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Abstract
When scientifically well-founded, the mechanistic basis of physiologically based pharmacokinetic (PBPK) models can help 
reduce the uncertainty and increase confidence in extrapolations outside the studied scenarios or studied populations. How-
ever, it is not always possible to establish mechanistically credible PBPK models. Requirements to establishing confidence 
in PBPK models, and challenges to meeting these requirements, are presented in this article. Parameter non-identifiability is 
the most challenging among the barriers to establishing confidence in PBPK models. Using case examples of small molecule 
drugs, this article examines the use of hypothesis testing to overcome parameter non-identifiability issues, with the objective 
of enhancing confidence in the mechanistic basis of PBPK models and thereby improving the quality of predictions that are 
meant for internal decisions and regulatory submissions. When the mechanistic basis of a PBPK model cannot be established, 
we propose the use of simpler models or evidence-based approaches.
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Key Points 

To leverage the mechanistic strengths of PBPK models, 
it is essential to establish confidence in the mechanisms 
that are relevant to an application.

Establishing confidence in PBPK models is challenged 
by poor in vitro-in vivo correlations, knowledge gaps 
in system parameters and in mechanisms impacting an 
application, as well as parameter non-identifiability.

Uncertainty analysis and hypothesis testing can be used 
to overcome some of these challenges.

If the mechanistic basis of a PBPK model cannot be 
established, then simpler models and/or evidence-based 
approaches should be considered.

1  Introduction

Physiologically based pharmacokinetic (PBPK) models 
provide a mechanistic framework in which to integrate 
compound and system data for prospective predictions of 
drug exposure in humans [1, 2]. When scientifically well-
founded, the mechanistic basis of PBPK models can help 
reduce the uncertainty and increase confidence in extrapola-
tions outside the studied scenarios or studied populations. 
PBPK models are therefore increasingly applied during pre-
clinical and clinical development [1, 3–7]. During preclini-
cal drug development, PBPK can support candidate drug 
selection and decision making by aiding an understanding 
of the mechanisms driving drug exposure [8]. During clini-
cal drug development, PBPK modelling can drive internal 
decisions and support regulatory submissions [9–11]. An 
increasing number of regulatory submissions over the last 
decade culminated in the recent draft guidelines by both 
the European Medicines Agency (EMA) [12] and the US 
Food and Drug Administration (FDA) [13], highlighting the 
growing relevance of PBPK in the pharmaceutical industry 
today. A recent publication from the Simcyp Consortium 
members [7] provided a perspective on the qualification and 
verification of PBPK platforms/models intended for regula-
tory submission. Despite the strengths of PBPK modelling 
approaches, most of the high-impact regulatory applications 
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that resulted in labelling recommendations or study waiv-
ers have tended to be drug–drug interaction (DDI)-related 
[14]. Establishing confidence in PBPK models for non-
DDI applications such as pediatric starting dose selection, 
organ impairment and absorption-related applications is 
challenged by the difficulty in developing mechanistically 
credible PBPK models or to verify and validate their pre-
diction performance, either because drug elimination path-
ways cannot be well-characterized, or, when characterized, 
there is poor in vitro–in vivo correlation (IVIVC). This is 
especially true for transporter-dependent or non-cytochrome 
P450 (CYP)-mediated elimination pathways. The lack of a 
sufficient number of clinical datasets to resolve parameter 
non-identifiability has further limited model verification and 
validation. This work presents a systematic assessment of 
the current challenges to establishing confidence in PBPK 
models with respect to parameter estimation and model veri-
fication in each of the three major areas of PBPK applica-
tion—absorption prediction, exposure prediction in a target 
population, and DDI risk assessment during drug develop-
ment. These three areas cover most of the regulatory sub-
missions. This paper also focuses on overcoming parameter 
non-identifiability issues through hypothesis testing, using 
case examples related to absorption.

2 � Impact Levels of Physiologically Based 
Pharmacokinetic (PBPK) Applications 
for Regulatory Submissions

In a workshop on modelling and simulation hosted by the 
EMA and the European Federation of Pharmaceutical Indus-
tries and Associations (EFPIA), representatives from indus-
try, academia, and regulatory agencies proposed a framework 
where the degree of regulatory scrutiny, level of documen-
tation, and the need for early dialogue is proportional to the 
impact of the modelling activity on regulatory decision mak-
ing [15, 16]. Thus, regulatory submissions may be classified 
as high, medium or low impact depending on the ability of 
the work to replace, justify or describe an evidence base. For 
example, PBPK models that support regulatory filing for label-
ling negotiations or study waivers are considered ‘high impact’ 
applications. In general, these tend to be DDI-related. Pediatric 
starting dose selection or the study design may be considered 
an example of an application with moderate impact.

3 � Qualification of PBPK Platforms

PBPK models are generally built in commercial platforms 
such as GastroPlus (http://www.simul​ation​s-plus.com), 
PK-Sim® (http://www.open-syste​ms-pharm​acolo​gy.org/) 

or Simcyp (http://www.simcy​p.com) that come with their 
own compound and population libraries. The EMA guide-
lines require qualification of these platforms [12]. PBPK 
platform qualification is defined as a version-specific evalu-
ation to demonstrate its reliability for one or several intended 
purposes. It involves ensuring proper implementation of 
computational functionalities, accurate mathematical rep-
resentation of the physiological processes, reliable system 
parameters for the library of populations, model verification 
for the library compounds, transparency regarding the source 
of system and compound data as well as assumptions in the 
system, version controlling, quality-controlled software 
installation, and evaluation of the predictive performance 
for high-impact applications for the intended purpose using 
a large, independent, diverse dataset.

4 � Key Questions and Strategies for Different 
PBPK Applications

Boxes 1 and 2 summarize the key questions that are 
addressed through PBPK modelling and simulations for 
some high-impact DDI applications. They also outline the 
modelling strategies employed to address these questions, 
as well as the possible outcomes that may be expected 
for regulatory submissions. Box 3 summarizes the key 
questions addressed by PBPK for moderate-impact non-
DDI applications. The PBPK modelling strategy for an 
application depends on the impact level and the nature 
of the question that needs to be addressed. In general, the 
modelling strategy for a high-impact application involves 
the following:   

•	 Model development Building a PBPK model for a new 
chemical entity (NCE) by integrating its physicochemical 
properties, measured in vitro data that are relevant to the 
key question to be addressed, and estimated sensitive or 
critical parameters from clinical pharmacokinetic (PK) 
data when they become available.

•	 Model verification An iterative process of comparing 
model-simulated exposure with independent clinical data 
(datasets that were not used in model development steps) 
to establish confidence in the model-simulated exposure. 
If model simulations do not match the clinically observed 
exposure within a predefined acceptance criterion, the 
model parameters are refined to fit the observations and 
then verified again. An acceptance criterion that is flex-
ible, clinically relevant and based on sample size, param-
eter variance, therapeutic index and exposure–response 
relationship has been proposed [17].

