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Abstract
This study was undertaken to investigate the effect of natural bioactive compound thearubigin on neonatal acute lung injury 
(ALI) using LPS-induced ALI as a model. We also attempted to understand the possible underlying mechanism. The effect 
of thearubigin on lung wet-to-dry weight ratio, the activity of LDH, lung histopathology, BALF protein levels, the activity 
of MPO, production and extravasation of cytokines and oxidative stress were studied. The results showed that thearubigin 
caused a significant reduction in lung inflammation as evident from lung wet-to-dry weight ratio, BALF protein levels and 
MPO activity and histopathological analysis. It was further observed that the attenuation in inflammation happened due 
to a significant reduction in cytokine levels in alveolar cavities. Thearubigin also showed strong antioxidant properties as 
evidenced by reduced levels of oxygen species such as  H2O2, MDA and OH ion. Additionally, the antioxidant response 
element nuclear factor erythroid-2-related factor 2 (Nrf2) pathway was found to be activated in thearubigin-treated group. 
These results provided a possible mechanism of antioxidant activity of thearubigin in neonatal ALI. Overall, this study 
showed that thearubigin can be a natural alternative for the treatment of neonatal ALI. However, further studies are required 
to understand its mechanism antioxidant and anti-inflammatory action.

Keywords Thearubigin · Neonatal rats · ALI · Antioxidant · Anti-inflammatory

Introduction

Acute lung injury (ALI) is a life-threatening situation charac-
terized by pulmonary and capillary edema and acute respira-
tory failure (Luh and Chiang 2007). Pathological symptoms 
of ALI include inflammation in alveolar epithelium caused 
by increased permeability and inflammation of alveolar epi-
thelium (Cheifetz 2016). One of the most common causes of 
mortality in neonates is ALI (Chakraborty et al. 2010). ALI 
in newborns is primarily seen in preterm infants (less than 
32 weeks) due to the suboptimal production of surfactants 

in the immature lungs of neonates. Respiratory failure due to 
ALI in neonates needs to be supported by mechanical ven-
tilation or elevated oxygen levels (Chakraborty et al. 2010).

The lipopolysaccharide (LPS), present in the bacterial cell 
wall, is an important virulence factor and is a primary factor 
known to cause pulmonary inflammation (Karmpaliotis et al. 
2002). LPS has been reported to cause ALI through several 
inflammatory mechanisms (Suliman et al. 2003). Thus, LPS 
has been widely used as an inducer of ALI as a model for the 
study of lung injury (Ding et al. 2017).

LPS causes the production of proinflammatory cytokines 
via a pathway dependent on tumor necrosis factor (TNF) 
(Liu and Lin 2007). The cytokines thus produced include 
IL-1β, macrophage inflammatory protein 2 (MIP-2), includ-
ing interleukin (IL)-6. This leads to the amplification of the 
inflammatory signal (Liu and Lin 2007). Additionally, LPS 
exposure also causes the generation of cytokines including 
IL-6 and TNF-α. Elevated levels of cytokines activate a 
feedback loop leading to amplification of the proinflamma-
tory signal (Li and Verma 2002).

Inflammation and oxidative stress are closely intertwined 
and are known to play a key role in the pathogenesis of LPS 
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induction of ALI. Leukocytes are recruited as a result of 
oxidative stress and thus leading to inflammatory signaling 
(Cachofeiro et al. 2008). The leukocytes also cause induc-
tion of ROS, chlorine and nitrogen species. The transcription 
factor, nuclear factor erythroid-2-related factor 2 (Nrf2), is a 
key agent for the induction of antioxidant response element 
genes (Pedruzzi et al. 2012). Host cells use Nrf2 activa-
tion in response to oxidative stress signaling. Nrf2 is known 
to be upregulated by the redox protein thioredoxin (Trx1) 
(Ago et al. 2006). Moreover, Nrf2 also functions as a mas-
ter regulator of genes involved in the antioxidant pathways 
(Deramaudt et al. 2013).

