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Machine Learning-Based Analysis 
of Sperm Videos and Participant 
Data for Male Fertility Prediction
Steven A. Hicks1,2*, Jorunn M. Andersen3,5, Oliwia Witczak3,5, Vajira Thambawita   1,2, 
Pål Halvorsen1,2, Hugo L. Hammer1,2, Trine B. Haugen3,6 & Michael A. Riegler1,4,6

Methods for automatic analysis of clinical data are usually targeted towards a specific modality and 
do not make use of all relevant data available. In the field of male human reproduction, clinical and 
biological data are not used to its fullest potential. Manual evaluation of a semen sample using a 
microscope is time-consuming and requires extensive training. Furthermore, the validity of manual 
semen analysis has been questioned due to limited reproducibility, and often high inter-personnel 
variation. The existing computer-aided sperm analyzer systems are not recommended for routine 
clinical use due to methodological challenges caused by the consistency of the semen sample. Thus, 
there is a need for an improved methodology. We use modern and classical machine learning techniques 
together with a dataset consisting of 85 videos of human semen samples and related participant data 
to automatically predict sperm motility. Used techniques include simple linear regression and more 
sophisticated methods using convolutional neural networks. Our results indicate that sperm motility 
prediction based on deep learning using sperm motility videos is rapid to perform and consistent. 
Adding participant data did not improve the algorithms performance. In conclusion, machine learning-
based automatic analysis may become a valuable tool in male infertility investigation and research.

Automatic analysis of clinical data may open new avenues in medicine, though often limited to one modality, 
usually images1. Recently, however, trends have shifted to include data from other modalities, including sensor 
data and participant data2,3. Furthermore, advancements in artificial intelligence, specifically deep learning, have 
shown its potential in becoming an essential tool for health professionals through its promising results on numer-
ous use-cases1,4–6.

Male reproduction is a medical field that is gaining increased attention due to several studies indicating a global 
decline in semen quality during the last decades7,8 as well as geographical differences9. Semen analysis is a cen-
tral part of infertility investigation, but the clinical value in predicting male fertility is uncertain10. Standard semen 
analysis should be performed according to the recommendations made by the WHO, which includes methods of 
assessing semen volume, sperm concentration, total sperm count, sperm motility, sperm morphology, and sperm 
vitality11. Sperm motility is categorized into the percentage of progressive, non-progressive, and immotile spermato-
zoa. Sperm morphology is classified according to the presence of head defects, neck and midpiece defects, principal 
piece (main part of the tail) defects, and excess residual cytoplasm in a stained preparation of cells. Figure 1 shows 
an example of a frame extracted from a video of a wet human semen sample. The WHO has established reference 
ranges for various semen parameters based on the semen quality of fertile men whose partners had a time to preg-
nancy up to and including 12 months12. However, these ranges can not be used to distinguish fertile from infertile 
men. Manual semen analysis requires trained laboratory personnel, and even when performed in agreement with 
the WHOs guidelines, it may be prone to high intra- and inter-laboratory variability.

Attempts to develop automatic systems for semen analysis have been carried out for several decades13. CASA 
was introduced during the 1980s after the digitization of images made it possible to analyze images using a com-
puter. A more rapid and objective assessment of sperm concentration and sperm motility was expected by using 
CASA, but it has been challenging to obtain accurate and reproducible results13. The results may be unreliable 
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due to particles and other cells than spermatozoa in the sample as well as the occurrence of sperm collisions and 
crossing sperm trajectories. Better results are obtained when analyzing spermatozoa separated from seminal 
plasma and re-suspended in a medium. CASA was also developed for assessment of sperm morphology and DNA 
fragmentation in the sperm. It is claimed that new models can also assess vitality and that some functional tests 
of a semen sample are possible13. However, the assessments require special staining or preparation procedures. 
Despite its long history as a digitized sperm analyzer, CASA is not recommended for clinical use11,13. The tech-
nology, however, has been improved, and it has been suggested that using CASA for sperm counting and motility 
assessment can be a useful tool with less analytical variance than the manual methods14,15.

Concerning automatic semen analysis in general, Urbano et al.16 present a fully automated multi-sperm tracking 
algorithm, which can track hundreds of individual spermatozoa simultaneously. Additionally, it is also able to meas-
ure motility parameters over time with minimal operator intervention. The method works by applying a modified 
version of the jpdaf to microscopic semen recordings, allowing them to track individual spermatozoa at proximities 
and during head collisions (a common issue with existing CASA instruments). The main contribution made by 
Urbano et al. is the modified jpdaf algorithm for tracking individual spermatozoa, but by only evaluating the pro-
posed approach on two samples, the generalizability of the method to a larger population is difficult to determine.