•	 Model validation Following model verification, the pre-
diction performance of a model needs to be validated 

http://www.simulations-plus.com
http://www.open-systems-pharmacology.org/
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against relevant clinical data (eg, predicted within 2-fold 
of the observed) to demonstrate that the proposed model 
is ‘fit for purpose’, before applying the model for predict-

ing an untested scenario. For example, a PBPK model of 
a CYP inhibitor, verified against observed PK profiles 
in a first-in-human (FiH) trial may be validated for the 

Box 1   Key questions (Q), modelling strategies and possible outcomes for 
high-impact regulatory submissions: NCE as a perpetrator of DDI. DDI 
drug–drug interaction, NCE new chemical entity, CLint intrinsic clear-
ance, CYP cytochrome P450,  EM extensive metabolizers,  IM interme-

diate metabolizers, fg fraction escaping intestinal loss, fm,CYP fraction 
metabolized by an isoform,  FiM first in man, SAD single ascending dose, 
MAD multiple ascending dose, PK pharmacokinetics, PG pharmacog-
enomic, PM poor metabolizer, CL clearance, CL/F apparent clearance

Key ques�ons

Q1. NCE is substrate of an enzyme that is 
mainly responsible for its elimina�on
What is the impact of non-studied conco-
mitant inhibitors/inducers on its exposure? 

Q2. NCE is substrate of polymorphic 
enzymes 
- What is the drug exposure in PM? 
- Does it necessitate pa�ent exclusion 
based on genotyping? 
- Is there a race-genotype interac�on that  
contributes to ethnic differences in 
exposure? 
- What is the impact of non-studied 
concomitant inhibitors/ inducers on NCE 
exposure? 

Q3. NCE renally cleared
What is the DDI (Q1 and/or Q2) in a renally-
impaired popula�on? 

Strategy to address ques�ons 
(Q1, Q2 and Q3)

Build model with mass balance data. If 
human data is not available, use data from 
relevant preclinical species. Es�mate CLint
for the affected enzyme using fm,CYP and
CL or CL/F from FiM PK (Q1,Q2) 
Verify/Refine NCE PK model: using 
independent clinical PK- SAD, MAD (Q1,Q2). 
In addi�on, verify/refine drug exposure in 
renal-impaired popula�on (Q3) 
Validate DDI model using independent 
clinical DDI of NCE with strong inhibitor and 
strong inducer – refine fm,CYP (Q1); clinical 
pharmacogene�c DDI in EMs (Q2) 
Validate DDI model against other clinical 
DDI studies if available (Q1, Q2 and Q3)

Predict DDI with moderate inhibitors and 
inducers for any co-meds and combina�ons 
(Q1,Q2) in IMs, PM and in renally-impaired.

Do uncertainty Analysis for fm,CYP, fg (CYP3A)

Simulate reduced NCE doses  to support 
dose jus�fica�on

Possible Regulatory Outcomes

Study waiver. Predicted exposure change 
informs label recommenda�ons for
 - Dose adjustment
 - Contraindica�on
 - No warnings

No impact on labelling recommenda�on in 
the absence of clinical DDI or PG study: 
Post-marke�ng requirement or post-
marke�ng commitment to conduct DDI 
clinical study

OR

High impact regulatory submissions: Vic
m DDI, gene
c varia
ons

Box  2   Key questions, modelling strategies and possible outcomes 
for high-impact regulatory submissions: fg fraction escaping intesti-
nal loss, Ki reversible inhibition constant, KI inhibitor concentration 
at half maximal inactivation,  NCE as a victim of DDI. DDI drug–
drug interaction, Qx Quarter x, NCE new chemical entity, SAD single 

ascending dose, MAD multiple ascending dose, PK pharmacokinetics, 
P-gp P-glycoprotein, OATP organic anion transporting polypeptide, 
OCT organic cation transporter, BCRP breast cancer resistance pro-
tein, EC50 half maximal effective concentration, Emax maximum effec-
tive concentration
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purpose of predicting drug interaction with one sensi-
tive substrate before it is applied to prospectively predict 
interactions with other untested CYP substrates. Valida-
tion with one tested scenario would be enough to provide 
the confidence needed for the prospective predictions of 
multiple untested scenarios. If the model is developed in 
a PBPK platform that is already qualified for an intended 
purpose using an independent, large, diverse dataset, this 
validation step may be skipped.

•	 Sensitivity analysis identifies sensitive model parameters 
among the in vitro-generated input parameters for which 
an uncertainty analysis needs to be performed.

•	 Model prediction A validated model can be applied to 
make prospective predictions for an unstudied popu-
lation, or used to simulate an unstudied scenario (see 
example under ‘Model validation’).

A description of PBPK model qualification and veri-
fication is presented elsewhere [18]. However, in this 
current work, we distinguish between model verification 
and validation. While verification is a necessary step in a 
modelling exercise, in which model-simulated exposure 
is compared with independent clinical data (datasets that 
were not used in the model development steps), validation 
refers to the evaluation of the predictive performance of 
the model and may be part of either platform qualification 
or a regulatory submission.

5 � Requirements for Establishing Confidence 
in the Utility of PBPK Models for the Three 
Broad Categories of Applications

The unique strength of PBPK modelling and simulations 
lies in its mechanistic basis. To leverage this strength, it is 
important to establish confidence in a mechanistically cred-
ible model that is validated for a particular purpose. This 
calls for a good understanding of mechanisms relevant to 
the question being addressed. The requirements to establish 
confidence in the application-relevant mechanisms depends 
on the type of application. For the three broad areas of PBPK 
application (absorption and formulation-related applications, 
extrapolation from a base population to pediatrics or special 
populations, and DDI) that cover most of the regulatory sub-
missions, these requirements are presented in Fig. 1.

Absorption and formulation-related applications of 
PBPK modelling include (1) prediction of oral drug 
absorption by integrating drug permeability, dissolu-
tion, particle size and controlled/modified-release rates 
and formulation selection based on the model-predicted 
absorption; (2) prediction of the effects of food and/or 
proton pump inhibitors (PPI) on drug absorption; and (3) 
demonstration of bioequivalence of formulations through 
numerical or mechanistic IVIVC to support biowaivers. 
In this article, gut bioavailability (Fg) is defined as the 
product of fraction absorbed (fabs) and fraction escaping 
intestinal loss (fg), and is further illustrated in electronic 
Supplementary Figure 1. Intestinal loss (1 − fg) is the loss 
of a drug due to gut metabolism or transporter-mediated 

Box 3   Key questions for moderate impact non-DDI regulatory submissions. DDI drug–drug interaction, PK pharmacokinetics, PPI proton pump 
inhibitor, P-gp P-glycoprotein, Cmax maximum concentration

Key ques�ons

Is a change in gastric pH by disease/PPI expected to change exposure? 
Is a food effect expected? If yes, can it be minimized by staggering food intake with respect to drug administra�on? 
What is the contribu�on of P-gp to intes�nal absorp�on? 
Is a bioequivalence study (dissolu�on and Cmax) or rela�ve bioavailability (rBA) for systemic exposure needed? 
Is a formula�on bridging study needed for 2 formula�ons differing in par�cle size distribu�on? 

