Skip to main content
. 2019 Nov 14;9:16770. doi: 10.1038/s41598-019-53217-y

Table 2.

Prediction performance of the deep learning-based methods in terms of mean absolute error for each of the motility values and overall mean.

Deep Learning Results
Method Progressive Non-progressive Immotile Average Mean Absolute Error
Raw Frame Data Approach
Single Frames (ResNet50) 13.162 8.024 10.967 10.718
Single Frames (ResNet50) + PD 13.659 8.196 12.293 11.383
Channel-wise Greyscale 10.498 7.037 8.822 8.786
Channel-wise Greyscale + PD 11.599 7.849 10.132 9.860
Vertical Frame Matrix 11.149 8.218 9.418 9.595
Vertical Frame Matrix + PD 11.182 8.199 9.274 9.552
Optical Flow Approach
Sparse Optical Flow 11.573 7.263 10.155 9.664
Sparse Optical Flow + PD 12.214 7.760 10.802 10.259
Dense Optical Flow (stride = 1) 10.191 7.114 8.914 8.740
Dense Optical Flow (stride = 1) + PD 10.795 7.856 8.745 9.132
Dense Optical Flow (stride = 10) 10.319 7.546 8.782 8.882
Dense Optical Flow (stride = 10) + PD 11.386 7.825 9.734 9.648
Two Stream Network Approach
Two Stream Sparse 15.888 8.187 13.326 12.467
Two Stream Sparse + PD 16.435 8.197 13.172 12.601
Two Stream Dense (stride = 1) 14.583 7.393 11.996 11.324
Two Stream Dense (stride = 1) + PD 18.166 8.570 15.983 13.940
Two Stream SP + DE (stride = 1) 11.848 7.070 10.823 9.917
Two Stream SP + DE (stride = 1) + PD 17.304 8.066 13.783 13.051

Note that for each method, we trained two models, one with participant data and one without. Methods which used participant data under training are marked with (+PD). For the methods which use dense optical flow, stride represents the number of frames skipped when comparing the difference of two frames.