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Segregation of age-related skin 
microbiome characteristics by 
functionality
Hye-Jin Kim1, Jin Ju Kim1, Nu Ri Myeong1, Taeyune Kim   1, DooA Kim1, Susun An2, 
Hanbyul Kim2, Taehun Park2, Sue Im Jang   3, Jae Ho Yeon4, Ilyoung Kwack4 & Woo Jun Sul1,5*

Although physiological changes are the most evident indicators of skin aging by alteration of the skin’s 
structure and function, we question whether skin aging is also affected by the structure and assembly 
process of the skin microbiome. We analysed the skin microbiomes of 73 healthy Chinese women in 
two age groups (25–35 years old and 56–63 years old) using 16S rRNA gene amplicon sequencing; the 
overall microbiome structure was significantly different between the two age groups. An analysis using 
ecological theory to evaluate the process of microbial community assembly processes revealed that the 
microbiomes of the older group were formed under a greater influence of the niche-based process, with 
the network of microbes being more collapsed than that of the younger group. Inferred metagenomic 
functional pathways associated with replication and repair were relatively more predominant in the 
younger group whereas, among the various metabolism-related pathways, those associated with 
biodegradation were more predominant in the older group. Interestingly, we found two segregated 
sub-typing patterns in the younger group which were also observed in the skin microbiomes of young 
Chinese women living in four other cities in China. The results of our study highlights candidate 
microbes and functional pathways that are important for future research into preventing skin aging and 
which could lead to a comprehensive understanding of age-related skin microbiome characteristics.

Skin aging is a natural and inevitable process caused by structural and functional changes in skin cells due to 
biological age and extrinsic causes (e.g. exposure to ultraviolet radiation and pollution, and poor nutrition)1. 
Although the baseline skin aging rate is determined by an individual’s biological age, it is difficult to clearly sepa-
rate the intrinsic and extrinsic causes of skin aging, including age spots, wrinkles, sagging, loosening and dryness. 
In addition, as the area where the epidermis and dermis come together is flattened, the skin becomes fragile and 
more easily bruised. These typical changes in skin aging are considered a multi-factorial process that can be accel-
erated by various environmental, lifestyle and/or socioeconomic causes.

Since 1950, the population growth rate of individuals aged ≥60 years old has exceeded the growth rate of 
the overall global population. With the increase in average life expectancy, the overall proportion of the elderly 
has been increasing and appropriate care for their skin has become a priority for skin health. Like other human 
systems, the skin undergoes many age-related changes despite its incredible durability2,3. Most people mainly 
view skin aging as a noticeable and unwelcome physiological change, but the symptoms arise from more complex 
changes underlying the aging process. Decreased epidermal thickness; reduced water content, fat emulsion and 
lipid content; and changes in the amino acid composition also indicate skin aging4–7. Despite the loss of func-
tion in the skin owing to these aging-related events, efforts to alleviate skin aging have been mostly focused on 
changing or blocking the visible signs of aging because skin aging has long been considered primarily a change in 
aesthetic appearance rather than indicative of a real functional health problem. However, although skin aging is 
not a health threat, it can have a detrimental effect on human psychology. Therefore, it is important to investigate 
its underlying causes and to find possible remedies and preventative measures.

Recent studies have suggested that aside from the gastrointestinal tract, skin harbours the most microbes 
in the human body8,9. This implies that the composition of the skin microbiota can influence an individual’s 
skin health and condition. The diversity of skin microbial communities depends on various host factors, such 
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as gender, age, health status and geographical location10–12. However, striking changes in the skin microbiome 
have been observed under various host health conditions, such as skin disease or immunodeficiency13. Moreover, 
metagenomic analysis of human skin has shown that its biogeography and individuality shape the temporal 
dynamics as well as the structural and functional composition of the skin microbiome8. Nevertheless, although 
the relationships of the skin microbiome with the host’s gender, place of residence and various skin diseases have 
been well studied, that with age remains insufficiently explored.

We focused on the feedback relationship that the changes in the skin caused by aging induce changes in the 
skin microbiome and the altered skin microbiome further promotes skin aging. In this study, we investigated 
the age-related characteristics of the microbial community and functional pathways of the skin microbiomes of 
healthy Chinese women in two age groups (younger women aged 25–35 years old and older women aged 56–63 
years old) to assess whether the microbiome plays a key role in the mechanisms of skin aging. We recruited sub-
jects in their 20s–30 s and 50s–60 s whose ages were considered reasonable for the study purposes. Adolescents 
with relatively high hormonal changes were not included. The microbial composition and community assembly 
processes (microbial community structure) were characterised and compared between the two age groups using 
16S rRNA gene amplicon sequencing. Our objective was to examine differences in the microbial distribution of 
the skin microbiomes and their functional pathways between younger and older women living in the same area 
to determine the relationship between the skin microbiome and age.