What is the star�ng dose in children? 
What dose modifica�on if any, is necessary in infants, toddlers, children? 

What is the impact of hepa�c or renal impairment on drug exposure?

What is the mechanism contribu�ng to non-linear PK? 

Absorp�on -
related

Pediatrics

Organ 
impairment

Mechanis�c 
understanding
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intestinal efflux. These definitions are intended to appreci-
ate the distinction between gut bioavailability and fraction 
escaping gut metabolism, often used interchangeably in 
the literature. At doses where intestinal efflux can be con-
sidered saturated, gut metabolism is assumed to be the sole 
contributor to intestinal loss. Confidence in absorption-
related predictions is expected to be high when quantita-
tive assessment of fabs is reliable. For small molecule drugs 
that are sufficiently lipophilic (neutral or basic with log 
P > 1.8) to allow assumption of good permeability, the 
in vivo relevance of in vitro solubility and dissolution play 
a key role in the quantitative prediction of fabs. In addition, 
knowledge of mechanisms contributing to gut bioavailabil-
ity other than absorption, e.g. efflux and gut metabolism 
should either be known to be irrelevant (e.g. NCE is not a 
substrate of efflux transporters or enzymes expressed in the 
gut) or, when relevant, should be quantitatively assessed. 
For example, if gut metabolism is known to be relevant for 
the NCE, then quantifying the metabolic contribution of 
the gut requires metabolite measured in intravenous and 
oral routes. For CYP3A substrates, reasonable quantifica-
tion is possible even with in vitro data [19]. For non-CYP 
drivers of gut metabolism, the availability of PK data fol-
lowing intravenous administration is indispensable in the 

quantitative mechanistic understanding of gut bioavailabil-
ity. In the absence of intravenous data, for poorly soluble 
compounds, it is difficult to characterize the mechanisms 
relevant for absorption-related applications.

Application of PBPK to extrapolate drug exposure from a 
base population (usually healthy, adult, Caucasian) to other 
populations (pregnant, obese, smokers, hepatically/renally 
impaired, pediatric, elderly and different ethnicities) requires 
a mechanistic understanding of the drug PK in the base pop-
ulation, as well as a knowledge of how these mechanisms 
are altered in the target population (population in which the 
prediction is desired). This requires that the metabolic and 
elimination pathways, as well as the site contributing to each 
of the metabolic pathways (Electronic Supplementary Fig-
ure 2) are well-characterized. A combination of clinical DDI 
and PK data can also provide fraction metabolized (fm). If 
an NCE is a transporter substrate, the in vivo contribution 
of the transporter to its elimination should be additionally 
well-understood. A good recovery of the in vivo clear-
ance in the base population from in vitro intrinsic clear-
ance (CLint) is then necessary to adjust for differences in 
protein levels in the target population and will ensure that 
unique mechanisms relevant to the target population can be 
accounted for. When multiple CYP enzymes are responsible 

Quantitative 
assessment of fraction 
absorbed  
 
Knowledge of 
mechanisms 
contributing to gut 
bioavailability. 
 
Extent of gut 
metabolism if any.  

-related  
Mechanistic 
understanding of PK 
in the base population  
A knowledge of how 
the relevant 
mechanisms are 
altered in the target 
population relative to 
the base population. 
1Low variability in 
clinical PK in base 
population to allow for 
parameter estimation. 
Good in-vitro to in 
vivo correlation for 
fm,CYP in base 
population 

Pathway 
characterization and 
site contribution to 
each pathway. 
When the affected 
pathway involves a 
transporter, its in vivo 
contribution to the 
elimination of the NCE. 

Reliable in vitro data  
for inhibition and/or 
induction parameters. 
Time profiles of drug at 
interaction site/s (gut, 
liver or kidney). 
fm,isoform,organ if auto-
inhibition/ induction is 
relevant 

Drug-

Preclinical development Phase I Phase II Phase III 

Absorption/formulation - related applications 

Drug interactions – related applications 

Extrapolation outside study population 

Fig. 1   Requirements that will allow a high level of confidence in 
PBPK predictions for the three broad categories of applications. The 
placement of these three categories of applications along the value 
chain is also depicted. 1The greater the variability and smaller the 
size of the cohort, the larger the range of the estimated parameter. If 

this range is close to the entire range of plausible values, the exercise 
of parameter estimation is rendered less valuable. PK pharmacoki-
netics, NCE new chemical entity, DDI drug–drug interaction, PBPK 
physiologically based pharmacokinetics
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for the metabolism, pathway contributions should be veri-
fied through drug interaction studies and human absorp-
tion, distribution, metabolism and elimination (ADME)/
mass balance studies when they become available. If only a 
single major CYP is involved in the metabolism in the base 
and target populations, CLint may be derived from observed 
clearance in an intravenous PK study in the base population. 
A low variability in clinical PK (approximately 30% coef-
ficient of variation) in the base population will allow for a 
robust estimation of parameters. In addition, for an oral drug 
whose gut bioavailability is < 1, the contribution of absorp-
tion, efflux or gut metabolism to gut bioavailability should 
be well-understood, as described for absorption-related 
applications. This will allow for appropriate corrections in 
parameters by accounting for differences between the base 
population and target populations.

Most of the applications of PBPK modelling and simu-
lations in regulatory submissions are related to DDI, in 
which an NCE is either assessed as a victim/perpetrator 
of enzyme (CYP and non-CYPs)/transporter inhibition 
or CYP induction when coadministered with other drugs. 
To establish confidence in the utility of PBPK modelling 
for assessing an NCE as a victim drug, the metabolic and 
elimination pathways, as well as the site contributing to 
each of the metabolic pathways, should be well-character-
ized, as described for extrapolation to the target popula-
tion. If the NCE is a transporter substrate, the contribu-
tion of transporter to elimination of the NCE should be 
additionally well-understood. For NCE as a perpetrator, 
it is enough to have the model-simulated profiles of drug 
exposure at interaction sites (gut, liver or kidney) derived 
from clinical data at steady-state and reliable in vitro data 
for inhibition and/or induction parameters. If the perpe-
trator drug also relies on the affected pathway for its own 
metabolism, then the fraction metabolized by an affected 
enzyme in the organ of interest (fm,isoform,organ) is addi-
tionally required for the affected enzyme to account for 
potential auto-inhibition/induction. Thus, the requirements 
shown in Fig. 1 may be adapted to fit the purpose of the 
PBPK model, depending on the mechanisms relevant for 
a given drug and the availability of clinical data for model 
building.