Thearubigin is a polyphenolic bioactive compound 
extracted from black tea (Maity et al. 2003). Thearubigin 
has been shown to possess anti-inflammatory properties 
against inflammatory bowel disease (Maity et al. 2003). 
However, there are very few reports of thearubigin as a bio-
active compound against inflammatory diseases. Moreover, 
to the best of our knowledge, thearubigin has previously not 
been reported in the context of neonatal ALI. In this study, 
the role of thearubigin in neonatal ALI was studied using 
LPS as a model. We also attempted to study the molecular 
mechanism of the anti-inflammatory effect of thearubigin 
in neonatal ALI.

Materials and methods

Establishment of the ALI model

Neonatal Sprague–Dawley rats (2–6 days old, weighing 
6–12 g) were provided by the animal house of the Hainan 
Provincial People’s Hospital. The animals were kept under 
a 12 h by 12-h light and dark circadian cycle and the under 
controlled conditions of temperature and humidity. The 
experimental animals were kept with their nursing mothers. 
The mothers were fed with the standard rat diet and water 
ad libitum. Thearubigin was isolated from black tea using 
HSCCC method as described by Stodt et al. (2015). Escheri-
chia coli LPS were procured from Merck (USA). The opti-
mal dose of thearubigin for this study was estimated based 
on previous reports (Maity et al. 2003) and pilot experi-
ments in our laboratory. The animals were assigned to two 
sets of six experimental groups of ten pups each viz. (1) 
PBS (phosphate buffered saline) as control; (2) LPS group 
(5 mg/kg, administered through intratracheal instillation); 
(3) (LPS + vehicle 3) LPS + thearubigin (10 mg/kg) group; 
(4) LPS + thearubigin (20 mg/kg) group; (5) LPS + thearu-
bigin (40  mg/kg) group. Thearubigin was prepared for 
administration by dissolving in DMSO as vehicle. PBS and 
thearubigin were intraperitoneally (i.p.) administered 24 h 
after the LPS challenge for seven consecutive days. The pups 
were killed on the eighth day. The killing was followed by 

the collection of lung samples for subsequent experimental 
analysis. One set of experimental groups was used for BALF 
and lung edema experiments described below. The other set 
of experimental groups was used for western blotting, RT-
PCR and histopathological analysis.

Evaluation of lung edema

LPS-induced pulmonary edema in the lungs was estimated 
using the lung wet-to-dry weight ratio (Yang et al. 2005). 
For the lung wet-to-dry weight ratio estimation, the right 
lung was excised and rinsed in PBS. The rinsed lung was 
weighed to determine the wet lung weight. The excised lung 
was then dried by baking at 80 °C in an oven for 24 h. After 
heat drying, the lung was weighted again to estimate the 
dry weight.

Estimation of lactate dehydrogenase (LDH) activity

Bronchoalveolar lavage fluid (BALF) was extracted by lav-
aging the lungs with sterile PBS by intratracheal instillation 
repeated four times. The BALF was centrifuged at 1000g for 
15 min at 4 °C, and supernatant was collected. The activity 
of LDH in BALF supernatant was estimated as reported by 
Lee et al. (2015). LDH estimation kit (Sigma, USA) was 
used for the estimation of LDH activity according to the 
manufacturer’s protocol. BALF supernatant (2 ml) was incu-
bated with the reagent-A for 1 min and then reagent-B was 
added. The absorbance of the reaction product was estimated 
at every min for 4 min. The LDH activity in U/I was esti-
mated using the standards provided with the kit.

BALF protein concentration and cell counts

Estimation of protein concentration in BALF supernatants 
was performed following Lee et al. (2010). The total protein 
concentration was determined by Bradford’s method using 
the Assay Dye (Bio-Rad, USA). A standard protein curve 
was generated using BSA protein. The total cell count in the 
BALF was also estimated by resuspending the cell pellet in 
100 μl PBS.

Myeloperoxidase (MPO) activity in lungs

One of the primary features of ALI is an elevated accumula-
tion of neutrophils in the lungs. MPO activity can be used 
to estimate the neutrophil accumulation in the lungs (Kim 
et al. 2012). Briefly, the lung tissue of equal weight was 
homogenized and centrifuged at 13000g for 1 h at 4 °C. The 
MPO activity in the supernatants was estimated using the 
ELISA kit (Abbkine, USA) following the manufacturer’s 
protocol. The absorbance of the reaction product was deter-
mined using a spectrophotometer at 450 nm wavelength. The 
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measurements were made in three replicates, and the result 
was extrapolated to per gram units.