Dewan et al.17 present a similar method, tracking spermatozoa by generating trajectories of the cells across 
microscopic video sequences. Similar to CASA, object proposals are generated through a greyscale edge detection 
algorithm, which is then tracked to generate object trajectories. These trajectories are then classified into “sperm” 
or “non-sperm” entities using a CNN, of which the “sperm” entities are used to estimate three quality measure-
ments for motility (progressive, non-progressive, and immotile), and the concentration of spermatozoa per unit 
volume of semen. The results seem promising but since the method was evaluated on a closed dataset, it is not 
possible to directly compare this approach with other methods.

Although not the focus in our work, another essential attribute for semen quality is measuring the number of 
abnormal spermatozoa present in a semen sample. Ghasemian et al.18 tried to detect abnormal spermatozoa by 
individually classifying human spermatozoa into normal or abnormal groups. Shaker et al.19 did a similar study 
to predict sperm heads as normal or abnormal by splitting images of sperm heads into square patches and using 
them as training data for a dictionary-based classifier. A common theme is that all automatic approaches, for both 
motility and morphology assessment, focus on one modality and do not incorporate other data into the analysis. 
Additionally, the evaluation is performed on a rather limited or closed data which hinders reproducibility and 
comparability of the results. In the presented work, we aim to contribute to the field of automated semen analysis 
in the following three ways: (i) to develop a rapid and consistent method for analyzing sperm motility automati-
cally, (ii) to explore the potential of multimodal analysis methods combining video data with participant data to 
improve the results of the automatic analysis, and (iii) to compare different methods for predicting sperm motility 
using algorithms based on deep learning and classical machine learning.

To the best our knowledge, no study has been performed on how deep learning and multimodal data analysis 
may be used to directly analyze semen recordings in combination with participant/patient data for the automated 
prediction of motility parameters. Using data from 85 participants and three-fold cross-validation, we observe 
that the initial results are promising. Thus, machine learning-based automatic analysis may become a valuable 
tool for the future of male infertility investigation.

Figure 1.  Frame from a microscopic video of a human semen sample showing several spermatozoa (Olympus 
CX31 phase contrast microscope with heated stage, UEye UI-2210C camera, 400x magnification).
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Methods
Experimental design.  Our main approach is the use of CNNs to analyze sequences of frames from video 
recordings of human semen under a microscope to predict sperm motility in terms of progressive, non-progres-
sive, and immotile spermatozoa. The video recordings are then combined with participant data to see how it may 
improve our methods using the multiple modalities available in our dataset. As there are no related works for 
which to compare directly, we first trained a series of machine learning algorithms to set a baseline for how well 
we can expect our deep learning-based algorithms to perform.

The presentation of our methods is divided into three parts. Firstly, we provide a description of the dataset 
used for both training and evaluation of the presented methods and the statistical analysis. Secondly, we detail 
how we trained and evaluated the methods based on classical machine learning algorithms. Lastly, we describe 
our primary approach of using deep learning-based algorithms to predict sperm motility in terms of progressive, 
non-progressive, and immotile spermatozoa. All experiments were performed following the relevant guidelines 
and regulations of the Regional Committee for Medical and Health Research Ethics - South East Norway, and the 
General Data Protection Regulation(GDPR).

Dataset.  For all experiments, we used videos and several variables from the VISEM-dataset20 [https://data-
sets.simula.no/visem/], a fully open and multimodal dataset with anonymized data and videos of semen samples 
from 85 different participants. In addition to the videos, the selected variables for the analysis included manual 
assessment of sperm concentration and sperm motility for each semen sample and participant data. Participant 
data consisted of age, BMI, and days of sexual abstinence. In the experiments, the videos and participant data were 
used as independent variables whereas the sperm motility values (percentage of progressive, non-progressive 
sperm motility, and immotile spermatozoa) were used as the dependent variables. We also performed an addi-
tional experiment to test the effect of sperm concentration if added as an independent variable to the analysis.

