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Metabolic gene alterations impact the clinical
aggressiveness and drug responses of 32
human cancers
Musalula Sinkala 1*, Nicola Mulder1 & Darren Patrick Martin1

Malignant cells reconfigure their metabolism to support oncogenic processes such as

accelerated growth and proliferation. The mechanisms by which this occurs likely involve

alterations to genes that encode metabolic enzymes. Here, using genomics data for 10,528

tumours of 32 different cancer types, we characterise the alterations of genes involved in

various metabolic pathways. We find that mutations and copy number variations of metabolic

genes are pervasive across all human cancers. Based on the frequencies of metabolic gene

alterations, we further find that there are two distinct cancer supertypes that tend to be

associated with different clinical outcomes. By utilising the known dose-response profiles of

825 cancer cell lines, we infer that cancers belonging to these supertypes are likely to

respond differently to various anticancer drugs. Collectively our analyses define the foun-

dational metabolic features of different cancer supertypes and subtypes upon which dis-

criminatory strategies for treating particular tumours could be constructed.
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The transformation of normal cells into cancer cells requires
the adaptation of multiple metabolic processes to satisfy the
high energy demands of malignant cellular growth, pro-

liferation and survival1,2. Accordingly, metabolic dysregulation is
recognised as a hallmark of malignant cellular phenotypes3,4.
Although many of the metabolic processes occurring in cancer
cells are similar to those occurring in healthy proliferating cells, a
series of genetic and epigenetic modifications in cancer cells can
result in the aberrant regulation of these processes5,6. Among
these genetic alterations are those occurring in a range of genes
that are involved in metabolism. These alterations include diverse
driver mutations and gene copy number alterations, which can
impart a substantial degree of metabolic heterogeneity to different
tumours of the same cancer type7. There is, therefore, keen
interest in determining how genetic alterations within various
types of malignant cells relate to specific aspects of the metabolic
dysregulation occurring within these cells.

Transcriptomic and metabolomic analyses of various human
tumours have revealed the numerous metabolic peculiarities of
cancer cells that likely play essential roles in oncogenesis and
cancer progression7–12. In general, these peculiarities can be traced
to abnormal variations in the expression levels of either particular
metabolic enzymes or the proteins that regulate these enzymes13,14.
These and other studies1,3,6,15–19 have also yielded a growing
appreciation of how the aberrant metabolic changes in cancer cells
influence the anticancer drug responses of different tumours.

Besides enabling the selection of the most appropriate available
drugs, a better understanding of the metabolic differences
between different cancer cell types will also likely yield better
disease outcome predictions. This is because some of the meta-
bolic features of cancer cells are likely to be directly associated
with disease aggressiveness and clinical outcomes20–22.

Recently, comprehensive pathway curation projects (such as,
for example, the Reactome and KEGG pathway projects) have
successfully gathered high-quality information on human meta-
bolic proteins and have accurately mapped these to metabolic
pathways23,24. Cancer profiling projects such as that carried out
by The Cancer Genome Atlas (TCGA) have yielded detailed
genetic, transcriptomic, proteomic, and epigenetic data for
thousands of human tumours each of which is annotated with
clinical information for the patient from which it was taken25.
Analysis of the TCGA data in the context of our present
understanding of human metabolism should both illuminate the
metabolic differences between different cancer types, and identify
which of these differences has the most meaningful prognostic
value. If this information is then coupled with the known drug
responses of different cancer cell types, it should also be possible
to identify the most suitable drugs to treat any particular cancer.

Valuable in this regard, are large-scale drug response screening
projects such as the Genomics of Drug Sensitivity in Cancer
(GDSC;23) and the Cancer Cell Line Encyclopedia26 which pro-
vide transcriptome and epigenetic profiles for over one thousand
human cancer cell lines together with their dose-response profiles
to hundreds of anticancer drugs. The genetic, transcriptomic and
epigenetic profiles of tumour samples from the TCGA and those
of cancer cell lines from the GDSC can be directly compared to
systematically test for metabolic similarities and differences that
might have a bearing on drug responses. More specifically, the
subset of the cancer cell lines that have genomic and tran-
scriptomic features that are most similar to those of tumour cells
from a patient could be used to interrogate how metabolic per-
turbations in the patient’s tumour cells are likely to influence the
effectiveness of particular anticancer drugs.