Estimation of lung oxidative stress

The oxidative stress in the lungs of neonatal rats was meas-
ured as per Trocha et al. (2014). The lung tissue of equal 
weight was homogenized (10% w/v) and centrifuged at 
13000g for 1 h at 4 °C. Colorimetric assay of supernatants 
was performed for estimating the concentration of hydrogen 
peroxide  (H2O2) using hydrogen peroxide assay kit (Abcam, 
USA), malondialdehyde (MDA) using lipid peroxidation 
(MDA) assay kit (Abcam, USA) and hydroxyl radical (OH) 
using hydroxyl radical antioxidant capacity assay kit (Eagle, 
bioscience, USA). All the experimental procedures were car-
ried out following the respective manufacturer’s protocols.

Pulmonary histopathology analysis

The histopathology of LPS-induced ALI pups was per-
formed as per Li et al. (2016). The upper left lobe of one 
animal randomly selected from each experimental group 
was excised and fixed in 10% formaldehyde for 1 day. The 
fixed tissue was dehydrated in gradually increasing ethanol 
strength. The dehydrated sample was embedded in paraffin 
wax and sliced to achieve 4-µm sections. The sectioned tis-
sue was de-paraffinized and stained with hemotoxylin–eosin 
(H&E). The tissue was observed under a light microscope.

Cytokine measurements

The levels of TNF-α, IL-1β, MIP-2 and IL-6 in the BALF 
and sera were measured using ELISA kit (Invitrogen, USA), 
according to the manufacturer’s instructions.

Western blot analysis

Western blot for Nrf2 and Trx1 was performed to estimate 
their concentration in BALF. β-Actin was used as an inter-
nal control for the estimation of expression. The antibodies 
for these proteins were procured from R&D systems, USA. 
The total protein in BALF was estimated using Bradford’s 
method as mentioned above. Ten micrograms of BALF total 
protein was loaded in each well. Electrophoretic transfer of 
proteins was performed on PVDF membranes. After incu-
bation for two hours and washing with Tris-buffered saline 
which contained 0.2% Tween 20 (TBST) and blocking with 
2% nonfat dry-milk, the membranes were incubated with 
primary antibodies overnight. Finally, the membranes were 
incubated with horseradish peroxidase substrate. ECL detec-
tion system was used to develop the membranes. The rela-
tive band intensity was determined using ImageJ software 
(NIH, USA).

Isolation of total RNA and qRT‑PCR

Total macrophage RNA was extracted using E.Z.N.A. HP 
Total RNA Kit (Omega Bio-Tek, USA). Geneious software 
(USA) was used for designing of primers for qRT-PCR. 
The following primers were used for qRT-PCR: Nrf2 (5′-
ATT TGT AGA TGA CCA TGA GTCGC-3′, 5′-GAG CTA 
TCG AGT GAC TGA GCC-3′), Trx1 (5′-TAG TGG ACT TCT 
CTG CCA CG-3′, 5′-TGG CAG TCA TCC ACG TCT AC-3′); 
GAPDH (5′-AGT GCC AGC CTC GTC TCA TA-3′, 5′-CGT 
TGA TGG CAA CAA TGT CCA-3′) was used as internal con-
trol. Three technical replicates for each biological replicate 
were used. RNA was quantified using Qubit fluorometer. 
The following components were added in the PCR mas-
ter-mix: 1.5 μl cDNA, 1 μl (5 pm/μl) each primer, 5 μl 
DyNAmo Flash SYBR Green (Thermo) (2X). The PCR 
was cycled for 42 times with following conditions: 10 m 
at 95 °C, 40 cycles 22 s at 95 °C, 60 s at 60 °C. ABI prism 
7500 was used for the qRT-PCR run. The Ct (threshold 
cycle) value was normalized and quantified using the Ct 
value of GADPH.  2−ΔΔCt method (Livak and Schmittgen 
2001) was used to calculate the relative expression.