Details on the collection and handling of semen samples have previously been described by Andersen et al.21.  
Briefly, the semen samples were collected at a room near the laboratory or at home and handled according to 
the WHO guidelines11. Samples collected at home, were transported close to the body to avoid cooling and ana-
lyzed within two hours. Assessment of sperm concentration and sperm motility was performed as described 
in the WHO 2010 manual11. Sperm motility was evaluated using videos of the semen sample, and all samples 
were assessed by one experienced laboratory technician. 10 μl of semen were placed on a glass slide, covered 
with a 22 × 22 mm cover slip and placed under the microscope. Videos were recorded using an Olympus CX31 
microscope with phase contrast optics, heated stage (37°C), and a microscope mounted camera (UEye UI-2210C, 
IDS Imaging Development Systems, Germany). Videos for sperm motility assessment were captured using 400× 
magnification and stored as AVI files. The recordings vary in length between two to seven minutes with a frame 
rate of 50 frames-per-second.

Statistical analysis.  For all experiments, we report the MAE calculated over three-fold cross-validation to get 
a more robust and generalizable evaluation. Furthermore, statistical significance was tested by a corrected paired 
t-test, where a p-value below or equal to 0.05 was considered significant. Usually, t-test is based on the assumption 
that samples are independent. However, samples in the folds of cross-validation are not independent. Therefore, a 
fudge factor is needed to compensate for the not independent samples22. The significance test showed that all results 
with an average MAE below 11 are significant improvements compared to the ZeroR baseline. For ZeroR, which is 
also commonly known as the null model, the cross-validation coefficient is defined with a Q2 value of 0. This means 
that the ZeroR predictions are equal to the average calculated over the entire training dataset.

Baseline machine learning approach.  For the machine learning baseline, we relied on a combination 
of well-known algorithms and handcrafted features. To extract features from the video frames, we used the 
open-source library Lucene Image Retrieval (LIRE)23. LIRE is a Java library that offers a simple way to retrieve 
images and photos based on color and texture characteristics. We tested all available features (more than 30 dif-
ferent ones) with all machine learning algorithms (more than 40 different ones), but in this work, we only report 
the features that worked best with our machine learning algorithms, which were the Tamura features. Tamura 
features (coarseness, contrast, directionality, line-likeness, regularity, and roughness) are based on human visual 
perception, which makes them very important in image representation. Using the Tamura image features, partic-
ipant data and a combination of both, we trained different algorithms to perform prediction on the motility vari-
ables. We performed a total of three experiments per tested algorithm; one using only Tamura features, one using 
only participant data, and one combining the Tamura features with the participant data through early fusion.

Since the Tamura features are sparse compared to deep features, we used a slightly different approach for 
selecting frames from the videos. Each video was represented by a feature vector containing the Tamura features 
of two frames per second (the first and the middle frame) for the first 60 seconds. In total, we had 120 frames per 
video and a visual feature space consisting of 2160 feature points. These features were then used to train multiple 
machine learning algorithms using the WEKA machine learning library24. We conducted experiments with all 
available algorithms, but report only the six best performing ones. The reported algorithms are Simple Linear 
Regression, Random Forests, Gaussian Process, Sequential Minimal Optimization Regression (SMOreg), Elastic 
Net, and Random Trees. One limitation of these algorithms is that they are only able to predict one value at a time, 
meaning we had to run them once for each of the three sperm motility variables.

Deep learning approach.  For our primary approach, we use methods based on CNNs to perform regression 
on the three motility variables. For each deep learning-based experiment, we extracted 250 frame samples (single 
frames or frame sequences) from each of the 85 videos of our dataset. The reason for only extracting 250 frames 
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per video was due to some videos being too short for collecting more than 250 sequences of 30 frames, which is 
about 7,500 frames equalling about 2 minutes of video at 50 frames-per-second. This results in a total of 21,250 
frames used for training and validation. As we are evaluating each method using three-fold cross-validation, the 
split between the training and validation datasets is 14,166 and 7,083 frame samples, respectively.

Our deep learning approaches can be split into three groups. Firstly, we analyze raw frames as they are 
extracted from the videos. The analysis is done by looking at the raw pixel values from a single or a sequence of 
frames and using these to make a prediction. Secondly, we use optical flow to generate temporal representations 
of frame sequences to condense the information of the temporal dimension into a single image. The advantages 
of this representation is that it can model the temporal dependencies in the videos, and it is able to alleviate the 
hardware costs of analyzing raw frame sequences using CNNs. Lastly, we combine the two previous methods to 
exploit the advantages of both, by using the visual features of raw video frames together with the temporal infor-
mation of the optical flow representations.