Results
Differences in cheek microbiomes between the two age groups.  The cheek microbiomes of 
73 healthy female residents of Xi’an who were free from cutaneous disorders were analysed by 16S rRNA gene 
amplicon sequencing. From the samples obtained from the older women (age 50–60 years old, hereinafter group 
50s–60 s), 36,533 average merged sequences were produced and compared with those from a previously reported 
group of 48 women (age 25–35 years old, hereinafter group 20s–30 s)12. UCLUST clustered the merged sequences 
into 17,324 distinct operational taxonomic units (OTUs) on the basis of ≥97% sequence identity. According to 
the taxonomical assignments by Ribosomal Database Project II (RDP; http://rdp.cme.msu.edu) classification, the 
four predominant phyla were Proteobacteria (36.4%, mean relative abundance), Bacteroidetes (22.5%), Firmicutes 
(18.5%) and Actinobacteria (18.5%), accounting for >90% of the microbiomes of both groups (Fig. S1). The 10 
most abundant genera, comprising >57% of the microbiomes, were Cutibacterium (formerly Propionibacterium), 
Chryseobacterium, Enhydrobacter, Staphylococcus, Sphingomonas, Bacteroides, Acinetobacter, Corynebacterium, 
Streptococcus and Neisseria (Fig. S2), which is similar to the composition of a typical cheek microbiome.

We compared the skin microbiome structure of the two groups using principal coordinates analysis (PCoA) 
and analysis of similarities (ANOSIM) with both unweighted and weighted UniFrac distances (Fig. 1A). There 
was a clear separation of the two age groups (R2 = 0.61, P = 0.001; ANOSIM) with presence/absence based on the 
unweighted UniFrac distance whereas there was no statistical difference based on the weighted UniFrac distance 
(Fig. 1B). Group 20s–30 s exhibited a higher alpha diversity in both species richness (Chao1) and phylogenetic 
diversity (PD) (Fig. 2A,B). Additionally, the species evenness was lower in group 20s–30 s (Fig. 2C), indicating 
that the skin microbiomes of younger women contained dominant members of bacteria. Additionally, the beta 
diversity, which indicates the heterogeneity within groups, was measured using the unweighted UniFrac distance 
to compare the range of bacterial PD.

Among the skin physical parameters measured (viz. pH, sebum content, moisture content and transepidermal 
water loss (TEWL)), the average values of sebum (8.23 and 1.28 in groups 20s–30 s and 50s–60 s, respectively) and 
TEWL (25.93 and 20.10, respectively) were significantly different (P < 0.001; Wilcoxon rank-sum test) between 
the age groups (Fig. 2D–F). In contrast, there was no significant difference in the pH (6.04 and 6.03 in group 
20s–30 s and 50s–60 s, respectively) and moisture content (47.72 and 42.49, respectively) between the two groups. 
Thus, TEWL and sebum are related to skin aging and skin microbiomes.

Age-dependent microbial signatures of cheek microbiomes.  We applied the LEfSe (linear discrimi-
nant analysis effect size) method to identify the taxonomical biomarker contributing to the age-related variation 
in skin microbiomes with high stringency (linear discriminant analysis (LDA) >2.5). A total of 58 OTUs were 
identified as being distinct in either of the two groups; i.e. 30 OTUs in group 20s–30 s and 28 OTUs in group 
50s–60 s (Fig. 3 and Table S2). The LEfSe analysis revealed that the Bacteroidetes and Firmicutes phyla were sig-
nificantly more abundant in group 20s–30 s. Of the OTUs affiliated to Bacteroidetes, those specific to Bacteroides, 
Alistipes, Prevotella, Porphyromonas and Sphingobacterium were found in this age group only. Likewise, of the 
OTUs belonging to Firmicutes, those of Lactobacillus, Aerococcus, Oscillospira and Ruminococcus were found only 
in this group. In contrast, the Proteobacteria and Actinobacteria phyla were more abundant in group 50–60 s. 
Of the OTUs affiliated to Actinobacteria, those specific to Micrococcus, Corynebacterium, Dermacoccus and 
Actinomyces were found only in the older group, and of the OTUs belonging to Firmicutes, those of Streptococcus, 
Lysinibacillus and Bacillus predominated.