Statistical evaluation

All statistical calculations were depicted in the form of 
mean ± SEM. ANOVA test was used to compare the results 
with bonferroni multiple comparison test. The statistical 
calculations were performed in GraphPad Prism software 
program with P value ≤ 0.05 for a significant test.

Results

Thearubigin attenuates lung edema 
and hyperpermeability

The induction of ALI with LPS resulted in a significant 
increase in lung wet-to-dry weight ratio in comparison 
with the pups treated with control (Fig. 1a). The protein 
concentration in BALF was also significantly increased in 
comparison with the pups treated with control (Fig. 1b). 
However, a significant reduction of these parameters was 
seen when the groups treated with thearubigin. Moreo-
ver, a dose-dependent decrease in these parameters was 
observed in the treatment groups.

In addition, we observed a significant increase in 
the LDH levels upon treatment with LPS (Fig. 1c). The 
thearubigin-treated animals showed a significant reduction 
of LDH levels dose-dependently.
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Thearubigin reduces MPO activity and neutrophil 
count

The activity of MPO and counts of neutrophils were deter-
mined in the lung tissue homogenates. The counts of neu-
trophils were also estimated in the BALF of experimental 
animals. A significant increase in the MPO activity was 
observed in the LPS-induced animals (Fig. 2a). Moreover, 
the count of neutrophils was also significantly increased in 
the BALF of LPS-treated animals. Treatment with thearu-
bigin resulted in significant attenuation of MPO activity. 
Moreover, a significant reduction in the counts of neu-
trophils was observed in BALF (Fig. 2b). These reduc-
tions were found to be dose-dependent at all the studied 
concentrations.

Fig. 1  Effect of thearubigin treatment on a lung wet-to-dry weight 
ratio, b LDH levels and c protein concentration in BALF. Data are 
presented as the mean ± standard error (n = 10). *P < 0.05 compared 
with the LPS-induced ALI group. ALI acute lung injury, LPS lipopol-
ysaccharide, LDH lactate dehydrogenase, BALF bronchoalveolar lav-
age fluid

Fig. 2  Effect of thearubigin treatment on a MPO activity in the lung 
tissue homogenates, b neutrophil count in the BALF. Data are pre-
sented as the mean ± standard error (n = 10). *P < 0.05 compared with 
the LPS-induced ALI group. ALI acute lung injury, LPS lipopolysac-
charide, LDH lactate dehydrogenase, BALF bronchoalveolar lavage 
fluid
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Thearubigin attenuates oxidative stress 
in LPS‑induced ALI

The oxidative stress due to LPS exposure was measured by 
estimating the concentrations of  H2O2, MDA and OH ion 
in the experimental animals (Fig. 3). LPS exposure caused 
a significant upregulation in the levels of  H2O2, MDA and 
OH ion. Thearubigin treatment had a strong downregulat-
ing effect on these markers of oxidative stress in a dose-
dependent manner in the case of  H2O2 and MDA. However, 
the levels of OH ion were similar in 20 mg/Kg and 40 mg/
Kg groups. This may have happened because a control group 
level of OH ion was already achieved with 20 mg/Kg dose, 
and therefore, a lower level is not expected with a higher 
dose (Fig. 3c).

Thearubigin prevents histopathological changes 
in LPS‑induced ALI

The examination of pulmonary histopathology was per-
formed after the commencement of the experiment. The tis-
sue treated with control or vehicle had a normal appearance, 
and no changes in pulmonary histopathology were observed 
(Fig. 4). ALI induction with LPS caused extensive and 
severe damage to the pulmonary tissue. It was observed that 
LPS exposure caused large-scale intrusion of inflammatory 
cells into the lung interstitium. Moreover, the inflammatory 
cells were also seen migrating to cavities into alveoli. Addi-
tionally, stromal hemorrhagia, wall thickening of alveoli, the 
collapse of alveoli and edema were also observed. Treatment 
with thearubigin showed significant attenuation of these 
symptoms. The experimental group treated with 20 mg/kg 
and 40 mg/kg of thearubigin showed large-scale decrease in 
the inflammatory cells.

