor-suppressing effects,
such as lowering cancer cell proliferation, invasion and
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migration. These findings uncovered a role of LEF1-AS1 as a
target oncogene in GBM, but failed to confirm the underlying
signaling mechanism. Here, we show that LEF1-AS1 pro-
motes proliferation and invasion in lung cancer by regulating
the miR-544a/ FOXP1 axis. These findings may provide a
valuable support for LEF1-AS1 used as a potential target for
the therapy of lung cancer, as well as establish a foundation for
LEF1-ASI could serves as a novel target for anti-cancer drug
in future.

Methods
Clinical tissue specimens

A total of 48 pairs of lung cancer tissues and adjacent normal
tissue were acquired from The First Affiliated Hospital of
Bengbu Medical College between Jan 2012 and Sep 2014.
The study protocol was approved by the Ethics Committees
of The First Affiliated Hospital of Bengbu Medical College.
All patients provided written informed consent. Samples were
stored at —80 °C until use.

Cell lines and culture

The normal human lung epithelial cell, BEAS-2B, and human
lung cancer cell lines, including H1299, A549, H1975 and
SPC-A-1, were purchased from ATCC (Manassas, VA).
Cells were cultured in RPMI 1640 medium supplemented
with 10% fetal bovine serum in humidified condition with
95% air and 5% CO, at 37 °C.

Oligonucleotides transfection

siRNA against LEF1-AS1 (Si-LEF1-AS1), short-hairpin RNA
plasmid specific to LEF1-AS1 (sh- LEF1-AS1), miR-544a in-
hibitor, miR-544a mimics, and their controls were synthesized by
GenePharma (Shanghai, China). Oligonucleotide transfection
were performed using Lipofectamine 2000 (Invitrogen,
Carlsbad, CA) according to the manufacturer’s protocol. The
sequence of siRNA for LEF1-AS1 and Control: Si-LEF1-AS1,
sense 5'-GGCCAAGGAAUUUACUUAUUU-3', antisense 3'-
UUCCGGUUCCUUAAAUGAAUA-5"; Control: sense: 5 -
GGCCGAGGCTCAATGUTTUUU -3', antisense: 5’ -
UUTTGGUUGGCUAAAGCATUA -3';

BLAST alignment

NCBI’'s BLAST suite was used for alignment searches. The
top search results with an value <0.01 was reported. RNA
transcripts were allowed to have multiple exons aligning to
different non-contiguous regions of a chromosome. We
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proceeded our study using miR-544a, a miRNA with a high
affinity to LEF1-AS1.

qRT-PCR

Total RNA were isolated from tissues and cells using the
miRNeasy Mini Kit (Qiagen, Valencia, CA, USA) according to
the manufacturer’s instructions. Quality and concentration of
RNA were evaluated with NanoDrop 2000 (Thermo Fisher,
Wilmington, DE, USA). cDNA was synthesized by TransScript
first-strand cDNA synthesis SuperMix (TransGen, Beijing,
China). RT-PCR assay was carried out by ABI prism 7500 se-
quence detection system (Applied Biosystems Life
Technologies) using SYBR green qPCR SuperMix (Applied
Biosystems Life Technologies, Foster, CA, USA). The expres-
sion of genea was quantified using the P (cycle threshold),
method and the expression levels of miRNA and IncRNA/target
gene were normalized by U6 and GADPH, respectively. The
primer sequenceswere showed as follows:: LEF1-AS1, forward:
5’-GGGCCCCTTTGTGTGACTAA-3'; reverse, 5’-
ACCTGCGCTAAGAACTGAGG-3"; miR-544a, forward: 5'-
TAAAAGCTGGCAACTGTCTAA-3', reverse, 5'-
ATTAGTAGGAAATTGCTGCAG-3'; GAPDH, forward, 5'-
TCGACAGTCA GCCGCATCTTCTTT-3', reverse, 5-ACCA
AATCCGTTGACTCCGACCTT-3".