Functional profiles of cheek microbiomes predicted by PICRUSt2.  The functional metagenomic 
contents inferred using PICRUSt2 analysis were examined to better understand how the bacterial functional 
profiles differed between the two age groups. On the basis of the LEfSe analysis based on the PICRUSt2 results, we 
defined 44 differentially abundant KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathways between the 
two groups. We included those involved in microbial gene functions belonging to the metabolism, genetic infor-
mation processing, environmental information processing and cellular processes categories (α = 0.05, LDA score 
>2.5). Among the functional pathways belonging to all of the categories, those predominantly found in group 
20s-30s and group 50s-60s were identified (Fig. 4A). Functional pathways belonging to the metabolism category 
were divided into predominant and non-dominant within each age group. Notably, in the genetic information 
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processing category, homologous recombination, mismatch repair and ribosome pathways were more dominant 
in the 20s-30s group, while the pathways in the environmental information processing and cellular processes cat-
egories were predominant in the 50s-60s group. Interestingly, among the metabolism pathways, more pathways 
related to degradation were observed in the 50s-60s.

Skin microbiome functional typing based on functional characteristics.  We noticed that the 
patterns of the 44 differentially abundant functional KEGG pathways (chosen by LDA score >2.5) were simi-
lar between some women of group 20s–30 s and the women of group 50s–60 s, whereas other women in group 
20s–30 s showed opposite patterns to group 50s–60 s. To clarify these sub-typing patterns in the younger group, 
we conducted PAM (partitioning around the medoid) clustering based on all of the functional profiles from 
the PICRUSt2 analysis and then divided group 20s–30 s into Y-type (younger-type; unique to group 20s–30 s) 
and A-type (aged-type; similar to group 50s–60 s) sub-groups. In particular, it was confirmed that sub-group 
A-type and group 50s–60 s clearly differed from sub-group Y-type in 36 pathways belonging to the metab-
olism category (Fig. 4A). In the amino acid metabolism category, pathways related to alanine, aspartate and 
glutamate metabolism were more predominant in sub-group Y-type whereas those related to lysine degrada-
tion, tryptophan metabolism and valine/leucine/isoleucine degradation predominated in sub-group A-type. In 
the carbohydrate metabolism category, the pathways related to amino sugar and nucleotide sugar metabolism 
and pentose phosphate pathways were predominant in sub-group Y-type whereas those related to butanoate, 
glyoxylate and dicarboxylate, and propanoate metabolism were enriched in sub-group A-type. Using all of the 
PICRUSt2 pathways, we performed a random forest analysis (a supervised classification machine-learning algo-
rithm) and calculated the overall out-of-bag (OOB) error rate (a misclassification error rate) and those between 
the groups and sub-groups (20s-30s and 50s-60s = 13.7%; Y-type and A-type = 2.08%; Y-type, A-type and group 
50s–60 s = 19.18%; Y-type and group 50s–60 s = 4.35%,; A-type and group 50s–60 s = 21.15%; and A-type/50s-60s 
and Y-type = 2.17%) (Fig. 4A–F). Interestingly, Y-type and A-type showed the lowest OOB error rates (2.08%), 
and A-type/50s-60s and Y-type also showed the lowst OOB error rated (2.74%). These results indicate that the 
predicted functional pathway patterns of the A-type sub-group and group 50s–60 s were more similar to each 
other than to the Y-type sub-group.