Here, we used data on gene mutations and copy number var-
iations from the TCGA in conjunction with Reactome Path-
ways25 data to identify the heterogeneous metabolic features of 32

human cancers. We then used these features together with drug
response data from the GDSC to identify specific metabolic
perturbations in tumour cells that are likely to impact their
responses to different anticancer drugs.

Results
We analysed a TCGA dataset comprising lists of gene alterations
(mutations and copy number variations) together with clinical
information collected from 10,528 patients afflicted by 32 dif-
ferent human cancers (Fig. 1a). Also, we analysed lists of gene
alterations found within the genomes of 812 human cancer cell
lines together with the drug-response profiles of these cell lines to
251 anticancer drugs to reveal associations between gene altera-
tions and drug responses.

Alterations to genes involved in metabolism distinguish human
cancers. We obtained curated human metabolic pathway data and
the names of genes involved in these pathways from the Reactome
Pathways database using the annotation search term “metabo-
lism”25. In this database, the term “metabolism” encompasses 68
different metabolic pathways involving 2325 genes. Within the
TCGA dataset, we found that out of these 2325 genes, 2095 con-
tained an alteration in at least one of the 10,225 analysed patients.

Among the 2095 metabolic genes displaying some alteration (a
copy number variation or a mutation) in at least one patient, the
most frequently altered were PIK3CA in 1384 individual tumour
samples, APOB in 976 and LRP2 in 961 (Fig. 1b). Most of the
genes displaying some alterations in tumours of different cancer
types have well-defined roles in carcinogenesis. For instance,
mutations of PIK3CA reprogramme metabolism and are
associated with poorer survival outcomes in several cancers,
including those of the colon, rectum, breast and lungs26–29. APOB
is a lipid metabolism regulator that is linked to carcinogenesis and
tumour progression in the liver, lungs and other tissues30–32.
LRP2 encodes a low-density lipoprotein receptor-related protein-
2 which mediates endocytic uptake of various lipids, and is linked
to the enhanced metabolism of lipids and vitamin D, and
promotes the transformation, proliferation and survival of
various types of cancer cells33–35.

Next, we calculated the frequency of alterations among the 16
first-tier metabolic pathways across all 32 of the cancer types.
Here we found that genes involved in lipid metabolism were the
most commonly altered, followed by those involved in carbohy-
drate metabolism and then those involved in amino acid
metabolism (Fig. 1c). These findings echo the well-established
tenet of molecular oncogenesis, that meeting the cellular energy
and biosynthetic demands of malignancy require alterations to
the lipid, carbohydrate and amino acid metabolic pathways3,19.

We clustered the 32 human cancers based on the frequencies of
gene alterations of metabolic pathways. Our clustering revealed
two major groups of cancers (Supplementary Fig. 1): those
cancers with a higher frequency of metabolic gene alterations
(which we named as HM; n= 6,191) and those with a lower
frequency of metabolic gene alterations (named as LM; n=
3,329). Interestingly, we observed that the median alteration
frequencies for genes involved in each of the 16 first-tier
metabolic varied across the 32 cancer types, e.g., occurring in
90% of patients with skin cutaneous melanoma, but only 14% of
patients with thyroid carcinomas (Fig. 1c).

We examined whether the HM and LM cancer supertypes were
associated with different clinical outcomes. Remarkedly, we
observed that the median disease-free survival (DFS) periods
was significantly lower (p= 1.3 × 10–7; log-rank test36) for the
HM cancer patients (median= 58.3 months) than it was for the
LM cancer patients (median= 116.2 months; Fig. 2a). Similarly,
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the duration of overall survival (OS) periods for the HM cancer
patients (OS= 68.9 months) were significantly shorter (p= 6.8 ×
10–10) relative to those of the LM cancer patients (OS=
116.2 months; log-rank test; Fig. 2b). We validated these findings
with an independent dataset of patients afflicted with these
cancers from the International Cancer Genome Consortium
(ICGC) databases37. As with the patients recorded in TCGA, the
median OS period for patients recorded in the ICGC databases
who had cancers belonging to the HM supertype (OS=
1,759 days) was significantly lower (p= 6.3 × 10–17) than that
of patients with cancers belonging to the LM supertype (OS=
3,681 days; Fig. 2c). Our results, therefore, demonstrate an
association between the extent to which metabolic genes in cancer

cells are altered (and therefore probably the degree of metabolic
dysregulation within these cells), and the aggressiveness of
cancers.