The baseline for the deep learning approaches are the machine learning algorithms as described above and 
ZeroR. For each experiment, we predict the percentage of progressive spermatozoa, non-progressive sperma-
tozoa, and immotile spermatozoa for a single semen sample. In contrast to the classical machine learning algo-
rithms, neural networks can predict all three values at once. Figure 2 illustrates a high level overview of the 
complete deep learning analysis pipeline.

All deep learning-based models were trained using mse to calculate loss and Nadam25 to optimize the weights. 
The Nadam optimizer had a learning rate of 0.002, β1 value of 0.900, and β2 value of 0.999. We trained each model 
for as long as it improved with a patience value of 20 epochs, meaning if the mse did not improve on the valida-
tion set for 20 epochs, we stopped the training to avoid overfitting. The model used for evaluation was the one 
which performed best on the validation set, not the model from the last epoch. Furthermore, for each method we 
trained two models. One model uses only frame data, and the other uses a combination of the frame data and the 
related participant data (BMI, age, and days of sexual abstinence). To include the participant data in the analysis, 
we first pass a frame sample through the CNN. Then, we take the output of the last convolutional layer and glob-
ally average pool it to produce a one-dimensional feature vector which is concatenated with the participant data. 
This combined vector is then passed through two fully-connected layers consisting of 2,048 neurons each before 
being making the final prediction (shown in Fig. 2). In the following few sections, we will describe six different 
methods used to predict sperm motility; a method using single frames for prediction, a method which stacks 
frames channel-wise, a method using vertical frame matrices, a method based on sparse optical flow, a method 
based on dense optical flow, and a method based on two-stream networks.

Single frame prediction.  For the single frame-based method, we extracted 250 single frames from each video 
and used this to train various CNNs models based on popular neural network architectures (such as DenseNet26, 
ResNet27, and Inception28). We experimented using transfer learning from the ImageNet29 weights included with the 
Keras30 implementations of the different CNN architectures and found that, in general, using these weights as a base 
for further training worked better than training from scratch. Note that we did not fine-tune the models, meaning 
we did not freeze any layers during training. We only report the model which performed best, which in our case 
was a ResNet-50 model implemented in Keras with a TensorFlow31 back-end. The frames were resized to 224 × 224 
before being passed through the model, which is the recommended size for the ResNet-based architectures27.

Figure 2.  The deep learning pipeline used for all multimodal neural network-based experiments. Starting with 
our dataset, we extract frame data into four different representations. These four different “images” are sent to 
the image preparation were we either pass a single image or stacked images to a convolutional neural network 
(CNN). The CNN is trained to learn a model that captures the spatial or spatial and temporal combined features 
of sperm motility. This is based on the image representation and preparation (stacking or single frame). The 
output of the CNN model is then combined with the participant data. This combined vector is passed through 
two fully-connected layers before performing multivariate prediction on the three motility variables.
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The single frame-based approach is simple and comes with some obvious limitations. Most notably, we lose 
the temporal information present within the video. Losing the temporal information may be acceptable when 
measuring attributes that rely on visual clues, such as morphology, but for motility the change over time is an 
important feature.

Greyscale frame stacking.  The Grayscale Frame Stacking method is an extension of the single-frame prediction 
approach. Here, we extract 250 batches of 30 frames and greyscaled them before stacking them channel-wise 
(shown in Fig. 3). This results in 21,250 frame samples with a shape of 224 × 224 × 30, which contains the infor-
mation of 30 consecutive frames. The reasons for greyscaling the frames before stacking them is two-fold. Firstly, 
seeing as the color of the videos are a feature of the microscope and lab preparation, and not the spermatozoon 
itself, we assume that this feature may confuse the model in unintended ways. Secondly, greyscaling the frames 
reduces the size of each frame by three, making stacking 30 frames feasible on less powerful hardware. The moti-
vation behind this approach was to keep the temporal information present in a given frame sequence, yet still, 
keep the size of the input relatively small.

These extracted frame sequences were used to train a ResNet-50 model implemented in Keras30. Note that 
because we changed the size of the channel dimension, we could not perform transfer learning as we did in the 
previous method. Apart from this, the model was trained in the same manner as described in the beginning of the 
Deep Learning Approach section.