The bacterial community distribution of the A-type and Y-type sub-groups by functional pathway was also 
investigated. The skin microbiomes belonging to each type were also separated by PCoA (P = 0.001; ANOSIM 
with weighted and unweighted UniFrac distances) (Fig. 4B). The sub-typing by functional pathways for the Xi’an 
group 20s–30 s was confirmed against those of the skin microbiomes from young women aged 25–35 years old 
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Figure 1.  Principal coordinate analysis (PCoA) of skin bacterial communities of group 20s–30 s and group 
50s–60 s. PCoA plots of (A) Weighted and (B) unweighted UniFrac distance based on the 97% operational 
taxonomic unit (OTU) level of the skin bacterial community compositions. There was a significant difference 
in composition by age (P = 0.001; ANOSIM) explained by PC1 and PC2 with a variance of 10.8% and 9.2%, 
respectively.
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Figure 2.  Skin bacterial alpha diversity and skin parameter comparisons between groups 20s–30 s and 50s–60 s. 
(A) Species richness (Chao1) (not significantly) and (B) phylogenetic diversity (PD) were higher in group 
20s–30 s (P < 0.01, Wilcoxon) and (C) simpson was higher in group 50s–60 s (P < 0.001; Wilcoxon). (D) Skin 
moisture (hydration), (E) oil (sebum) and (F) transepidermal water loss (TEWL) in both groups. Oil and TEWL 
were significantly higher in group 20s–30 s (P < 0.001; Wilcoxon). The black line and whiskers in the box plot 
represent the median and range of the lower quartile (25th percentile) and upper quartile (75th percentile) 
(excluding outliers).
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Figure 3.  Taxa identification with the most different abundance between groups 20s–30 s and 50s–60 s. 
The blue colour on the heat map indicates lower abundance and the red colour higher abundance. Bacterial 
operational taxonomic units (OTUs) were significantly enriched in both groups. The relative abundance of 
bacterial OTUs represented as groups were detected by LEfSe analysis (P < 0.05, LDA > 2.5). The relative 
abundance was normalized to a Z-score (the number of standard deviations) to represent relative changes across 
the samples.
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living in four cities in China (Beijing, Guangzhou, Kunming and Hohhot), whereupon the patterns were found 
to be similar (Fig. 5).

Neutral model prediction of the skin microbiomes of the two groups.  To determine the cause 
of the difference in skin microbiomes between the two age groups, we used the Sloan neutral community 
model-based dominance test to confirm how the assembly of the skin microbial community proceeded. The neu-
tral model predicts whether a microbial community assembly process follows a neutral or niche-based process 
by fitting the occurrence frequency and mean relative abundance of the observed bacterial taxa into the neutral 
model predicted from the metacommunity. The outlying taxa with higher frequencies than those predicted by the 
neutral model in Fig. 6A are located above the dashed line whereas those taxa with lower frequencies are located 
below, thereby supporting the hypothesis that the community was assembled through a niche-based process. 
Consequently, group 20s–30 s (R2 = 0.60) was a better fit to the neutral model than group 50s–60 s (R2 = 0.41), 
indicating that the skin microbial community assembly of the older women was more influenced by a niche-based 
process. In addition, group 20s–30 s was under a dispersal influence (migration rate (m) = 0.05), which may be 
associated with the neutral process of microbial community assembly. We also confirmed the microbial com-
munity assembly process of each group through edge-length abundance distribution (EAD) analysis, using PD 
to represent the evolutionary history. Both groups had lower EAD values than those of randomly generated 
null-modelled communities. Moreover, deviations from the prediction (z-scores) were significantly closer to 
zero for group 20s–30 s (Fig. S3). These results indicate that although the skin microbiomes of both groups were 
assembled by a niche-based process, the microbial community of group 50s-60s was relatively more influenced 
by this assembly process.