Alterations of genes involved in carbohydrate, amino acid and
lipid metabolic pathways across all cancers. We evaluated the
extent of alterations to genes involved in second-tier lipid, carbo-
hydrate and amino acid metabolic pathways as these pathways had
the highest gene alteration frequencies across all 32 of the cancer
types. We found that alterations to genes involved in second-tier
pathways were more frequent in the HM cancers than in the LM
cancers (Fig. 3). Among the genes involved in second-tier

Fig. 1 a Distribution of 10,528 TCGA tumours across 32 human cancer types broken down by tissue of origin. TCGA disease codes and abbreviations:
UCEC, uterine corpus endometrial carcinoma; SKCM, skin cutaneous melanoma; BLCA, bladder urothelial carcinoma; UCS, uterine carcinosarcoma; OV,
ovarian serous cystadenocarcinoma; LUSC, lung squamous cell carcinoma; STAD, stomach adenocarcinoma; LUAD, lung adenocarcinoma; ESCA,
oesophageal adenocarcinoma; DLBC, diffuse large b-cell lymphoma; CESC, cervical squamous cell carcinoma; HNSC, head and neck squamous cell
carcinoma; SARC, sarcoma; LIHC, liver hepatocellular carcinoma; BRCA, breast invasive carcinoma; COADREAD, colorectal adenocarcinoma; CHOL,
cholangiocarcinoma; ACC, adrenocortical carcinoma; PAAD, pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; GBM, glioblastoma multiforme;
KIRP, kidney renal papillary cell carcinoma; KIRC, kidney renal clear cell carcinoma; MESO, mesothelioma; LGG, brain lower grade glioma; UVM, uveal
melanoma; PCPG, pheochromocytoma and paraganglioma; TGCT, testicular germ cell tumours; KICH, kidney chromophobe; THYM, thymoma; LAML,
acute myeloid leukaemia; THCA, thyroid carcinoma. b Genes involved in metabolism found to be most altered across all human cancers. c Clustered
heatmap of cancer types using the percentage of tumours with first-tier metabolic pathway genes displaying alterations. Pathways are ordered by
decreasing frequencies of alterations. Increasing colour intensities denote higher percentages. The heat map was produced using unsupervised hierarchical
clustering with the Euclidean distance metric and complete linkage (see Supplementary Fig. 1). The coloured bars on the heatmap show the tissue of origin
for each cancer: 1= Breast; 2= CNS, 3= Endocrine; 4= Eye; 5=GI tract; 6=Gynaecologic; 7=Haematologic & Lymphatic; 8=Head & Neck; 9= Skin;
10= Soft Tissue; 11= Thoracic; 12=Urologic. The bar graph represents the overall frequency of genomic alterations in each human cancer
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carbohydrate metabolism pathways, those involved in the glycosa-
minoglycan metabolism (in 67% of all patients’ tumours) and
glucose metabolism (in 58% of tumours) pathways were the most
commonly altered across all cancers. In recent years, cellular gly-
cosaminoglycan profiles have been shown to be markedly altered
during tumour pathogenesis and progression. Glycosaminoglycans
influence cell signalling, angiogenesis, tumour invasiveness and
metastasis, and have therefore emerged as essential pharmacological
targets for the treatment of cancer38–40.

Among the genes involved in second-tier amino acid metabolism
pathways, those involved in selenoamino acid metabolism (in 56%
of all patients’ tumours) and polyamine metabolism (in 56% of
tumours) were the most altered across all the cancer types.
Increased polyamine metabolism is associated with neoplasia: an
important risk factor for the development of cancer in humans41–45.
Drugs that target polyamine metabolism, several of which are in
clinical trials, have been considered for the treatment of many
cancers, including those of the colon, prostate and skin41,42,46.
Unlike with polyamines, the roles of selenoamino acids in cancer

remain poorly explored; although an enrichment of selenoamino
acids has been noted in breast cancer cells47. We anticipate that
studying alterations of selenoamino acid metabolism could yield
targets for the development of new therapeutics and predictive
biomarkers that would aid the treatment of various cancers.