In general, for all three major applications of PBPK, the 
fewer the mechanisms impacting the drug exposure (drug 
dissolution, and metabolic and elimination pathways), the 
fewer the associated parameters, and therefore overall uncer-
tainty, and the greater the confidence in model predictions. 
Thus, Biopharmaceutics Classification System (BCS) I com-
pounds for which elimination is driven by single (or major) 
CYP-mediated metabolism are likely to be associated with 
the least parameters, least overall parameter uncertainty, 
and therefore the highest confidence in prospective predic-
tions (Electronic Supplementary Figure 3), as exposure of 

these compounds is not likely to be limited by absorption or 
impacted by transporters. Therefore, the only drug param-
eters needed for a BCS I perpetrator drug, for example, are 
parameters related to drug clearance, enzyme inhibition or 
induction potency of the drug. However, biowaivers are 
granted for BCS Class I drugs even without modelling. BCS 
Class II–IV drugs with their solubility- and/or permeabil-
ity-limited, transporter-dependent exposure are subject to 
absorption and DDI challenges that can be addressed with 
PBPK. Applications include absorption [20, 21], PPI effect 
[22], food effect prediction [23, 24], bioequivalence assess-
ment through IVIVC for getting a biowaiver for formulation 
bridging, and DDI assessment [25–30], to name a few. A 
comprehensive list of applications is covered by Shebley 
et al. [7].

6 � Challenges to Establishing Confidence 
in a PBPK Model

When mechanisms that are relevant to an application of 
interest can be identified, associated parameters well-estab-
lished, and the PBPK model built in a qualified platform is 
verified and validated (if necessary) against clinical data, 
then confidence in the predictive performance of the model 
is said to be high. However, there are several barriers to 
establishing confidence in the mechanisms related to an 
application. These are presented in Fig. 2.

6.1 � Model Building

6.1.1 � Identifying Key Mechanisms Impacting 
an Application

The possibility that mechanisms relevant for the in vivo dis-
position of a drug can go unidentified in in vitro systems 
cannot be dismissed. This is reflected in the large in vitro 
to in vivo (IVIV) disconnect in CLint for such drugs. If the 
unidentified mechanisms do not impact the outcome for 
the intended use of the PBPK model, the IVIV disconnect 
should cause no concern. For example, a PBPK model built 
for a CYP3A inhibitor can be used for its intended purpose 
of assessing the DDI risk when combined with a potential 
CYP3A substrate, if human PK are available, even though 
the contributing enzymes are not well-characterized. How-
ever, if the intended purpose of the model is to assess the 
risk for an NCE to be a victim of CYP inhibition, a quantita-
tive knowledge of all elimination and metabolic pathways 
is needed. Top-down approaches can be helpful, if it is the 
major metabolic pathway.
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6.1.2 � Model Parameterization with In Vitro Data 
in a Bottom‑Up Approach

PBPK model parameters needed for different categories 
of applications, and their typical sources, are shown in 
Table 1. Several experiments are carried out during drug 
development to identify and understand the mechanisms 
contributing to drug exposure. For those mechanisms that 
are identified, the in vivo relevance of the in vitro data 
generated cannot always be guaranteed. This is especially 
true for substrates of non-CYP enzymes and transport-
ers for which adequate or reliable systems data, such as 
absolute abundances of relevant enzymes in the gut, liver 
and kidney and scaling factors to convert in vitro data to 
in vivo relevant data, are lacking. These challenges also 
apply for transporter substrates. A lack of understanding 
on the in vivo relevance of enzyme-transporter interplay, 
as well as a lack of quantitative knowledge on the extent 
of in vivo contribution of the transporter to the elimina-
tion of the drug, pose additional challenges for transporter 
substrates. These limitations make transporter and non-
CYP-mediated DDI more difficult to predict [1]. However, 
there are several examples demonstrating the predictive 
value of PBPK for organic anion transporting polypeptide 
(OATP) substrates [31–35].

The implication of IVIV disconnect is that model 
parameters may be associated with uncertainty and may 
not be quantitative enough for a prospective prediction via 
a bottom-up approach. For example, to support the assess-
ment of an NCE as a victim of DDI, several parameters, 
such as fm, fm,CYP, CLint, etc., would need to be gener-
ated from in vitro assays to characterize the metabolic and 
elimination pathways. This requirement is further com-
plicated when multiple interaction sites (liver, intestine, 
kidney, etc.) are involved as it is challenging to assess 
the in vivo contribution of each organ. For a drug with 
multiple elimination pathways in multiple sites, mass bal-
ance studies in humans using radiolabelled compounds can 
identify and provide quantitative information on the routes 
of excretion [36], and, with additional analyses, metabolic 
pathways [37]. These studies aid a complete understanding 
of clearance and potential contributors to intersubject vari-
ability and DDIs, all of which are crucial for evaluating an 
NCE as a victim of drug interaction. However, it should 
be noted that mass balance cannot distinguish between 
enzyme isoforms that lead to the same metabolite.

Model building: 
Iden fying key 

mechanisms 
impac g an 
applica on 

• In vitro assays may not adequately represent in vivo pathways  
• Knowledge gaps in understanding the impact of age, organ-impairment, obesity, pregnancy and smoking in altering the 

drug disposition mechanisms 

Model building: 
Parameterisa on of 
model represen g 

the iden fied 
mechanisms 

• Bo om-up approach: Parameter uncertainty due to in vitro-in vivo disconnect driven by knowledge gaps in system 
(scaling factors and abundances for non-CYPs and transporters) and in drug (in vivo relevance of transporter-mediated 
elimination of transporter substrates in the gut, liver and kidney)  

• Top-down or middle-out approaches: Variability and parameter non-identifiability could hamper parameter estimation 
from clinical data  

Model verifica on 
and valida on 

• Parameter non-identifiability 
• Insufficient clinical datasets that are associated with high variability.  
• In oncology, the drug exposure data is often confounded by food effects, concomitant drugs and high disease status all of 

which can contribute to even higher variability. 

Fig. 2   Barriers to establishing confidence in the key mechanisms impacting an application. CYP cytochrome P450
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6.1.3 � Parameter Estimation from Clinical Data in Top‑Down 
or Middle‑Out Approaches

To overcome the uncertainty associated with clearance 
derived from in vitro systems, a middle-out approach to 
model building is adopted [18, 38] in which clearance is 
obtained through parameter estimation from clinical data. 
This works best for a drug that is not a transporter sub-
strate when its elimination is dominated by a single path-
way. When clinical data are associated with high interin-
dividual variability, it is reflected in the wide range of the 
estimated parameter. Cubitt et al. have shown that CLint 
can be back-calculated from clinical data using the Simcyp 
simulator, even for compounds that show high interindi-
vidual variability in clearance [39]. These authors calcu-
lated a confidence interval from geometric mean and geo-
metric standard deviation, making it possible to limit the 
range, by eliminating any bias from extreme individuals. 
In cancer patients, high variability in PK profiles usually 
from a small cohort renders estimated parameters less reli-
able as the true mean cannot be captured.