Vertical frame matrix.  To create the vertical frame matrix, 250 batches of 30 frames were extracted and grey-
scaled. Each frame was resized to 64 × 64 before being flattened into a one-dimensional vector. The reason for 
resizing each frame was to keep the length of the flattened images relatively short. With a size of 64 × 64, the final 
vector had a length of 4096. Each vector was then stacked on top of each other which resulted in a matrix with 
a shape of 30 × 4096 × 1. Examples images using this transformation can be seen in row four of Fig. 4. Similar 
to the Greyscale Frame Stacking approach described in the previous section, we condense the information of 
multiple frames into a single image, which we can then pass through a standard two-dimensional CNN. Due to 
size constraints, the model used for this method was ResNet-18. Otherwise, it was trained in the same way as the 
previous two methods.

Sparse optical flow.  For the Sparse Optical Flow approach, we use Lucas-Kanade’s32 algorithm of estimating 
optical flow. What makes sparse optical flow “sparse,” is that we only measure the difference between a few tracked 
features from one frame to another. In our case, we use Harris and Stephens corner detection algorithm33 to detect 
individual sperm heads (implemented in OpenCV34 as “goodFeaturesToTrack”). Then, we track the progression 
of each spermatozoon using Lucas-Kanade’s algorithm over a sequence of 30 frames. Similar to the previous 
methods, sequences were sampled at evenly spaced intervals to maximize differences between optical flow rep-
resentations. We used a CNN model based on the ResNet-50 architecture implemented in Keras and trained using 
the same configuration described previously. Examples for the sparse optical flow image representation can be 
seen in row two of Fig. 4.

Dense optical flow.  The Dense Optical Flow approach generates optical flow representations using Gunner 
Farneback’s algorithm35,36 for two-frame motion estimation. Dense optical flow, in contrast to sparse optical flow, 
processes all pixels of a given image instead of a few tracked features. For this method, we tried two configura-
tions. The first configuration measures the difference between two consecutive frames. The second configuration 
adds a stride of 10 frames between selected frame samples. This is done to increase the measured difference 
between frame comparisons. We collected 250 dense optical flow images and trained one model for each of the 
two configurations to evaluate the result of this method. For both stride configurations, we train each model using 
the same architecture (ResNet-50) and training configuration as for the other deep learning methods. Examples 
for the created image representations using the dense optical flow can be seen in row three of Fig. 4.

Figure 3.  An illustration of how frames are stacked channel-wise after being greyscaled. From a video, a 
sequence of n frames are extracted and greyscaled. These frames are then stacked channel-wise, meaning 
each frame occupied one channel-dimension of the final image. The final stacked “image” is then of shape 
224 × 224 × 30.
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Two-stream network.  For the last approach, we combine the two previous methods (visual features of 
raw frames and the temporal information of optical flow), which is inspired by the work done by Simonyan 
and Zisserman’s36, where they used a dual-network to perform human action recognition and classification. The 
model architecture follows a similar structure as described in their article, with the difference being how we input 
the optical flow representations into the model (we do not stack multiple optical flow representations for different 
sequences).

Based on this modification, we propose three different methods. Firstly, we use the dual network to analyze 
one raw video frame in parallel with a Lukas-Kanade sparse optical flow representation of the previous 30 frames. 
Secondly, we process one raw frame together with a Farneback’s dense optical representation. Lastly, we again 
use one raw frame, but now we combine both the Lukas-Kanade and Farneback’s optical flow method by stack-
ing them channel-wise and pass these together through the network. Frames were extracted in the same way as 
performed for the Single Frame Prediction approach, and the optical flow representations were reused from the 
Optical Flow-based experiments.

Ethical approval and informed consent.  In this study, we used fully anonymized data originally collected 
based on written informed consent and approval by the Regional Committee for Medical and Health Research Ethics 
- South East Norway. Furthermore, we confirm that all experiments were performed in accordance with the relevant 
guidelines and regulations of the Regional Committee for Medical and Health Research Ethics - South East Norway, 
and the GDPR.