Abnormal lipid metabolism has emerged as a metabolic
hallmark of oncogenesis and tumour progression48. Here, we
found that across all cancers, the most frequently altered of the
lipid metabolism genes were those involved in the phospholipid
metabolism (in 79% of all patients’ tumours) and fatty acid
metabolism (in 68%). Changes in the transcripts of genes that
encode membrane phospholipids and the actual levels of
phospholipids have been shown in various cancers, including
those of the breast and lung49–51. Since the changes in
phospholipid metabolism can affect the proliferation of cancer
cells and their responses to drugs, it is plausible that at
least some of the observed alterations in genes involved in
phospholipid metabolism may have biological and clinical
relevance51,52.

Fig. 2 Kaplan–Meier curve of the disease-free survival periods (a) and overall survival periods (b) of TCGA patients afflicted by the HM (high metabolic
gene alteration frequencies) and LM (low metabolic gene alteration frequencies) cancer supertypes. c Kaplan–Meier curve of the overall survival periods of
ICGC patients afflicted by the HM and LM cancer supertypes

Fig. 3 Frequency of tumours of different cancer types with altered genes that are involved in second-tier metabolic pathways of carbohydrate, lipid and
amino acid metabolism. The cancers are arranged according to how they clustered based on similarities between their first-tier metabolic pathway gene
alterations (as in Fig. 1c). Increasing colour intensities denote higher percentages of tumours with gene alterations)
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Some of the most studied metabolic pathways in cancer are
the glycolytic and fatty acid oxidation and biosynthesis
pathways1,15–18,53. Here, we also explored the degree to which
genes that are involved in these pathways were altered in each of
the 32 cancers. In all cancers, we found alterations to some of the
genes involved in the glycolytic and fatty acid oxidation and
biosynthesis pathways (Supplementary Figs. 2, 3, 4 and 5). We

found that these gene alterations were most frequent in uterine
corpus endometrial carcinomas and skin cutaneous melanomas.

Finally, we used the literature to identify a subset of genes that
encode proteins which are either key metabolic enzymes of the
central metabolic pathways or are regulators of these enzymes.
We discovered that 78% of all tumours harbour alteration in these
genes (Fig. 4a). Among the most frequently altered metabolic
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regulators were PTEN (in 14% of all tumours), KRAS (in 11%)
and MYC (in 11%). These gene alterations were most frequent in
uterine carcinosarcoma (98.2% of patients’ tumours) and least
frequent in thyroid carcinomas (in 12.4% of tumours; Fig. 4b).

Collectively these results reiterate that alterations within genes
involved in particular aspects of lipid, carbohydrate and amino
acid metabolism are found in many different cancers.

Alterations of genes involved in metabolism are associated
with alterations of mRNA transcript levels. We next determined
whether alterations in genes that are involved in metabolism are
associated with alterations to the encoded mRNA transcript levels
of these genes. We first examined whether the HM and LM
cancer supertypes displayed distinct mRNA signatures for genes
involved in metabolic pathways. Among the 2325 genes involved
in metabolism, we found that only 1977 genes had transcript
measurements in the TCGA. Therefore, focusing only on these
1977 mRNA transcripts in all patients afflicted with the 32 dif-
ferent cancers, we applied t-distributed stochastic neighbourhood
embedding (t-SNE) to reduce the dimensions of these data and
visualised the relationships between cancers using scatter plots.
We found that whereas the HM cancers displayed similar pat-
terns of mRNA expression (i.e. they clustered closer to one
another in the scatter plots; Fig. 5a), the LM cancers tended to
display more diverse mRNA expression patterns (i.e. they did not
cluster as much in the scatter plots; Fig. 5b). Specifically, whereas
a three-dimensional t-SNE plot indicated that the HM cancers
tended to group in the centre of the gene expression space, the
LM cancers were scattered around the periphery of this space
(Fig. 5c).

Since the HM cancers tended to cluster together, we
hypothesised that their metabolic gene expression profiles were
highly correlated. To test this hypothesis, we measured the
Pearson’s linear correlation coefficients between transcript
abundances across each pair of the 32 human cancers (see
methods section). Indeed, we establish that whereas the mRNA
transcript levels of the 1977 metabolic genes of each pair of HM
cancers tended to be strongly positively correlated (mean
Pearson’s correlation= 0.9; range: 0.79–0.98), there tended to
be weaker positive correlations between the mRNA transcript
levels seen between the LM cancers (mean Pearson’s correlation
= 0.68; range: 0.40–0.92; Fig. 5d).

Overall, these results indicate that while gene expression
profiles are relatively conserved among the HM cancers, they are
more diverse in the LM cancers.