The skin microbial networks of both groups were constructed via SPIEC-EASI (Sparse InversE Covariance 
estimation for Ecological Association and Statistical Inference) analysis to examine the overall structure. 
Co-occurrence network analysis showed that group 20s–30 s had a more complex and stable skin microbial 
network, with a relatively higher network density (D) than group 50s–60 s (D = 0.018 and 0.013, respectively) 
(Fig. 6B). These network density tendencies of the two groups can be interpreted as supporting the community 
assembly process of the taxa leading to each group of microbial networks. The microbial network of group 20s–
30 s had a higher edge density and are affected by the neutral process. Conversely, the network of group 50s–60 s 
appears to have been led by several major taxa formed by niche-based processes (Fig. 6B, where the node size 
corresponds to the relative abundance of each OTU).
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Figure 4.  Heatmap of significantly different functional profiles inferred by PICRUSt2 and principal coordinate 
analysis (PCoA) according to the type of skin microbiome. (A) Sub-typing of group 20s–30 s based on 
PICRUSt2-acquired functional profiles conducted to generate a list of gene categories inferred to be present in 
the samples. Red colours represent higher abundance and blue colours lower abundance. To represent relative 
changes across the samples, the relative abundance was normalized to a Z-score. The left-side colour bars 
indicate the KEGG pathway categories. All pathways within the functional profiles for Metabolism, Genetic 
Information Processing, Environmental Information Processing and Cellular Processes were significantly 
different between the two groups (P < 0.05; LDA > 2.5). Y-Type is a group 20s–30 s sub-group with a unique 
pattern when clustered with all 44 significantly different PICRUSt2-acquired pathways and the A-type sub-
group had a pattern similar to that of group 50s–60 s. (B) PCoA results obtained by clustering group 20s–30 s 
into two clusters using weighted UniFrac distances.
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Discussion
Skin changes are the most evident indicators of aging, manifesting symptoms like dryness due to water loss and 
increased wrinkle formation. Aside from its association with skin diseases and declined aesthetics in humans14–16, 
it has also been suggested that skin aging is related to changes in the skin microbiome. Shibagaki et al.17 reported 
that the skin microbiome was different between a group aged 21–37 years old and one aged 60–76 years old. They 
also suggested that microbial changes in adult skin were largely influenced by the chronological and physiological 
skin aging associated with oral bacteria. Although their major microbial compositions were similar to those of 
our study, their alpha diversity of the cheek microbiomes was higher for the 60–76 years old group, which is in 
contrast to our results. These differences are explained by the skin microbiome formation process which can be 
significantly influenced by the urban and living environments, particularly the individual’s residential environ-
ment and lifestyle12. In addition, several researchers have attempted to investigate the association of skin aging 
and disease or age-related diseases with microbiomes present at specific sites in the body (e.g. the gut and oral 
cavity)18–23. However, most of these studies examined microbial community differences at the upper taxon levels 
only (e.g. the phylum level) or suggested the results for specific bacteria or fungi in the context of a particular 
human disease. A recently reported skin microbiome study in North American subjects has found associations 
between chronological age, skin aging and specific taxa, and that age is associated with two mutually coexcluding 
Corynebacterium OTUs24. However, skin aging variables such as wrinkles and pigmentation spots were correlated 
with age independently of these taxa. This study also reported that there was no relationship between these taxa 
and skin aging variables, such as wrinkles and hyperpigmented spots. Although no skin aging variables were 
measured in our study, further studies that reveal the correlation between groups 20s-30s and 50s-60s (or the 
A-type and Y-type sub-groups) skin microbiomes and skin aging variables would be very interesting.

In the present study, the skin moisture, sebum content and TEWL were lower in the older women, which was 
as expected. Aging slows down cellular metabolism over time and the skin will inevitably exhibit aging-related 
characteristics such as reduced fibroblast activity and collagen synthesis25–29. In addition, reduced vascularisation, 
sweating and sebum secretion cause the skin to dehydrate and become dry. Our results on skin indicators are 
supported by these reports, suggesting that these physiological changes are correlated with variations in the skin 
microbiome. As skin microbiome research has progressed, skin parameters such as pH, sebum content, moisture 
content and TEWL have attracted attention to explain the characteristics of skin microbiomes in various sub-
jects associated with specific skin diseases or aging24,30. In our results, sebum content and TEWL were found to 
be significantly different between the younger and older groups, but PCoA analysis grouped by individual skin 
parameters (data not shown) showed that the age factor describes the characteristics of the overall skin microbi-
ome better than any particular skin parameter.

The findings of our study clearly show that the skin microbiome structure was significantly different between 
the two groups, with age being an important influencing factor. Most skin microbiome studies have reported 
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Figure 5.  Heatmap of significantly different functional profiles inferred by PICRUSt2 in four cities and 
principal coordinate analysis (PCoA) according to the type of skin microbiome. PICRUSt2 was performed 
to confirm that the skin microbiomes of younger women living in Xi’an and in four other cities in China had 
similar functional profile patterns. On the basis of the 44 significantly different functional pathways between 
group 20s–30 s and 50s–60 s in Xi’an, PICRUSt2 analysis was performed on the (A) Beijing, (B) Guangzhou, 
(C) Kunming and (D) Hohhot skin samples. Red colours represent higher abundance and blue colours lower 
abundance. To represent relative changes across the samples, the relative abundance was normalized to a 
Z-score. The left-side colour bars indicate the KEGG pathway categories. PCoA results obtained by clustering 
two groups of skin microbiomes in each city are shown on the left-side of the heatmap of each city. PCoA was 
performed using weighted UniFrac distance matrices.
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Cutibacterium and Staphylococcus species as the main bacteria with differential abundance depending on skin dis-
eases such as atopic dermatitis or other skin conditions31,32. However, in our study, no significant between-group 
differences in Cutibacterium and Staphylococcus abundance were found. In fact, our findings provide a diverse list 
of microorganisms that show significant differences in abundance between younger and older women.