Luciferase reporter assay

LEF1-AS1 cDNA fragment that encompassed microRNA
binding sites was inserted into the pmirGLO plasmids
(Promega, Madison, WI, USA). Mutant LEF1-ASI
(pmirGLO- LEF1-AS1-MUT) generated by site-directed mu-
tagenesis PCR with platinum pfx DNA polymerase was which
served as the negative control. Target miR-544a mimics or
miR-NC mimics and luciferase reporter plasmids and were
cotransfected into cells using Lipofectamine 2000. At 48
hafter transfection, relative luciferase activity was measured
in a luminometer by Dual-Luciferase Reporter Assay System
(Promega).

Cell proliferation assay

Cell Counting Kit-8 (CCK- 8; Dojindo, JPN) was used to assess
cell proliferation. A549 and H1299 cells transfected with si-NC,
si-LEF1-AS1, miR-544a inhibitor or si- LEF1-AS1+ miR-544a
inhibitor were collected and seeded into 96-well plates. After 24,
48 72 or 96 h, 10 ul of CCK-8 assay reagent was added to each
well. After incubation for 2 h, DMSO was added and the absor-
bance was measured using an enzyme immunoassay analyser
(Bio-rad, Hercules, CA, USA).
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Cell migration and invasion assay

Wound healing assay and transwell assay were performed to
measure the migration and invasion ability of breast cancer
cells respectively. For wound healing assay, when A549 CSC
and H1299 CSC cells were cultured to 90% confluence in 96-
well plates, the medium was removed and a gap was made by
enforcing the sterile pipette tip on the monolayer cells. The
width of the wound gap at 24 h was acquired and normalized
to initial distance at 0 h. Migration rate was calculated using
the following formula: migration rate = migration distance/
original distance. For transwell assay, A549 CSC and H1299
CSC cells were suspended in 200 ml serum-free DMEM and
seeded in chambers (8 mm, BD Biosciences) coated with BD
BioCoat Matrigel. After incubation, the non-invaded cells on
the upper membrane surface were removed with a cotton tip.
The cells on membrane were fixed and stained by violet
crystalline.

Western blot analysis

The total protein was extracted using the RIPA buffer
(Sigma—Aldrich, St. Louis, MO) supplemented with pro-
tease inhibitors cocktail (Roche, Diagnostics, Mannheim,
Germany). Protein concentration was measured using
BCA assay. Proteins were separated by SDS-PAGE,
followed by being transferred to PVDF membrane
(Millipore, Bedford, MA). After blocked with 5% non-
fat milk, the membrane was incubated with the primary
antibodies, including anti-FOXP1 (1:1000, Abcam,
Cambridge, MA), anti-GADPH (1:1000, Abcam) d.
After washing with TBST, PVDF membrane was incu-
bated with HRP-conjugated goat anti-rabbit IgG
(Abcam) at room temperature for 2 h. Finally, the films
were developed using ECL detection kit (Beyotime
Biotechnology, Shanghai, China).

Lentivirus construction and infection

Construction of a lentiviral vector expressing LEF1-AS1-
shRNA was performed by Shanghai Genechem. LEF1-AS1-
shRNA was inserted into pFU-GW-RNAI vector carrying the
green fluorescent protein (GFP) reporter driven by the U6
promoter. A549 cells were seeded into 6-well plates with
2 x 10 [5] cells per well. After 12 h, A549 cells were infected
with Lv-shRNA-NC or Lv-shRNA- LEF1-AS1 at 10 MOI,
respectively. Culture medium was changed at 12 h after
infection.

Animal experiments

All animal experiments were performed according to proto-
cols and approved by the Institutional Animal Care and Use

Committee of The First Affiliated Hospital of Bengbu
Medical College. Briefly, 1 x 10 [6] A549 cells infected with
lentivirus carrying sh- LEF1-AS1 or sh-NC were subcutane-
ously injected. Tumor size was measured by a caliper every
3 days. Tumor volume was calculated using the following
formula: volume = 0.5 x length x width [2].