Since the relative uniformity of the HM group was intriguing,
we decided to further evaluate tumours in this supertype using
data on all 20,502 of the mRNA transcripts that are available in
the TCGA database (i.e., not only the transcript of metabolic
genes). Here, we applied t-SNE to visualise the grouping of HM
tumours (Fig. 6a) and also applied Density-based spatial
clustering of applications with noise (DBSCAN;54,55) approach

to classify the tumour into various subgroups (Fig. 6b). We found
that patients afflicted with the different subgroups of tumours
identified using DBSCAN exhibited different durations of DFS
(Fig. 6c) and OS (Fig. 6d).

Gene expression and enrichment characteristics of the HM and
LM cancer supertypes. We established that the transcripts which
were differentially expressed between the supertypes were pre-
dominantly involved in a variety of different signalling pathways
(see Supplementary File 3). Compared with HM tumours, LM
tumours displayed elevated transcription levels of genes involved
in, among other things, molecular functions associated with
potassium channel activity, transmitter-gated ion channel activ-
ity, and sodium channel activity (Supplementary Fig. 6, also see
Supplementary file 3). Alternatively, HM tumours displayed ele-
vated transcription levels of genes involved in, among other
things, the functions associated with endopeptidase inhibitor
activity, alcohol dehydrogenase activity and oxidoreductase
activity (Supplementary Fig. 6, also see supplementary file 3).

The drug responses of cancer cell lines are associated with
metabolic gene alterations. From the GDSC database, we col-
lected gene alteration data for 812 cancer cell lines of 30 different
human cancer types, which also have dose-response profiles to
251 anticancer drugs (Fig. 7)23. We assessed the patterns of
metabolic gene alterations within these cancer cell lines and
discovered that these were similar to those of the primary
tumours (Fig. 8a and Supplementary Fig. 6).

Given that previous studies have underlined differences in
molecular characteristics between cancer cell lines and their
primary tumour tissues56,57, we directly compared metabolic gene
alterations between cell lines and tumours of the same type. This
revealed that, with only two exceptions, there were no significant
differences in the frequencies of metabolic gene alterations
between the cell lines and primary tumours of a given cancer
type. The two exceptional cases were acute myeloid leukaemia
(χ2= 22.7, p= 1.9 × 10–6) and thyroid carcinoma (χ2= 16.7, p=
5 × 10–4) for which the cell lines have significantly higher
frequencies of metabolic gene alterations than did primary
tumours (Fig. 8a; Supplementary Fig. 7, Supplementary file 1).

Next, we classified the cancer cell lines into either the HM or
LM supertypes using the TCGA cancer type labels of each cell line
that are provided within the GDSC database. We then compared
drug IC50 values between HM and LM cell lines for 24 classes of
drugs that target 24 signalling pathways and/or biological
processes (Supplementary Fig. 8). Remarkedly, we uncovered
differences between the HM and LM cancer cell lines in their
observed dose-responses to various classes of anticancer drugs.
Compared to the HM cell lines, the LM cell lines were more
sensitive to seven out of the 24 classes of anticancer drugs
(Fig. 8b; Supplementary file 2). Surprisingly, the HM cell lines
were only more sensitive than the LM cell lines to drugs that

Fig. 4 a Major catabolic and anabolic pathways of glucose and lipid metabolism in human cells. Nodes represent either enzymes (blue outline colour) or
metabolic regulators (red outline colour). Node colours represent tumour suppressors (blue) and oncogenes (red) and their increasing colour intensities
denote higher percentages of tumours with alterations in the genes encoding these enzymes or regulatory proteins. Edges indicate known types of
interaction: red for inhibition and green arrows for activation. Abbreviations: GLUTs, all glucose transporters; HK, hexokinase; PFK, phosphofructokinase;
PK, pyruvate kinase; LDH, lactate dehydrogenase; PDH, pyruvate dehydrogenase complex; PDK; pyruvate dehydrogenase kinase; CS, citrate synthase;
ACO2, cis-aconitase; IDH, isocitrate dehydrogenase; OGDH, α-ketoglutarate; SDH, succinate dehydrogenase; SUCL, succinyl-CoA lyase; FH, fumarate
hydratase; MDH, malate dehydrogenase; ACLY, ATP-dependent citrate lyase; ACC, acetyl-CoA carboxylase; FASN, fatty acid synthase; PTEN, phosphatase
and tensin homologue; AMPK, 5’-AMP-activated protein kinase; mTORC1, mechanistic target of rapamycin complex-1; PI3K, phosphoinositide-3 kinase;
SREBP, Sterol regulatory element-binding protein; Akt, RAC-alpha serine/threonine-protein kinase; Kras, Kirsten rat sarcoma viral oncogene homologue;
Myc, MYC proto-oncogene; HIF1α, hypoxia-inducible factor 1-alpha; LKB1, Liver Kinase B1; p53, p53 tumour suppressor. b overall fraction of samples with
the central metabolic pathways gene alterations across 32 human cancers
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target the EGFR signalling pathway (Fig. 8b; Supplementary
file 2).