Figure 4.  Examples of images from videos of semen samples with different concentrations (columns) and the 
four image representations used to train the neural network-based algorithms (rows). Sperm concentration; (A) 
4 per x106/mL, (B) 33 per x106/mL, (C) 105 per x106/mL, (D) 192 per x106/mL, and (E) 350 per x106/mL. Image 
representation; (1) original video, (2) sparse optical flow, (3) dense optical flow, and (4) vertical frame matrix.

https://doi.org/10.1038/s41598-019-53217-y


7Scientific Reports |         (2019) 9:16770  | https://doi.org/10.1038/s41598-019-53217-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

Results and Discussion
A complete overview of the results for each method can be seen in Tables 1 and 2. A chart comparing the results 
is presented in Fig. 5. Table 1 presents the results for the classical machine learning algorithms trained on partici-
pant data, Tamura image features, and a combination of the two. For these results, the Gaussian Process, SMOreg, 
and Random Forests have a MAE below 11, which according to the paired t-test analysis is significant. One 
interesting finding is that for all cases where participant data is added, the algorithm performs worse. Although a 
preliminary result, for BMI this is not in line with the finding in our previous work Andersen et al.21, where BMI 
was found to be negatively correlated with sperm motility using multiple linear regression. However, the methods 
are very different and therefore not directly comparable. As future work, we plan to perform an extensive analysis 
of all methodologies on a new dataset. Another interesting insight gained from this experiment is that the Tamura 
features seem to be well suited for sperm analysis, which will be interesting to investigate more closely.

Since sperm concentration is an important confounding variable when assessing sperm motility by CASA, 
we performed additional experiments using the two best-performing algorithms to investigate whether or not it 
had any influence. For the Random Forest, we achieved a MAE of 11.091 when including sperm concentration, 
compared to 10.996 when we did not. For SMOReg, the MAE was 10.902 with and 10.800 without. This minor 
difference in error indicates that our method is not gaining or losing any predictive power when including sperm 
concentration in the analysis, which can be seen as an advantage compared with CASA systems.

To assess the performance of the deep learning-based methods, we used the best performing classical machine 
learning approach (SMOreg with a MAE of 10.800) and ZeroR as a baseline. In Table 2, the results for single and 
multimodal deep learning approaches are shown. For most of the experiments, the deep learning models outper-
form the best machine learning algorithm (SMOreg) by a margin of one or two points. The two methods which 
are not significant better than ZeroR are the two-stream neural networks, which combined the two optical flow 
representations in a custom network.

We hypothesize that this is related to the fact that these networks are not able to learn the association between 
the temporal information of the optical flow and the visual data of the raw frame. Similar to the machine learn-
ing algorithms, all methods which combined the participant data with the videos performed worse than those 
without, leading to the same conclusion as previously discussed. Thus, in our study, adding patient data does not 
improve the results compared to using only video data, regardless of the algorithms used. If these findings also 
apply to other patient data needs to be further investigated.

The best performing approaches were a near tie between the method Channel-wise Greyscale and Dense 
Optical Flow using a stride of 1 or 10 (see Fig. 5). The Channel-wise Greyscale approach achieved a MAE of 8.786, 
which is two points lower than that of the best performing classical machine learning algorithm (see Table 2). The 
two Dense Optical Flow methods have the same performance as the Channel-wise Greyscale approach but using 
one-tenth of the image size, which makes them faster and less computational resource demanding.

Classical Machine Learning Results

Method Progressive Non-progressive Immotile
Average Mean 
Absolute Error

Baseline

ZeroR 17.260 7.860 13.660 12.927

Participant Data Only

Elastic Net 15.198 9.525 13.441 12.721

Gaussian Process 15.556 9.762 13.474 12.931

Simple Linear Regression 15.416 9.281 13.601 12.766

SMOreg 15.355 9.441 12.959 12.585

Random Forests 13.312 8.886 11.905 11.368

Random Tree 17.801 10.952 14.984 14.579

Tamura Image Features Only

Elastic Net 14.400 7.750 12.190 11.447

Gaussian Process 13.230 7.260 11.920 10.803

Simple Linear Regression 13.520 8.170 12.690 11.460

SMOreg 13.220 7.260 11.920 10.800

Random Forests 13.530 7.400 12.060 10.997

Random Tree 18.700 9.960 16.520 15.060

Tamura Image Features and Participant Data

Elastic Net 14.130 9.890 11.750 11.923

Gaussian Process 13.700 10.120 11.460 11.760

Simple Linear Regression 13.940 10.240 11.410 11.863

SMOreg 13.710 10.140 11.460 11.770

Random Forests 13.510 10.000 11.340 11.617

Random Tree 18.660 13.270 16.960 16.297

Table 1.  Prediction performance of the machine learning-based methods in terms of mean absolute error for 
each of the motility values and the overall average. The best performing algorithm in each category is in bold.
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It is important to point out that the 250 frames used in the analysis were extracted evenly distributed across 
the entire video length. This means that if there were a noticeable reduction in sperm motility after a certain 
amount of time, it would be taken into account by the algorithm. The results also support this assumption as the 
deep learning methods outperformed all classical machine learning methods. This is one of the advantages of the 
deep learning-based methods presented here.