Immunohistochemical staining

Tumor tissue were sectioned at the thickness of 5 um and
embedded in paraffin. To perform immunohistochemical
staining, tissues were dewaxed and rehydrated in graded con-
centrations of xylene/alcohol. Antigen retrieval was per-
formed in citrate buffer (pH 6.0) and heating at 121 °C.
Sections were then blocked in goat serum (Boster, Wuhan,
China) for 30 min at room temperature. Ki67 antibody
(Bioss Antibodies, Inc., 1:200) was used to incubate the sec-
tions overnight at 4 °C. For TUNEL assay, Colorimetric
TUNEL Apoptosis Assay Kit (Beyotime, Shanghai, China)
was used to incubate the sections at 37 °C for 60 min.
Following, Polink-1 HRP DAB Detection System One-step
polymer detection system (ZSGB-BIO, Beijing, China) were
added to the section and incubated for 20 min at room tem-
perature. Hematoxylin was lastly used to stain the nucleus.

Statistical analysis

All the statistical data are presented as the means + S.D. Two-tailed
Student’s t test or one-way ANOVA followed by the LSD post hoc
test was performed for comparisons between groups. Expression
correlation assays were analyzed using Pearson’s coefficient cor-
relation. Differences in patient survival were performed using the
Kaplan-Meier method and analyzed by log-rank test. A value of
P <0.05 was considered to be statistically significant.

Results

LEF1-AS1 upregulation in lung cancer is associated
with the poor survival of patients

To explore the role of LEF1-AS1 in lung cancer, gRT-PCR
analysis was first performed to detect the expression of LEF1-
AS1 in lung cancer specimens and adjacent normal tissue
from patients (V= 48). We found thats, LEF1-AS1 expression
was significantly higher in tumor tissues comparing with the
adjacent tissues (P < 0.05, Fig. 1a). Next, we divided the pa-
tients into two groups based on the LEF1-AS1 expression,
using the average LEF1-AS1 level as the threshold (Fig. 1b).
Survival analysis of showed that the overall survival of pa-
tients with high LEF1-AS1 expression was much poorer than
those with low LEF1-AS1 expression (Fig. 1c), suggesting
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Fig. 1 LEF1-AS1 upregulation a
is associated with lung cancer
aggressiveness. a, qRT-PCR
analysis of LEF1-ASI expres-
sion, suggesting a higher LEF1-
ASI expression in tumor tissue,
compared to normal tissue from
lung cancer patients (stage I and
II) (N=48). * p<0.05. b,
Grouping of patients according to
LEF1-ASI expression. High-
expression patients or low-
expression patients were grouped
based on average LEF1-AS1 ex-
pression. ¢, Overall survival curve
of patients with high or low
LEF1-ASI expression. *p < 0.05
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that high LEF1-AS1 was associated with lung
cancermalignancy and poor survival of patients.

LEF1-AS1 promotes lung cancer proliferation
and invasion

To further confirm the role of LEF1-ASI in lung cancer, we
analyzed the expression of LEF1-ASlin lung cancer A549,
H1299, H1975 and SPC-A1 cells, with BEAS-2B cells as
the control. Consistent with the upregulation of LEF1-AS1
in lung cancer tissues, LEF1-AS1 expression was also signif-
icantly increased in the four tumor cells, compared to BEAS-
2B cells (Fig. 2a). Especially, A549 and H1299 cells demon-
strated the most prominent LEF1-AS1 upregulation, thus
which were selected for subsequent studies. LEF1-AS1 si-
lencing was achieved by transfecting three si-LEF1-AS1s into
A549 and H1299 cells. Obviously, all three siRNAs induced
pronounced LEF1-AS1 downregulation. Since si-LEF1-AS1—
3 showed the most marked LEF1-AS1 downregulation, si-
LEF1-AS1-3 was used as the lead siRNA to suppress
LEF1-AS1 expression in lung cancer cells (Fig. 2b). In
A549 and H1299 cells, si-LEF1-AS1 transfection significant-
ly attenuated cell proliferation (Fig. 2¢) and invasion (Fig. 2d).
These data confirmed the tumor-promoting role of LEF1-AS1
in lung cancer.
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miR-544a is the target of LEF1-AS1