We next compared the IC50 values of all 251 individual drugs
with which the LM and HM cell lines were treated, regardless of
the drugs’ modes of action. Here, we found that, after correcting
for multiple comparisons, the IC50 values of 41 anticancer drugs
differed significantly between the LM and HM cell lines
(Supplementary file 2). Interestingly, the HM cell lines were
more sensitive to only five of these 41 drugs. These included
afatinib (p= 2.1 × 10–9), CP724714 (p= 5.5 × 10–4), gefitinib
(p= 6.3 × 10–4), TAK-715 (p= 0.02), and vinorelbine (p=
0.049). Among these, afatinib, CP724714 and gefitinib target
the EGFR signalling pathway, whereas TAK-715 targets JNK and
p38 signalling, and vinorelbine inhibits mitosis by destabilising
microtubules (Supplementary file 2). Conversely, we observed
that the LM cell lines were significantly more sensitive than the
HM cell lines to 36 of the anticancer drugs including CHIR-99021
(p= 4.6 × 10–7), QL-XI-92 (p= 4.6 × 10–7) and SN-38 (p= 9.2 ×
10–5; see Supplementary file 2).

Overall this indicates that frequencies of metabolic gene
alterations (our exclusive criterion for placing cell lines into the

LM and HM supertypes) is a highly relevant variable when
attempting to predict the drug responsiveness of cell lines and,
therefore, that it may also be a clinically relevant variable when
predicting the drug responsiveness of primary tumours.

The subtypes within each cancer exhibit diverse responses to
anticancer drugs. For each of the 32 TCGA cancer types, we
applied unsupervised hierarchical clustering to counts of
alterations within genes involved in the 16 first-tier metabolic
pathways to identify disease subtypes within each cancer type
(see examples in Supplementary Fig. 9). Here, we found that
(aside from genes involved in lipid, carbohydrate, and amino
acid metabolism) subgroups of patients are likely to harbour
additional alterations in other metabolic pathways. For exam-
ple, in the case of glioblastoma multiforme (Supplementary Fig.
9A) and lung adenocarcinoma (Supplementary Fig. 9B), we
found that while almost all the tumours represented in TCGA
have alterations to genes involved in lipid, carbohydrate and
amino acid metabolism pathways, small groups of tumours
usually show even higher numbers of alterations to genes

Fig. 5 a Clustering of HM (orange points) and LM (blue points) tumours based on mRNA transcript levels. b Clustering of 32 different cancer types based
on mRNA transcript levels. Points are coloured according to the type of cancer they represent. For both plots (a and b), t-SNE was used to visualise the
tumour classes using the exact algorithm and standardised Euclidean distance metric. c Three-dimensional plot of the HM/LM tumour supertype grouping
based on mRNA transcript levels. d The integrated plot of mRNA expression correlations ordered by whether cancers belong to the HM or LM supertypes.
From top to bottom, panels indicate: the tissue of origin; whether tumours belong to the HM or LM supertype; heatmap of inter-tumour linear Pearson’s
correlation scores with increasing colour intensities denoting higher degrees of correlation
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involved in, amongst others, the abacavir and nitric oxide
metabolism pathways.

Since the frequencies of alterations to genes involved in
metabolic pathways are likely to influence the responses of
patients to anticancer drugs, we identified GDSC cancer cell lines
displaying similar gene alterations to those found in individual
primary tumours to test whether this might be the case (see
methods section). Here, we applied an approach were, for all cell
lines of a particular human cancer, we compared their IC50
values for each of the 251 anticancer drugs between the cell lines
with or without alterations to genes involved in each of the 16
first-tier metabolic pathways. Interestingly, we found that for cell
lines of a particular cancer type, there are gene-alteration-
dependent differences in their dose-responses to various antic-
ancer drugs (Supplementary file 2). For example, 51 anticancer
drugs demonstrated higher efficacies on oesophageal adenocarci-
noma cell lines that have alterations in genes involved in abacavir
metabolism pathways than on oesophageal adenocarcinoma cell

lines without alterations to these genes (Fig. 9a). Also, cell lines of
lung adenocarcinoma with alterations in genes involved in the
biological oxidation pathways are more resistant to 52 anticancer
drugs than are those without alterations to these genes (Fig. 9a).