6.1.4 � Parameter Non‑Identifiability as a Barrier 
to Deconvolute Mechanisms Contributing to Gut 
Bioavailability

Gut bioavailability of an orally administered drug is deter-
mined by solubility, permeability, gut metabolism and 
efflux. Gut bioavailability of a BCS Class I, low clearance 
NCE that is not a substrate of P-glycoprotein (P-gp), breast 
cancer resistance protein (BCRP), CYP3A, or other drug-
metabolizing enzymes, expressed in the gut is expected to 
be 1. For other drugs, gut bioavailability can be < 1 due to 
solubility-limited absorption or gut metabolism/efflux. The 
parameters related to these mechanisms cannot be distin-
guished using the observed plasma exposure data following 
oral administration of the drug as it allows only the estima-
tion of a composite parameter comprising all parameters 
related to the contributing mechanisms. Thus, the mecha-
nisms contributing to gut bioavailability (absorption, gut 
metabolism and efflux) are said to be non-identifiable since 
several sets of parameter values can result in equally good 
fit to the observed plasma exposure data. An intravenous 
14C microtracer dose of the NCE administered concurrently 
with an oral therapeutic non-labelled dose can be used to 
generate clearance and absolute bioavailability data without 
having to develop a conventional intravenous formulation 
and an intravenous toxicity and safety package [36]. In the 
absence of any gut metabolism and efflux, such a study, if 
available, can help identify solubility-limited absorption. 
If gut metabolism and efflux cannot be excluded (e.g. the 
NCE is a CYP3A and/or P-gp substrate), microtracer studies 

are inconclusive because plasma exposure limited by these 
mechanisms is indistinguishable from solubility limitation.

6.2 � Model Verification and Validation

Ideally, a drug model built with known PK mechanisms 
(disposition, metabolism, elimination, transporter-mediated 
uptake or efflux, etc.), and using estimated or measured 
parameters, must be verified and validated before applying 
the model for prospective predictions. Table 2 shows the 
datasets needed for building, refining/verifying and validat-
ing drug models for various applications. Model verification 
and validation steps ensure the robustness of the model with 
well-supported assumptions, especially when confidence 
in the underlying mechanisms is high. Model validation 
is sometimes challenged by parameter non-identifiability 
issues that cannot be resolved due to an insufficient num-
ber of independent clinical datasets. For example, to vali-
date a PBPK model of a CYP3A and P-gp substrate, that 
is intended for the prediction of food effect, it is important 
to quantify the relative contributions of absorption, intesti-
nal efflux, intestinal metabolism and hepatic metabolism in 
order to understand the driver of food effect. However, as 
discussed earlier, given that the only clinical data that are 
commonly available are systemic concentrations following 
oral administration, the model parameters related to absorp-
tion, intestinal efflux, and intestinal and hepatic metabolism 
are said to be non-identifiable. Additional clinical studies 
designed to characterize absorption efflux and gut metabo-
lism are necessary for complete resolution. In this scenario, 
even though the PBPK model may recover the observed clin-
ical exposure and is therefore deemed to be verified, param-
eter non-identifiability is a barrier to validating the model for 
its intended purpose of predicting food effect. The accuracy 
of the prediction of food effect relies on the deconvolution 
of mechanisms contributing to gut bioavailability. If confi-
dence in the relative contributions of efflux, gut metabolism 
and absorption to gut bioavailability is low, then food effect 
predictions are likely to be poor.

7 � Resolving the Challenges to Establishing 
Confidence in Key Mechanisms Impacting 
an Application

To cover for uncertainty in measured parameters, a sensi-
tivity analysis on model parameters is first performed to 
identify the most sensitive parameters on which to conduct 
an uncertainty analysis. The impact of uncertainty in sensi-
tive model parameters that cannot be precisely measured 
on endpoints of interest is assessed by varying the sensitive 
parameters over a range of plausible values for compound-
related parameters, and over the 5th to 95th percentile of 
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distributions for system parameters [40], based on what is 
known about the mechanism, rather than being arbitrary.

Parameter non-identifiability presents the greatest chal-
lenge for a proper characterization of underlying mecha-
nisms. One way to overcome non-identifiability is to meas-
ure one or more of the non-identifiable parameters that 
can be reliably measured and combine with the composite 
parameter estimated from clinical data, to obtain the other 
non-identifiable parameter. Depending on the number of 
non-identifiable parameters in the composite parameter, the 
number that can be reliably measured, and the availability of 
relevant clinical data, complete deconvolution of the com-
posite parameters may not be possible.

For applications that do require complete deconvolution 
(as in the example of food effect prediction in the previ-
ous section), hypothesis generation/testing with PBPK [8, 
41, 42] can help deconvolute the relative contributions of 
intestinal loss factors. This begins with identifying CLint and 
the tissue partition coefficient (Kp) factor (a multiplicative 
factor applied to all Kp in the PBPK model) that best fits the 
observed intravenous profile (Fig. 3). Assuming linear PK, 
as well as the constancy of hepatic clearance across differ-
ent routes of administration, the best-fit parameters from the 
intravenous profile are fixed for oral PK simulations. Apply-
ing a bottom-up PBPK model, PK mechanisms underlying 
the observed oral PK profile can be identified using signature 
discrepancies of the simulated profile from the observed, as 
shown in Box 4 [2]. Signature discrepancies from observed 
data may be due to higher in vivo solubility than measured 

in vitro, drug-induced gastric empting delay, gut metabo-
lism, enterohepatic recirculation, auto-inhibition/saturation 
of drug-metabolizing enzymes, auto-inhibition/saturation of 
uptake transporters and auto-inhibition/saturation of efflux 
transporters. The hypotheses generated by this approach may 
then be tested by suitable experimentation. 