To clarify the mechanism of LEF1-AS1 in lung cancer regu-
lation, we performed BLAST analysis and identified a binding
site between LEF1-AS1 and miR-544a (Fig. 3a). Further, a
mutated LEF1-AS1 sequence was designed to explore the
specificity of the interaction between LEF1-AS1-WT and
miR-544a (Fig. 3a). As shown in Fig. 3b, the result of dual-
luciferase assay, indicated that miR-544a mimic led to a
marked attenuation of luciferase activity induced by LEF1-
AS1-WT but not LEF1-AS1-MUT (Fig. 3b). Similarly, trans-
fection of miR-544a mimic also resulted in a remarkable
downregulation of LEF1-AS1 in A549 and H1299 cells, while
miR-544a inhibitor exerted the opposing effects (Fig. 3c).
Consistently, transfection of si-LEF1-ASI significantly up-
regulated miR-544a expression, while the negative control
showed no such effects (Fig. 3d). These data suggested the
direct interaction between miR-544a and LEF1-AS1.

Regulation of lung cancer cells by LEF1-AS1 was
mediated by miR-544a

Next, we examined the function of miR-544a in mediating the
tumor-promoting effects of LEF1-AS1 in lung cancer cells. It
was found that the cells transfected with si-LEF1-AS1 pre-
sented a well-markedattenuation of cell proliferation
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(Fig. 4a), invasion (Fig. 4b) and migration (Fig. 4c). whereas
the opposite effects were observed when miR-544a was
knocked down. Notably, co-transfection with si-LEF1-AS1
and miR-544a inhibitor failed to alter the cell proliferation,
invasion, and migration compared to cells without transfec-
tion. Moreover, a known effector of miR-544a, FOXP1, ex-
hibited a negative correlation to LEF1-AS1 expression (Fig.
4d). Therefore, miR-544a plays an important role in mediating
the effects of si-LEF1-AS1 in lung cancer.

LEF1-AS1 inhibition attenuates lung cancer xenograft
growth in mice

To evaluate the anti-tumor effects of LEF1-AS1 silencing
in vivo, we established A549 cells stably expressing sh-
control or sh-LEF1-AS1 We found that tumors with sh-
LEF1-AS1 demonstrated significantly smaller sizes
(Fig. 5a), as well as decreased Ki-67 expression comparing
with the control (Fig. 5b).,Meanwhile, the tumors transfected
with sh-LEF1-AS1 also exhibited an we obsversed obvious
reduction of LEF1-AS1 expression and a prominent increase
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of miR-544a expression (Fig. 5¢ and d). Additionally, FOXP1
was downregulated in tumors with LEF1-AS1 silencing (Fig.
5e). These data validated that LEF1-AST1 silencing may be an
effective strategy in inhibiting lung cancer growth.

Discussions

In the present study, we strived to unravel the role of LEF1-AS1
in lung cancer. A previous study indicated that LEF1-AS1 acts
as an oncogene in GMA but failed to identify the underlying
mechanism promoting malignancy [13]. Our data in a lung
cancer model reinforces the oncogenic role of LEF1-AS1 since
gRT-PCR analysis revealed higher LEF1-AS1 expression in
tumor tissue, compared to paired normal tissue. These differ-
ences were also confirmed in cell lines, where LEF1-AS1 was
found to be significantly upregulated in a number of lung can-
cer cell lines, compared to a normal bronchial epithelial cell
line. Several studies have recently demonstrated the link be-
tween dysregulated IncRNA expression and cancer tumorigen-
esis, treatment resistance, and metastasis [14—16]. The
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inhibitor, or si-LEF1-AS1 + 544a inhibitor. d, western blot analysis of
FOXP1 levels in cells transfected by si-NC, si-LEF1-AS1, 544a inhibitor,
or si-LEF1-AS1 + 544a inhibitor. *p <0.05



