Skip to main content
. 2019 Nov 14;9:16770. doi: 10.1038/s41598-019-53217-y

Table 1.

Prediction performance of the machine learning-based methods in terms of mean absolute error for each of the motility values and the overall average.

Classical Machine Learning Results
Method Progressive Non-progressive Immotile Average Mean Absolute Error
Baseline
ZeroR 17.260 7.860 13.660 12.927
Participant Data Only
Elastic Net 15.198 9.525 13.441 12.721
Gaussian Process 15.556 9.762 13.474 12.931
Simple Linear Regression 15.416 9.281 13.601 12.766
SMOreg 15.355 9.441 12.959 12.585
Random Forests 13.312 8.886 11.905 11.368
Random Tree 17.801 10.952 14.984 14.579
Tamura Image Features Only
Elastic Net 14.400 7.750 12.190 11.447
Gaussian Process 13.230 7.260 11.920 10.803
Simple Linear Regression 13.520 8.170 12.690 11.460
SMOreg 13.220 7.260 11.920 10.800
Random Forests 13.530 7.400 12.060 10.997
Random Tree 18.700 9.960 16.520 15.060
Tamura Image Features and Participant Data
Elastic Net 14.130 9.890 11.750 11.923
Gaussian Process 13.700 10.120 11.460 11.760
Simple Linear Regression 13.940 10.240 11.410 11.863
SMOreg 13.710 10.140 11.460 11.770
Random Forests 13.510 10.000 11.340 11.617
Random Tree 18.660 13.270 16.960 16.297

The best performing algorithm in each category is in bold.