Hypothesis generation with PBPK can already be applied 
to preclinical intravenous and oral PK profiles to gain insight 
into the mechanisms underlying PK profiles in the preclini-
cal species. When human intravenous and oral PK data 
become available, a similar systematic line-shape analysis 
with PBPK can check for the relevance of the mechanisms 
identified in preclinical species to humans. Two examples 
of hypotheses generation/testing with PBPK are illustrated 
in Boxes 5 and 6. Box 5 describes how hypothesis genera-
tion with PBPK helped distinguish gut metabolism from 
poor solubility for an NCE with gut bioavailability < 1. In 
this example, a compound that was believed to have solu-
bility-limited absorption was shown to have no solubility 
limitation in vivo. The poor oral bioavailability of the drug 
could be attributed to gut metabolism. If clinical intravenous 
data are available, a quantitative in vivo gut bioavailability 
can then be estimated and employed in DDI assessment. 
In the absence of clinical intravenous data, dose propor-
tional or supra-dose-proportional exposure observed in 
single ascending dose (SAD) and multiple ascending dose 
(MAD) FiH studies can support the hypotheses generated 
(solubility does not limit absorption) in preclinical species. 
This deconvolution of PK mechanisms has the potential to 

Table 2   Clinical data sources for PBPK model development, verification and validation

ADME absorption, distribution, metabolism and elimination, CR controlled release, DDI drug–drug interaction, fm fraction metabolized, fm,CYP 
fraction metabolized by CYP isoform, fu fraction unbound in plasma, IR immediate release, Ki inhibition constant, MAD multiple ascending 
dose, NCE new chemical entity, PK pharmacokinetics, SAD single ascending dose

Application Clinical data used for model development, 
parameter estimation, verification

Data for model validation

Absorption: modified release formulation 
development

Model built with IR human PK in the fed and 
fasted states

Model simulations of CR validated in monkey

Exposure prediction in a target population PK of the base population from a SAD and a 
MAD

ADME mass balance, fm, fm,CYP
fu in both the base and target population

Target population is qualified
Pathway validation from DDI studies in the 

base population

PK prediction of an untested dose/regimen Single dose PK from a SAD
Repeated dose PK from a MAD

DDI: NCE is a victim drug coadministered 
with a weak/moderate inhibitor

PK of the victim drug from a SAD and a 
MAD

ADME mass balance
fm, fm,CYP

PK of the victim drug coadministered with and 
without a strong inhibitor

DDI: NCE is a perpetrator of an enzyme iso-
form that is not involved in its metabolism

PK of a perpetrator drug from a SAD and 
MAD

In vitro Ki

Model able to recover an observed interaction 
of NCE with a sensitive substrate

DDI: NCE is a perpetrator of an enzyme iso-
form that is involved in its own metabolism

PK of a perpetrator drug from SAD
In vitro Ki
fm,CYP of inhibited isoform

Model able to recover an observed interaction 
of NCE with a sensitive substrate
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avert any unnecessary and costly formulation development 
to improve oral bioavailability. Box 6 describes the use of 
hypothesis generation for identifying gut metabolism [42] as 
the principal mechanism contributing to intestinal loss. The 
use of in vitro solubility and permeability, with the best-fit 
intravenous parameters, could simulate the maximum con-
centration (Cmax), but not the AUC (Boxes 6c, d). Resolving 
parameter non-identifiability through hypothesis generation, 
testing and verification can ensure a high quality of prospec-
tive predictions for absorption-related applications. 

In summary, regulatory submissions demand a rigor-
ous application of the build-verify/refine-validate-predict/
simulate modelling strategy and use of qualified platforms 
to address the key questions in the three broad categories 
of PBPK applications. In addition to building confidence in 
prospective predictions of PBPK models through the predict-
learn-confirm process [43], understanding the mechanisms 
relevant to the question being addressed is highly desirable 
to leverage the unique strengths and mechanistic basis of 
PBPK models. However, there are barriers to establishing 

confidence in the mechanisms relevant to an application for 
the building and validation of models. Hypothesis genera-
tion/testing with PBPK models can provide useful insights 
into mechanisms underlying observed concentration-time 
profiles and pave the way for improved confidence in PBPK 
model predictions.

8 � PBPK or Simpler Models?

“Everything should be made as simple as possible, but not 
simpler” is a quote attributed to Einstein, which succinctly 
expresses the principle of Occam’s razor. The rationale 
behind this generic principle is that the number of assump-
tions generally tends to increase with the increasing com-
plexity of models/hypotheses, and, at some point, a com-
plex model could become too distant to whatever is being 
modelled. PBPK models or simpler? The choice should 
depend on the value addition brought on by PBPK over 

Fig. 3   Impact of changing of CLint and multiplicative factor for 
Kp factors on the intravenous PK profile. As CLint is increased, the 
profile shifts down, with the shape remaining intact. The effect of 

increasing the Kp factor is to change the shape of the profile. CLint 
intrinsic clearance, Kp tissue partition coefficient, PK pharmacoki-
netic, IV intravenous, PBPK physiologically based pharmacokinetics



1366	 S. A. Peters, H. Dolgos 

Box  4   Signature discrepancies of predicted oral PK profiles from 
observed, using the PK parameters (clearance, volume of distribution 
and enterohepatic recirculation rate) that best fit the intravenous pro-
file. Best fit to oral profiles were obtained by altering parameters that 

uniquely identify a mechanism (reference 2). PK pharmacokinetics, 
AUC​ area under the curve, BCS Biopharmaceutics Classification Sys-
tem, DDI drug–drug interaction, IV intravenous

c. Gut metabolism

b. drug-induced gastric emptying delay

d. Auto-inhibi�on of drug metabolizing enzymes

f. Auto-inhibi�on of efflux transporter e. Auto-inhibi�on of uptake transporter 

a. Higher in vivo solubility than measured in vitro

PK mechanism 
iden�fied 

Impact in drug development

a Higher in vivo 
solubility than 
measured in vitro

Because in vivo sink condi	ons are hard to mimic in 
vitro, solubility and dissolu	on measured even in 
biorelevant media may not always reflect the in vivo 
situa	on, Differences in solubili	es could be high 
enough to change the nature of the compound from 
solubility-limited absorp	on to complete absorp	on at 
the therapeu	c dose. See also BOX 5. 

b Drug-induced 
gastric emp	ng 
delay

Iden	fied by flip-flop observed and predicted profiles 
without change in AUC. The drug is likely to belong to 
BCS Class I, since plasma exposure, is limited by gastric 
emptying delay and not by solubility or permeability.

c Gut metabolism Knowledge of the extent of the metabolic extrac	on of a 
drug in the gut is important in DDI risk assessment. 
Iden	fying regions of gut loss can help develop a 
formula	on to circumvent the loss. See also BOX 6. 

d Auto-inhibi	on of 
drug metabolizing 
enzymes

Iden	fied by a lower clearance compared to IV needed 
to fit observed oral profile. This has implica	onss for 
safety. 

e Auto-inhibi	on of 
uptake 
transporter

Inhibi	on of enterohepa	c recircula	on (EHR) can occur 
in the higher oral doses than IV of parent or due to gut 
metabolism if mediated by a metabolite. Iden	fied by a 
lower EHR rate constant needed to simulate oral profile 
compared to IV. When accompanied by auto-inhibi	on 
of drug metabolizing enzymes, it signals auto-inhibi	on 
of uptake transporters. This has implica	ons for safety.

f Auto-inhibi	on of 
efflux 
transporters

Iden	fied by inhibi	on of EHR that is not accompanied 
by clearance inhibi	on.  This can lead to hepatotoxicity 
due to accumula	on of toxic conjugates in the 
hepatocytes.