Invest New Drugs (2019) 37:1127-1134

1133

A & » /
Lv-sh-control v w QI v .
215
$
Lv-sh-LEF1-AS1 | (e & £ ‘g;, ' 510
v-sh-LEF1- : LRt
(3 & (+4 2
g g & os
Oom 1 T R T Loy el AR R J | o) ;
5o,
b gﬂﬂ ‘c\
&
P
W
Ki67
22" 2
Lv-sh-control Lv-sh-LEF1-AS1 8
3
e B Lv-sh-control 3
o 8 | Lv-shLEF1-AS1 £
& * £
o 60 ;
H T %,
% 40 3 S
3 &
: 20 ”,ﬁ
£ &
3 ]
N ~
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infected with Iv-sh-control or Iv-sh-LEF1-AS1. b, Representative images

interactions between IncRNAs and macromolecules can influ-
ence multiple regulatory mechanisms of cancer either through
epigenetic regulation of protein expression or direct dysregula-
tion of IncRNAs [17]. It has been postulated that the deregula-
tion of IncRNAs influences normal regulation of the eukaryotic
genome to confer a growth advantage to cancer cells, leading to
sustained and uninhibited tumor growth [18]. In support of this
hypothesis, IncRNA AB073614 was shown to induce tumor
progression and was associated with poor prognosis by regu-
lating ERK1/2 and Akt signaling in ovarian cancer [19].
Additionally, IncRNA CRNDE was shown to impart pro-
oncogenic abilities in gliomas by modulating mTOR signaling
[20]. Several studies also indicate that IncRNAs may serve as
sensitive biomarkers of specific cancer subtypes based on their
cellular specificities [21, 22].

Silencing LEF1-AS1 in lung tumor cells significantly at-
tenuated cell proliferation and invasion. After confirming the
oncogenic role of LEF1-AS1, we aimed to elucidate its bind-
ing partners. Initially, BLAST analysis uncovered miR-544a
as a binding partner of LEF1-AS1. MiR-544ais already a well-
known inducer of epithelial-mesenchymal transition in cancer
[23]. We found silencing LEF1-AS1 resulted in upregulation
of miR-544a, suggesting a direct interaction between miR-
544a and LEF1-ASI. This relationship was further confirmed
by the negative correlation between LEF1-AS1 expression
and FOXP1 expression, which is a well-known effector of
miRNAs [24], Silencing LEF1-AS1 also significantly in-
creased miR-544a expression, downregulated FOXP1 expres-
sion, lower tumor size and Ki-67 expression.
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M Lv-sh-control
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* Il Lv-sh-control
—— Lv-sh-LEF1-AS1
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Relative FOXP1 expression

and quantitative analysis of Ki-67 staining of tumor sections. Expression
of LEF1-AS1 (¢) and miR-544a (d) were quantified by qRT-PCR. e,
western blot analysis of FOXP1 expression in tumors. *p < 0.05

Our findings support the previous in vivo studies showing
that tumors with LEF1-AS1 knockdown cells grow more
slowly compared to controlsvia modulating ERK1/2 and
Akt/mTOR signaling [13]. .Besides, miR-544 has been also
found to interrupt adaptive responses to hypoxia via ATM-
mTOR signaling [25]. LncRNA-based therapeutics are novel
anti-cancer strategies that have increasingly garnered attention
[26]. Understanding the underlying molecular mechanism of
IncRNA therapy is of paramount importance. Through the
modulation of LEF1-AS1 expression and possibly other
IncRNAs, a new treatment can be formed in the fight against
lung cancer and other cancers [27].

Conclusions

In summary, the present study reveals that LEF1-ASI is up-
regulated in lung cancer cell lines and tumors,which plays a
positive regulatory role in lung cancer proliferation and inva-
sion. Besides, there was a negative correlation between LEF1-
AS1 and miR-544a, and FOXP1 is a downstream effector of
miR-544a. Fundamentally, the LEF1-AS1/miR-544a/FOXP1
axis is an important contributor to lung cancer progression and
that disrupting these signaling pathways could provide a novel
mechanism for treating lung cancer.
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