Thearubigin attenuates proinflammatory cytokine 
levels

ELISA was used to determine the levels of proinflamma-
tory cytokines such as TNF-α, IL-1β, MIP-2 and IL-6 in 
serum and BALF of the experimental animals. The levels 
of cytokines were significantly upregulated with induction 
by LPS in serum (Supplementary Fig. 1) and BALF (Sup-
plementary Fig. 2). Thearubigin treatment caused a signifi-
cant downregulation of the cytokines in comparison with the 
control groups under study.

Effects of thearubigin treatment on the levels 
of Nrf2 and Trx1

The antioxidant activity of thearubigin was estimated by 
determining the levels of Trx1 and Nrf2 using western blot 
and real-time PCR. The results of real-time PCR indicated an 

Fig. 3  Effect of thearubigin treatment on oxidative stress on the lev-
els of a  H2O2, b hydroxyl ion and c MDA in the homogenized lung 
tissue. Data are presented as the mean ± standard error (n = 10). 
*P < 0.05 compared with the LPS-induced ALI group. MDA malondi-
aldehyde, ALI acute lung injury, LPS lipopolysaccharide
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upregulation in the Trx1 and Nrf2 expression upon treatment 
with thearubigin in comparison with the control experiment 
(Fig. 5). Additionally, the result of qRT-PCR was confirmed 
by densitometric analysis of western blot (Fig. 6). The levels 
of Trx1 and Nrf2 were found to be significantly upregulated 
in comparison with the control experiment in the western blot 
analysis. However, the LPS-induced ALI group had a signifi-
cantly downregulated expression of Trx1 and Nrf2 as com-
pared to the control-treated experimental group.

Discussion

This study was carried out to identify the antioxidative and 
anti-inflammatory effects of bioactive compound thearubigin 
on LPS-induced ALI in neonatal rats. We also attempted to 

decipher the mechanism of thearubigin action on inflam-
mation in neonatal lungs. The results indicated that treat-
ment with thearubigin caused a reduction in the wet-to-dry 
ratio of lungs, BALF protein concentration, MPO activity, 
inflammatory cell migration, cytokine production. Thearu-
bigin caused significant antioxidant action as indicated by a 
significant reduction in the levels of MDA,  H2O2 and the OH 
ion as well as a significant upregulation of Trx1 and Nrf2.

LPS induction is known to significantly increase the lev-
els of proteins, serum and BALF neutrophils and inflam-
matory cytokines (Jerala 2007; Lu et al. 2008). ALI is also 
marked by damage to alveolar cavities, infiltration of neu-
trophils in lungs and edema (Matthay and Zemans 2011). 
Pulmonary inflammation is marked by elevated lung wet-
to-dry weight ratio (Jacob et al. 2008), an increase in pro-
tein concentration of BALF resulting from extravasation 

Fig. 4  Effect of thearubigin 
treatment on pulmonary his-
topathology. a PBS-treated 
healthy control group, b LPS-
induced ALI group, c vehicle-
treated ALI group, d 10 mg/kg 
thearubigin-treated ALI group, 
e 20 mg/kg thearubigin-treated 
ALI group, and f 40 mg/kg 
thearubigin-treated ALI group. 
ALI acute lung injury, LPS 
lipopolysaccharide. Scale bar 
indicates 20 μm
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Fig. 5  Effect of thearubigin treatment on Nrf2 and Trx1 expressions 
in lung tissues. The mRNA expression levels of a Nrf2 and b Trx1 
are shown. Data are presented as the mean ± standard error (n = 10). 

*P < 0.05 compared with the LPS-induced ALI group. Nrf2 nuclear 
factor erythroid-2-related factor 2, Trx1 thioredoxin isoform 1