Box  5   Resolving parameter non-identifiability through hypothesis 
testing with PBPK simulations: identifying solubility-limited absorp-
tion (reference 2). PBPK physiologically based pharmacokinetics, 
NCE new chemical entity, SAD single ascenting dose, MAD multiple 

ascending dose, FASSIF  fasted simulated small intestinal fluid,   IV 
intravenous, PK pharmacokinetics, AUC​ area under the curve, CLint 
intrinsic clearance, CYP cytochrome P450, Kp tissue partition coef-
ficient

DATA NEEDED FOR INITIAL MODEL BUILDING 
Physicochemical pr
logP, pKa, fu, R, size 
In vitro 
FASSIF solubility, disso  permeability  

BACKGROUND 
• NCE is a weak base with poor solubility and diss .  
• Can this explain its low bioavailability in rat?  
• Is there a need for a special / enabling fo  to 

improve its exposure? 
• Is a food and/or ARA effect expected? 

PRECLINICAL DATA THAT AID HYPOTHESIS GENERATION  
Supra dose pro  exposure in toxicology studies in 
pre-clinical species (e.g., rat) over a very wide dose-range. 

HYPOTHESIS  
Perhaps solubility does not limit abs   

FASSIF solubility: 15 µM 
Permeability: 5x10-6 cm/s 

FASSIF solubility: 15 µM 
Permeability: very high 

Solubility: 300 µM 
Permeability: 5x10-6 cm/s 

Solubility: 300 µM 
Permeability: 5 x 10-6 cm/s    
(6 1 0 0 0 0 0.4 0.002) 

e f d 

c 

g 

a b 

a. Simulate IV profile in preclinical species.  
b. Alter CLint and Kp factor to get best fit to IV profile 
c. A be r fit to terminal profile is obtained by including a entero  
recirc  rate. 
d. With the best fit parameters for clearance and volume of  fixed, 
simulate oral profile, using FASSIF solubility and permeability. 
e. A hy y high permeability cannot explain the  upswing 
observed, as the solubility is g. 
f. A much higher solubility is needed to simulate the observed AUC 
g. The best fit is obtained by introducing regional scaling factors with much 
higher p on in the proximal compartments and very l le in the distal, 
which is more with efflux and gut metabolism. As the compound is 
a CYP3A substrate, t  is likely to explain the low bioavailability in rat.  

HYPOTHESIS TESTING IN PRECLINICAL SPECIES 
PBPK s s can help in te  the hypothesis if 
solubility is really l  abs .  
In the example shown in the Figure, the observed profile 
coud be simulated with a much higher solubility, but not a 
higher permeability. 
The in vivo solubility is at least 20 es higher 
VERIFICATION IN HUMAN AND CONCLUSIONS 
Dose propor l or supra dose-pro exposure and 
short tmax observed in SAD and MAD? 
If IV is available: Does the in vivo solubility provide a b er fit 
to observed oral profile with IV best fit PK parameters?  
ARA effect with omeprazole (a drug inducing gastroparesis) 
shows flip-flop ki s with no change in AUC? 
If the answers to  any one is YES, and if hy
increase in solubility does not alter simulated exposure, 
solubility may not limit absorp enabling fo  
is necessary, no food or ARA effect is expected and PBPK 
model can be used to show equivalence of 2 formul ons  
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simpler methods for a particular drug in a particular appli-
cation, given the challenges.

The steps involved in establishing confidence in PBPK 
models, and situations in which simpler models may be 
considered, are summarized in Fig. 4. To begin with, a 
fit-for-purpose PBPK model is built by identifying the key 
mechanisms that are relevant to the purpose of the applica-
tion. Next, sensitive parameters pertinent to the identified 
mechanism should be estimated/derived from clinical data 
if possible. If the PK profile simulated by the model can be 
verified against an independent clinical dataset satisfying 
the acceptance criterion, then provided the requirements 
for establishing confidence in the model are met (Fig. 1), 
the model can be validated for its purpose before apply-
ing it for prospective prediction to an untested scenario. 
In the absence of satisfactory validation, it is possible that 
confidence in the key mechanism needs to be established, 
perhaps through hypothesis generation and testing.

If the verification criterion is not satisfied, further model 
refinement may be necessary through parameter changes 
that uniquely improve the fit to the clinical data. If multi-
ple parameter changes lead to the same outcome, the non-
identifiability should be resolved through hypothesis gen-
eration and testing. If an hypothesis cannot be verified, then 

the mechanistic strengths of PBPK cannot be leveraged, 
and simpler methods supported by a totality of evidence 
approach should be preferred.

To illustrate the strategy laid out in Fig. 4, consider the 
example of a CYP3A-metabolized, poorly soluble, weak-
base NCE for which a bottom-up PBPK model is built using 
in vitro solubility and dissolution data for predicting food 
effect. For a poorly soluble weak base, PBPK models are 
likely to predict an absorption limited by precipitation. The 
extent of supersaturation and precipitation depends on the 
difference between gastric and intestinal pH. Since food 
affects the gastric pH, the exposure of a poorly soluble weak 
base is expected to show a food effect. In the absence of 
established confidence in the mechanism of precipitation 
(impossible to verify due to non-identifiability), prospec-
tive predictions of food and PPI effects based on the PBPK 
model may lead to resource-intensive studies and futile study 
designs, costing valuable time and money. An alternative 
approach may be to first establish confidence in a PBPK 
model that is meant for food effect prediction. According 
to Fig. 1, establishing confidence in a PBPK model that is 
meant for absorption-related application requires an under-
standing of mechanisms contributing to gut bioavailability 
and a quantitative assessment of fraction absorbed and gut 

Box  6   Resolving parameter non-identifiability through hypothesis 
testing with PBPK simulations: identifying gut metabolism (reference 
43). PBPK physiologically based pharmacokinetics, NCE new chemi-
cal entity, CYP cytochrome P450, IV intravenous, PK pharmacokinet-

ics, SAD single ascending dose, MAD multiple ascending dose, DDI 
drug–drug inhibition, Fg gut bioavailability,  CLint intrinsic clearance, 
P-gp P-glycoprotein, Kp tissue partition coefficient

BACKGROUND
• NCE is a substrate of CYP3A. 
• Is the compound metabolized in the gut? If so, to what extent?

DATA NEEDED FOR INITIAL MODEL BUILDING
Physicochemical proper�es
logP, pKa, fu, R, 
In vitro
FASSIF solubility, dissolu�on, permeability 

PRECLINICAL DATA THAT AID HYPOTHESIS GENERATION 
Oral bioavailability in rat is inconsistent with what is expected 
from IV clearance. 
Supra dose-propor�onal exposure in toxicology studies in rat over 
a very wide dose-range

HYPOTHESIS
Gut metabolism driven intes�nal loss

HYPOTHESIS TESTING IN PRECLINICAL SPECIES
Hypothesis tes�ng with rat PK profiles iden�fies an intes�nal loss 
not driven by solubility limita�on of absorp�on but possibly  due 
to gut metabolism.