Deep Learning Results

Method Progressive
Non-
progressive Immotile

Average Mean 
Absolute Error

Raw Frame Data Approach

Single Frames (ResNet50) 13.162 8.024 10.967 10.718

Single Frames (ResNet50) + PD 13.659 8.196 12.293 11.383

Channel-wise Greyscale 10.498 7.037 8.822 8.786

Channel-wise Greyscale + PD 11.599 7.849 10.132 9.860

Vertical Frame Matrix 11.149 8.218 9.418 9.595

Vertical Frame Matrix + PD 11.182 8.199 9.274 9.552

Optical Flow Approach

Sparse Optical Flow 11.573 7.263 10.155 9.664

Sparse Optical Flow + PD 12.214 7.760 10.802 10.259

Dense Optical Flow (stride = 1) 10.191 7.114 8.914 8.740

Dense Optical Flow (stride = 1) + PD 10.795 7.856 8.745 9.132

Dense Optical Flow (stride = 10) 10.319 7.546 8.782 8.882

Dense Optical Flow (stride = 10) + PD 11.386 7.825 9.734 9.648

Two Stream Network Approach

Two Stream Sparse 15.888 8.187 13.326 12.467

Two Stream Sparse + PD 16.435 8.197 13.172 12.601

Two Stream Dense (stride = 1) 14.583 7.393 11.996 11.324

Two Stream Dense (stride = 1) + PD 18.166 8.570 15.983 13.940

Two Stream SP + DE (stride = 1) 11.848 7.070 10.823 9.917

Two Stream SP + DE (stride = 1) + PD 17.304 8.066 13.783 13.051

Table 2.  Prediction performance of the deep learning-based methods in terms of mean absolute error for each 
of the motility values and overall mean. Note that for each method, we trained two models, one with participant 
data and one without. Methods which used participant data under training are marked with (+PD). For the 
methods which use dense optical flow, stride represents the number of frames skipped when comparing the 
difference of two frames.

Figure 5.  The different machine learning-based algorithms (classical and deep learning) used to predict semen 
quality in terms of progressive, non-progressive, and immotile spermatozoon. The stippled line represents the 
threshold for the results to be considered significant compared to the ZeroR baseline. The y-axis does not start 
at 0 to better highlight the differences. For the methods which used dense optical flow, stride values, how many 
frames are skipped when comparing two frames, are presented with a 1 or 10 indicating the number of skipped 
frames. Dense Optical Flow (1) and Channel-wise Greyscale are the best-performing ones but, several of our 
proposed methods are below the significance threshold.
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In terms of time needed for the analysis, all presented methods perform the prediction within five minutes, 
including data preparation which takes most of the time. This is considerably faster than manual sperm motility 
assessment would be. The classical machine learning methods are faster to train, but in terms of application of the 
model, the speed is comparable with the deep learning methods.

Conclusion and Future Work
Overall, our results indicate that deep learning algorithms have the potential to predict sperm motility con-
sistently and time efficiently. Multimodal analysis methods combining video data with participant data did not 
improve the prediction of sperm motility compared to using only the video data. However, it is possible that 
multimodal analysis using other participant data could improve the prediction. Our results indicate that the deep 
learning models can incorporate time into their analysis, and therefore are able to predict motility values better 
than the classical machine learning algorithms. In the future, deep learning-based methods could be used as an 
efficient support tool for human semen analysis. The presented methods can easily be applied to other relevant 
assessments such as automatic evaluation of sperm morphology.

Efficient analysis of long videos is a challenge, and future work should focus on how to combine the different 
modalities of time, imaging, and patient data. The dataset used in this study is also shared openly to ensure com-
parability and reproducibility of the results. Furthermore, we hope that the methods described in this work will 
inspire to further development of automatic analysis within the field of male reproduction.

Data availability
The dataset used for all experiments is publicly available at https://datasets.simula.no/visem/ for non-commercial 
use. The data is fully anonymized (no keys for re-identification are stored).
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