Skip to main content
. 2019 Aug 13;20(9):1335–1347. doi: 10.1007/s10198-019-01092-9

Table 5.

Results of random-effects GLS regression to explore relationships between demographic and clinical variables and SF-6D health state utility values

SF-6D value Coefficient Standard error p > z Lower confidence interval Upper confidence interval Beta coefficientsa
TFC score 0.0091764 0.0011486 0.0000000 0.0069239 0.0114290 0.2328026
Behavioural score − 0.0047258 0.0002288 0.0000000 − 0.0051744 − 0.0042771 − 0.4053759
Cognition score 0.0000891 0.0000596 0.1350000 − 0.0000278 0.0002060 0.0430957
MOT score − 0.0002756 0.0002094 0.1880000 − 0.0006862 0.0001350 − 0.0384748
Male gender 0.0188754 0.0052631 0.0000000 0.0085535 0.0291973 0.0686814
Age − 0.0002946 0.0002174 0.1760000 − 0.0007210 0.0001318 − 0.0270106
Years since diagnosis 0.0014575 0.0008332 0.0800000 − 0.0001766 0.0030917 0.0375215
Constant 0.6527599 0.0233794 0.0000000 0.6069084 0.6986114

n = 1939; F [7,1931] = 120.05; p < 0.001; Adjusted R-squared 0.3007

aBeta coefficients were obtained by standardising all variables to a mean of 0 and a standard deviation of 1, and then including them in the regression analysis