We identified functional variation on the basis of differences in the microbial communities and through pre-
dicted metagenomic pathway analysis. The processes associated with repair and recombination, which were more 
prevalent in the younger group, should be included in studies related to the various skin characteristics that help 
skin regeneration or prevent aging. Although the functional differences between the younger and older groups 
were not experimentally confirmed in our study, the predicted metagenomic pathways with significant differences 
between the two groups could provide meaningful information on the microbial role in relating skin aging to the 
skin microbiome. The pattern similarity between the A-type sub-group and group 50s–60 s in the metabolism 
category was a very interesting finding, as also confirmed by the analysis of other young Chinese women in other 
major cities in China. On the basis of the clustering together of group 50s–60 s and the A-type sub-group (with 
the lowest OOB error rate) and their distinctiveness from the Y-type group, we suggest that skin age can be deter-
mined by an individual’s skin microbiome rather than chronological age and that younger skin can be achieved 
by a healthy and well-balanced skin microbiome. Although endogenous aging is the result of genetic factors and 
changes in the body that occur as part of the normal aging process, it is necessary to understand how lifestyle and 
environmental factors affect the process as well. From our results, we suggest that understanding the skin micro-
bial community assembly process and the microbial network is more important than controlling the interaction 
of several major bacteria for exploring the key factors for maintaining younger skin. We suggest that the more 
niche-based process of microbial community assembly in older women is due to lifestyle and activity differences 
between the two groups. In the past, people largely maintained cleanliness for keeping the skin healthy, but as skin 
microbiome research progresses, there is increasing interest in finding ways to help the recovery and regeneration 
of the skin from the numerous microorganisms living on it. Studies have shown that gender, age, lifestyle, living 
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Figure 6.  Comparison of the skin microbial community assembly processes and network structures of the two 
groups. (A) The theoretical and observed relationships between the log mean relative abundance of a species 
and the occurrence frequency were compared to assess the skin microbial community assembly process. Each 
dot represents a different operational taxonomic unit (OTU) and the solid green line represents the best fit 
to the neutral model. Dashed lines indicate 95% confidence intervals for the neutral model prediction. OTUs 
represented by black points within the confidence intervals follow the neutral process. OTUs occurring more 
frequently than predicted by the model are shown in orange whereas those that occurred less frequently than 
predicted are shown in blue. The R² value indicates the fit for the neutral model. The skin microbial community 
of group 20s–30 s was a better fit with the neutral model than group 50s–60 s. (B) Networks for the two groups 
were constructed with 168 OTUs with a frequency of >50%. Each node represents OTUs and the node size 
corresponds to the relative abundance of each OTU. The network density (ratio of the number of edges) of 
group 50s–60 s (0.012) was lower than that of group 20s–30 s (0.018), suggesting that the skin microbiota 
network of group 50s–60 s was more collapsed.
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area, genetic predisposition, diet and drug use (medication intake) are intricately related to the skin microbiome. 
However, mutual correlation between the skin microbial community and skin aging has not yet been sufficiently 
studied. Our data herein could be useful for future studies characterising the structure, function and dynamics 
of the skin microbiome in the aging process. Such knowledge could lead to the design of therapeutic agents for 
targeting the microbes and their metabolites that contribute to skin aging as well as providing a microbiological 
interpretation of this process.

Materials and Methods
Study design and sample collection.  For comparison of age-related skin microbiome characteristics, 
we recruited 25 women aged 56–63 years old (Table S1) and 48 women aged 25–35 years old who had been 
involved in a previous study12. All of the selected subjects had been living in Xi’an (Shaanxi, China) for at least 
five years. Medical and drug history for each individual was also investigated and subjects with a history of skin 
disease and those exposed to antibiotics in the last six months were excluded. To avoid the effects of cosmetics, 
all subjects refrained from applying cosmetics such as lotions or creams. In addition, we surveyed the amount 
and frequency of use of facial cosmetics per week by the subjects. The skin condition of each woman, as indi-
cated by the moisture content, sebum level, surface pH and TEWL, was measured. The skin moisture and sebum 
levels were measured using a Corneometer® CM 825 and Sebumeter® SM 815 (Courage + Khazaka Electronic 
GmbH, Cologne, Germany), respectively, and expressed in arbitrary units33. The skin surface pH was measured 
using a skin pH-meter® PH905 (Courage + Khazaka Electronic GmbH) and the TEWL was measured using a 
Vapometer® (Delfin Technologies, Kuopio, Finland). Microbial samples were collected in April 2015 in temper-
ature- and humidity-controlled rooms by swabbing a 2 × 2 cm area of the cheek with sterile Catch-all Sample 
Collections Swabs (QEC091H, Epicentre, Madison, WI, USA). The swab heads with the collected samples were 
transferred to screw-capped tubes and stored at −80 °C until genomic DNA (gDNA) extraction. The study proto-
col was approved by the internal review board of Xijing Hospital (KY20150527-3) and all methods were carried 
out in accordance with relevant guidelines and regulations. Written informed consent was obtained from all 
participants in this study.