Altogether, we found 2186 instances where alterations to genes
involved in a specific metabolic pathway are associated with the
efficacy of anticancer drugs in the cancer cell lines (Supplemen-
tary file 2). Among the metabolic pathways, we found that those
of cytoplasmic iron-sulphur clusters (447 instances), nucleotide
metabolism (292 instances), and amino acid and derivatives
metabolism (293 instances; Fig. 9a) were associated with varied
efficacies of the highest numbers of anticancer drugs for all the
cancer cell lines across all tumour types.

Given that we had found that tumours displaying different
numbers of alterations to metabolic genes exhibit different
clinical and survival outcomes, we decided to examine this in
more detail for particular cancer types. Using data of primary
cancers from the TCGA, for patients’ tumours with or without

Fig. 6 a Clustering of HM tumours based on all 20,502 mRNA transcript levels that were measured by the TCGA project. The colour legend represents
different cancer types. b Clustering of HM tumours based on all 20,502 mRNA transcript levels that were measured by the TCGA. Points are coloured
according to the clustering of the tumour using DBSCAN. -1 indicates the outlier points. For both plots (a and b), t-SNE was used to visualise the tumour
classes using the exact algorithm and standardised Euclidean distance metric. c Kaplan–Meier curve of the disease-free survival periods and the life table of
patients afflicted with each DBSCAN disease subtype. d Kaplan–Meier curve of the overall survival periods and life table of patients afflicted with each
DBSCAN disease subtype. For both survival curve plots (c and d), the colours represent the tumour groupings yielded by DBSCAN in panel B
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alterations in genes involved in abacavir metabolism, we found
that the durations of the disease-free progression periods were
significantly lower for oesophageal adenocarcinoma patients with
alterations to these genes (log rank p= 0.004; Fig. 9b). Con-
versely, disease-free progression periods were higher for uterine
corpus endometrial carcinoma patients with alterations to genes
involved in abacavir metabolism (log rank p= 0.041; Fig. 9c).
This then indicates that, even within each cancer type, the
numbers of alterations found in metabolic genes involved in
particular pathways can, in addition to influencing anticancer
drug responses, detectably impact patient survival.

Discussion
We examined the relationships between the numbers of altera-
tions within the metabolic genes of primary tumours and cell
lines of 32 different human cancer types and both clinical out-
comes and likely drug responses. Others have used mRNA
transcript data to show that alterations in metabolic pathways
likely differ substantially between human cancer types7,8. To the
best of our knowledge, ours is the first study to characterise
metabolic gene alterations across such a large number of primary
tumours (10,528) for so many distinct cancer types (32).

While we found at least one altered metabolic gene in every one
of the 10,528 analysed tumours, the numbers of altered metabolic
genes varied between the 32 cancer types that these tumours
belonged to. We demonstrated that a clinically relevant clustering
of patient tumours, irrespective of the type of cancer they repre-
sented, could be achieved by simply dividing the tumours into two
supertypes based entirely on the numbers of alterations they dis-
played in metabolic genes: an LM supertype for low numbers of
metabolic gene alterations and an HM supertype for high numbers
of metabolic gene alterations (Supplementary Fig. 1). Just as others
have shown that alterations of genes involved in signalling path-
ways can have clinical implications58,59, we show here that indi-
viduals with HM tumours tend to have worse clinical outcomes

than those afflicted with LM tumours. As such, our results suggest
that simple counts of metabolic gene alterations in a tumour can
provide a quantitative approximation of the extent of metabolic
dysregulation within the tumour and, hence, an indirect approx-
imation of the aggressiveness of the tumour.