VERIFICATION IN HUMAN AND CONCLUSIONS
Dose propor�onal or supra dose-propor�onal exposure 
observed in SAD and MAD?
If IV is available: 
If one major metabolite is produced in the gut, a higher 
metabolite to parent ra�o following oral administra�on compared 
to IV (Figure above)
In the absence of solubility limita�on, an in vivo Fg can be 
derived (Figure below) and employed in DDI assessment.

a b c 

f e d 

g Simulate IV profile by altering CLint and Kp factor to get best fit to IV profile
b. A be�er fit to terminal profile is obtained by including a enterohehap�c recircula�on rate.
c. With the best fit parameters for clearance and volume of distribu�on fixed, simulate oral 
profile, using FASSIF solubility and CACO-2 permeability with P-gp inhibi�on.
d. Same as above, but with CACO-2 permeability without P-gp inhibi�on
e. Clearly, solubility and permeability are not limi�ng exposure, as further increases in these 
values did not lead to higher exposures. Best fit to oral profile obtained with introduc�on of 
intes�nal loss constants. An in vivo Fg of 0.45
f. Same as e. without intes�nal loss constants. 

FASSIF solubility : 450 µM 
Permeability: 5.8 x 10-6 cm/s 

FASSIF solubility : 450 µM 
Permeability: 2 x 10-6 cm/s 

Permeability: 5.8 x 10-6 cm/s 
Intestinal loss, Fg = 0.45 

Permeability: 5.8 x 10-6 cm/s 
No intestinal loss, Fg = 1

Time (h) 

Parent and 
metabolite 
profiles
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a�
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 (µ
M

)

a. 
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metabolism. The key mechanism that needs to be well-
characterized from clinical data is intestinal precipitation 
due to poor solubility. This requires clinical intravenous PK 
data in addition to oral PK to quantify gut bioavailability 
(Fg = fabs × fg). Gut bioavailability is derived from oral bio-
availability (F) and fraction escaping hepatic clearance (fh) 
[F = fabs × fg × fh]. The model is then verified with oral clini-
cal PK data. Even if the verification criterion is met, there is 
still no confidence in the fabs as it is non-identifiable from fg. 
An hypothesis generation as illustrated in Boxes 5 and 6 can 
distinguish poor in vivo solubility from gut metabolism as 
the driver of intestinal loss. If the extent of gut metabolism 
can be verified in the clinic (by comparing the amount of 
metabolite formed in intravenous vs. oral routes), then the 
non-identifiability is resolved and the PBPK model can be 
used for food effect prediction using the model-generated 
in vivo solubility. Otherwise, a simpler approach by which 
confidence in the extent of absorption is based on a plat-
form of evidence from preclinical and clinical data may be 
adopted. Figure 5 illustrates such a platform of evidence 
for a drug for which hypothesis testing with preclinical PK 

profiles shows that solubility does not limit exposure. This 
may be supported by a lack of impact of an enabling formu-
lation on drug exposure, as well as by dose proportional-
ity in toxicological studies in preclinical species. Later in 
the clinic, dose proportionality or supra-dose proportional-
ity observed in SAD and MAD studies, and a short time 
to reach Cmax in oral PK profiles, can add to the evidence 
that the exposure of the compound is possibly not limited 
by solubility. Furthermore, a supra-dose-proportional expo-
sure with higher interindividual variability in Cmax compared 
with AUC is probably indicative of gut metabolism, distinct 
from solubility limitation. When a PPI study of a compound 
with omeprazole, a drug known to induce gastroparesis [44], 
shows lower Cmax but the same AUC, it may be deduced that 
the compound behaves like a BCS Class I drug with no solu-
bility- or permeability-limited absorption. Thus, as a drug 
progresses through the value chain, it is possible to build a 
platform of evidence to confirm that the drug does not have 
solubility/dissolution-limited absorption and therefore may 
not show a food effect.

Hypothesis verified? 

Validate model prediction

Yes 

Simpler models to 
be considered

Identify PK mechanisms that are relevant for an intended purpose

Verify and refine model against independent clinical data

Minimum requirements to establish 
confidence are met for the 

application of interest? 

Build model for the identified PK mechanisms with physicochemical data and 
in vitro data, paying particular attention to sensitive parameters

Clinical PK data

Verified? 

Yes No 

Generate hypothesis to deconvolute 
key mechanisms relevant to the 

application of interest 

Uniquely identifiable parameters that 
can be estimated from sufficient 

number of clinical datasets? 

Yes 

No No 

Generate hypothesis to estimate 
non-identifiable parameters 

Yes 

Apply model for prospective 
predictions or simulations

No 

Use the 
estimated 

parameters 
in model

Yes 
Hypothesis verified? 

Clinical PK data

Fig. 4   Workflow to decide between establishing confidence in 
the application of PBPK model or situations in which simpler models 
for an intended purpose may be considered. Start with identifying the 
key PK mechanisms that are relevant for the intended purpose of the 
application. Next, build the model, ensuring that parameters needed 
for these mechanisms, especially the sensitive parameters, are esti-
mated from clinical PK data. Verify the model and refine the param-
eters if necessary. If minimum requirements to establish confidence in 

the model are not met, simpler models should be preferred. Establish-
ing confidence in sensitive PBPK model parameters for the mecha-
nisms that are identified to be relevant to the intended purpose of a 
PBPK model application and verifying the model are necessary prior 
to model application. Hypothesis generation/testing can help resolve 
parameter non-identifiability through deconvolution of underlying 
mechanisms, and allows for robust parameterization. PBPK physi-
ologically based pharmacokinetics, PK pharmacokinetics
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9 � Conclusions

PBPK models are unique in their ability to integrate all 
available compound and system knowledge for a meaning-
ful prediction of absorption, DDI and drug exposure in an 
untested scenario or in an unstudied population. Yet, its 
full potential cannot be unleashed unless confidence in the 
mechanisms that are relevant to an application are well-
established. This paper highlights the importance of lever-
aging all preclinical knowledge to generate hypotheses that 
can be verified when clinical data become available. If a 
hypothesis can be verified, then the learning can be incorpo-
rated into building a mechanistically credible PBPK model, 
which is likely to have better predictive performance. In the 
absence of sufficient clinical datasets to resolve parameter 
non-identifiability, hypothesis testing offers a great opportu-
nity to maximize the confidence in PBPK model predictions. 
Continued efforts in improving in vitro assays, gaining a bet-
ter understanding of the factors driving drug exposure and 
its variability in different individuals and populations, and 
improving confidence in system parameters are all impera-
tive to broaden the scope of PBPK applications. As PBPK 

models continue to evolve, building on the collective expe-
rience of the scientific community, wider acceptance from 
regulatory agencies is anticipated in the future.
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