Bacterial DNA extraction.  Bacterial gDNA extraction was carried out using the gram-positive bacterial 
cell lysate procedure of the PureLink® Genomic DNA Mini Kit (Life Technologies, Carlsbad, CA, USA). In brief, 
a lysis buffer containing 20 mg/mL lysozyme was added to each swab sample, after which the tube was vortexed 
briefly to obtain the lysate. Proteinase K was added at a volume equivalent to one-tenth of the lysis buffer, followed 
by 445 µL of genomic lysis/binding buffer. Next, two stainless steel beads (5 mm, Qiagen, Hilden, Germany) were 
placed in each tube and then bead-beating was performed for 1 min using a Bead Beater 16 device (Bio Spec 
Products Inc., Bartlesville, OK, USA). The tubes were then cooled on ice for 10 min and incubated at 55 °C for 
30 min. Finally, after a washing process, the gDNA was extracted by elution with 30 µL of PureLink® Genomic 
Elution Buffer and stored at −20 °C until sequencing. The concentration and purity of the gDNA were measured 
using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA).

Polymerase chain reaction (PCR) and 16S rRNA gene sequencping.  For each gDNA sample, the 
v4–v5 region of the 16S rRNA gene was amplified using the 518F-926R primer fused with a barcode (N701-N715/
S502-S511). The forward primer included the Illumina sequencing primer (5′-TCG TCG GCA GCG TCA GAT 
GTG TAT AAG AGA CAG CCA GCA GCY GCG GTA AN-3′) and the reverse primer included the Illumina 
pre-adapter (5′-GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GCC GTC AAT TCN TTT RAG 
T-3′). The amplification reaction comprised initial denaturation at 95 °C for 3 min, followed by 25 cycles of 
amplification (denaturation at 95 °C for 30 s, annealing at 55 °C for 30 s and elongation at 72 °C for 30 s) and a 
final extension at 72 °C for 5 min. The amplified products were then purified using AMPure XP beads (Beckman 
Coulter, High Wycombe, UK). An index PCR was performed under the same conditions as the amplification pro-
cedure except that eight cycles of amplification were used. The obtained DNA was subjected to quality assessment 
using PicoGreen dye and a NanoDrop spectrophotometer. The final purified product was quantified by quanti-
tative PCR (qPCR) according to the qPCR Quantification Protocol Guide of the KAPA Library Quantification 
kits for the Illumina sequencing platform. Additionally, the product was determined using the LabChip GX HT 
DNA High Sensitivity Kit (PerkinElmer, Waltham, MA, USA). The final samples were sequenced on the Illumina 
MiSeq™ platform (Illumina, San Diego, CA, USA) as paired-end (2 × 300 bp) reads.

Bacterial community analysis.  The MiSeq paired-end sequence reads were merged with default param-
eters (P-value of 0.3) using Illumina-Utils (https://github.com/meren/illumina-utils)34. The merged sequences 
were processed using the Quantitative Insights into Microbial Ecology (QIIME) pipeline (v.1.9.1)35. A total of 
1,666,543 merged sequences were clustered into OTUs at a 97% sequence similarity cut-off using UCLUST 
(pick_otus.py)36. The representative OTU sequences were assigned to a taxonomy at a confidence threshold of 
50% using RDP classifier37 with reference to the Greengenes database38. OTUs classified as chloroplasts and mito-
chondria were excluded from further analysis. The PyNAST aligner was used for the alignment of representative 
sequences39 and FastTree was used to construct a phylogenetic tree40 in QIIME. The samples in the OTU table 
were rarefied to 2,360 reads per sample and the alpha diversity was estimated with the Chao1 estimator, PD whole 
tree, observed OTUs and Simpson metrics (multiple_rarefactions.py and alpha_diversity.py). Unweighted and 
weighted UniFrac distance matrices were calculated from the phylogenetic tree using a QIIME script (beta_diver-
stity.py). PCoA was conducted to identify the between-group differences in the microbial community composi-
tion using UniFrac distance matrices and sample metadata (principal_coordinates.py).
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Identification of genomic features using the LEfSe method.  The LEfSe method was used to iden-
tify differences in the statistically significant taxonomical and functional features between the two groups41. The 
LEfSe algorithm was used to compare all biomarkers between the two groups using the factorial Kruskal-Wallis 
rank-sum test. Vectors obtained by comparing the abundance between groups were used as an input to LDA, 
which produced an effect size. To estimate the effect size of each differently abundant feature, LDA scores of 2.5 
and an alpha value of 0.05 for the Kruskal-Wallis test were applied for the OTU analysis and the functional pro-
filing analysis.