Fig. 6  Effect of thearubigin 
treatment on Nrf2 and Trx1 
expressions in lung tissues. 
The protein expression levels 
were determined as a western 
blot analysis, b densitometry 
of western blot was performed 
to estimate the relative protein 
concentration. Data are pre-
sented as the mean ± standard 
error (n = 10). Nrf2 nuclear fac-
tor erythroid-2-related factor 2, 
Trx1 thioredoxin isoform 1
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(Muller-Redetzky et al. 2014). These indicators of inflam-
mation are commonly increased upon induction with LPS. 
Treatment with thearubigin caused a significant reduction 
of these inflammatory parameters indicating a reduction 
in lung edema and vascular protein leakage. These results 
indicate an anti-inflammatory activity in thearubigin. The 
inflammation and edema in lungs were also observed in 
the histopathological analysis. The observation of edema, 
inflammatory cell migration and epithelium thickening was 
observed in the histopathological analysis. Thearubigin 
treatment vastly attenuated these inflammatory indicators. 
This observation validated the therapeutic effect of thearu-
bigin in the neonatal ALI.

Persistent inflammation of lungs plays a key role in the 
pathogenesis of lung injury (Goodman et al. 2003; Mani-
cone 2009). Therefore, immune system suppression should 
be a preferable strategy for the management of ALI. In this 
study, the attenuation of inflammation by thearubigin treat-
ment involved a reduction in the levels of inflammatory 
cytokines. These results indicated that the anti-inflammatory 
action of thearubigin is mediated by attenuation of inflam-
matory cytokines.

ALI is well known to be marked by infiltration of neu-
trophils in lungs (Matthay and Zemans 2011). In ALI, the 
migration of neutrophils from lung epithelia and endothe-
lia leads to accumulation their accumulation in the alveolar 
cavities. The activated neutrophils lead to an increase in the 
levels of reactive oxygen species (ROS), release of proin-
flammatory cytokines and MPO and an elevated permeabil-
ity of microvesicles. (Grommes and Soehnlein 2011). Thus, 
long-term presence of activated neutrophils in alveolar cavi-
ties is a hallmark of ALI. In the present study, treatment with 
thearubigin caused a significant reduction of macrophages, 
neutrophils as well as total cell count. MPO is known to 
be released by macrophages and neutrophils during ALI. 
(Chagnon et al. 2015). Conversely, the elevated activity of 
MPO is a reliable indicator of the presence of neutrophils 
in the pulmonary cavities and parenchyma (Reumaux et al. 
2003). Several studies have reported the use of MPO levels 
as a reliable indicator of ALI such as Rittirsch et al. (2008), 
Tsai et al. (2014). Our study also showed that treatment with 
thearubigin caused a significant reduction in MPO activity. 
This was corroborated by our observation of low neutrophil 
levels in pulmonary cavities as well as reduced inflammation 
as seen in the histopathological examination.

Activated cytokines produce reactive oxygen species 
(Tasoulis et al. 2009). Elevated presence of reactive oxygen 
species leads to lipid peroxidation, oxidation of proteins and 
DNA damage. Thearubigin possesses antioxidant properties 
in addition to being a strong anti-inflammatory (Maity et al. 
2003). LPS-mediated induction of ALI caused elevation of 
 H2O2, MDS and -OH ion. In the present study, the levels of 
Nrf2 and Trx1 were found to be significantly downregulated 

in LPS-induced ALI animals. Nrf2 is known to be a master 
regulator of antioxidant process which is regulated by Nrf2 
activator such as CDDO-Me (Vomund et al. 2017). Trx1 
is another protein that mediates redox reactions under oxi-
dative stress conditions (Furukawa et al. 2011). Both Nrf2 
and Trx1 have been recommended as target molecules by 
activators for treatment of acute lung injury such as COPD 
(Rahman and MacNee 2012). Thearubigin treatment led to 
elevated levels of these two redox proteins indicated that 
thearubigin can potentially act as a natural activator of Nrf2 
and Trx1.

The plant bioactive thearubigin showed protective action 
against LPS-induced neonatal ALI model rats. Thearubigin 
caused attenuation of all the inflammatory parameters stud-
ied here. Thearubigin provided protection against inflam-
mation by preventing the production and accumulation of 
inflammatory cytokines. Thearubigin also showed strong 
antioxidant properties by activating redox proteins such 
as Nrf2 and Trx1. Therefore, we propose that thearubigin 
can be a potential bioactive compound for the development 
of therapy for neonatal ALI. However, further studies are 
required to decipher the mechanism by which thearubigin 
activates the observed redox proteins.
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