Microbial community assemblage.  The assembly of the skin microbial community was assessed by apply-
ing the neutral community assembly model described by Sloan42. This model is used to estimate the relationship 
between the frequency of occurrence of taxa in communities and their abundance in the broad metacommunity 
(the skin microbial communities of all of the samples). Since the dispersal opportunities have increased, the 
model predicts that the abundant taxa are observed more frequently in the metacommunity whereas the rare 
taxa observed less often than predicted in the metacommunity are likely to be lost from individual hosts owing to 
ecological drift. To analyse the neutral community assembly model, all samples were rarefied to 7,000 sequences 
per sample and OTUs with zero abundance in all samples were excluded from the analysis. To equalise the sample 
number in both age groups, 25 of the 48 women in the younger group were randomly selected for the analysis. The 
neutral community assembly model fit is determined by a parameter called the migration rate (m), which esti-
mates the influence of dispersal opportunities. The fitting of the model analysis was conducted using a non-linear 
least-squares fitting program and the R package minpack.lm. The calculation of 95% confidence intervals based 
on the Wilson score interval around the model predictions was processed using the HMisc package in R43.

Microbial association network analysis.  To analyse the skin microbial networks of the two age groups, 
we selected bacterial OTUs with a frequency of ≥50% and excluded those with an abundance of zeros in the sam-
ples of each group; 168 OTUs in each age group were used for the analysis. For each set, we used the SPIEC-EASI 
framework, a statistical method for the inference of microbial ecological networks in OTU datasets44. We ran a 
network analysis using the sparse neighbourhood algorithm45 and model selection using the Stability Approach 
to Regularization Selection (StARS) method46 with a variability minimum lambda (λ) threshold of 0.05%. All 
steps in the network analysis were processed using the R package SpiecEasi:0.1.244 and the igraph package.

Prediction of functional profiling by PICRUSt2.  The functional profiles from 16S rRNA data were pre-
dicted using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt2) 
v.2.1.3-b software47 which predicts gene family abundance. Using the OTU table from the bacterial commu-
nity analysis (97% OTU clustering; UCLUST) and representative sequences, predicted functional profiles were 
obtained using the PICRUSt2 script with default options (picrust2_pipeline.py). Afterwards, we inferred the 
Kyoto KEGG pathway abundances from the predicted KEGG ORTHOLOGY (KO) abundances with the “–no_
regroup” option (pathway_pipeline.py).

PAM clustering analysis.  From the LEfSe analysis of the PICRUSt2 results, 44 functional pathways were 
found to be significantly different between the two groups of women. Moreover, we found a pattern of sub-groups 
in the younger age group where different trends for these 44 functional pathways were exhibited. To verify the 
pattern found in this age group, we performed PAM clustering using the Canberra distance48 of previously stud-
ied skin samples from young women in four cities in China12 with those from our Xi’an young age group. After 
assigning clusters to each sample using PAM clustering, we visualised the abundance of functional pathways 
using a heatmap. PCoA of the bacterial community was conducted with weighted UniFrac distance. Random for-
est analysis was conducted using the group of PAM clustering result. We calculate the out-of-bag error rate (OOB 
rate) from the entire functional pathways using R package randomForest with 999 trees49.

Statistical methods.  Analysis of variance was performed on the pH, moisture, sebum and TEWL data to 
find statistically significant causes of age-related differences, for which only TEWL showed a significant relation-
ship. ANOSIM was used on the weighted and unweighted UniFrac distance matrices in the QIIME script with 
999 permutations (compare_categories.py–method anosim), to estimate the significant difference between the 
bacterial communities of the two groups. To determine the significance of the alpha diversity, we performed a 
non-parametric Mann–Whitney U test and Kruskal-Wallis test with wilcox.test and kruskal.test, respectively, in R.
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