Our analyses indicate that alterations of genes involved in the
central metabolic pathways and the regulators of these pathways
are pervasive across all human cancers (Fig. 4). Among the most
commonly altered of the regulatory genes that are involved in
cellular metabolism were PIK3CA (in 32% of tumours), MYC (in
14%) and HIF1A (in 11%). In various cancers, MYC and HIF1A
alterations dysregulate multiple metabolic enzymes including,
hexokinase, isocitrate dehydrogenase, pyruvate dehydrogenase
kinase and lactate dehydrogenase60,61. Further, PIK3CA, MYC,
HIF1A and other genes with frequent alterations in primary
tumours are known to dysregulate cellular metabolism by
increasing the rate of glycolysis while reducing the rate of aerobic
respiration; a phenomenon referred to as the Warburg
effect2,60,62. Tumours that exhibit a Warburg phenotype are
known to be more aggressive and respond more poorly to most
anticancer drugs63. Accordingly, compared to the LM cancers, we
found higher alteration rates of the Warburg phenotype-
associated genes in the HM cancers, which could explain why
patients afflicted with HM cancers tend to have worse survival
outcomes.

Changes in various signalling pathways are associated with
variations in the response of cancer cells to drug perturbations,
and these changes can, therefore, impact disease treatment
outcomes64,65. Prior to the provision of anticancer drugs, it is
desirable to know the drugs to which a particular tumour is most
likely to be responsive. Since it is practically impossible to test
hundreds of individual drugs on a specific tumour, cell lines that
have phenotypic features resembling that of the tumour may be
useful in predicting the drug responses of that tumour23,66–68.
Accordingly, using drug response data for cancer cell lines, we

Fig. 7 Distribution of 1001 cancer cell lines derived from 32 human cancer types broken down by tissue of origin

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0666-1 ARTICLE

COMMUNICATIONS BIOLOGY |           (2019) 2:414 | https://doi.org/10.1038/s42003-019-0666-1 | www.nature.com/commsbio 9

www.nature.com/commsbio
www.nature.com/commsbio


inferred that HM and LM cancers are likely to respond differently
to various anticancer drugs. Specifically, HM cancers tended to be
less responsive to most anticancer drugs than LM cancers. This
suggests that in addition to HM tumours potentially being more
aggressive than LM tumours, patients afflicted with HM cancers
may also exhibit worse clinical outcomes simply because HM
cancers are more refractory to most anticancer drugs (Supple-
mentary file 2). Also, since our results indicate that HM tumours
are likely to only respond to higher doses of anticancer drugs, it
would follow that patients with such tumours would tend to
experience more adverse drug effects and treatment-associated
complications, both of which could unfavourably impact their
survival69–72.

Drugs such as afatinib and gefitinib, which target the EGFR
signalling pathway were, however, found to have higher efficacies in

HM cell lines than in LM cell lines. Currently, afatinib is the first-
line treatment for patients with metastatic non-small cell lung
cancer, and it has also been evaluated for the treatment of head and
neck squamous cell carcinoma73,74. In our analyses, both non-small
cell lung cancer and head and neck squamous cell carcinoma
are HM cancers, and we predict, therefore, that there is a strong
likelihood that many other HM cancers such as skin cutaneous
melanoma, bladder urothelial carcinoma and lung adenocarcinoma
may also respond to drugs that target the EGFR signalling pathway.

It is important to emphasise that our LM/HM classification is
very simplistic. Taking a step back, we are reminded that
among tumours that are derived from any particular tissue, there
exist distinct tumour subtypes that differ from one another both
in the gene alterations they display, and in the actual metabolic
perturbations that these gene alterations cause7,75–78. In many

Fig. 8 a Heatmap of the fraction of altered GDSC cancer cell line genes that are involved in each first-tier metabolic pathway in relation to corresponding
patient tumour data from TCGA. Pathways are ordered according to numbers of observed alterations within genes that are involved in the pathways. Increasing
colour intensities denote higher percentages of tumours containing alterations in the genes involved in the represented pathways. Bar graphs above the
heatmap indicate overall percentages of gene alterations within GDSC cell lines (blue bars) or TCGA tumours (tan bars) of a particular cancer type. Bar graphs
on the right of the heatmap indicate the overall percentage of alterations within each first-tier metabolic pathway for the GDSC cell lines (blue bars) and TCGA
tumours (tan bars). b Comparison of the dose-response profiles between the LM and HM supertypes of the GDSC cancer cell lines for selected drugs. Boxplots
show the logarithm transformed mean IC50 values of the cancer cell lines that correspond to the HM and LM cancer supertypes. On each box, the central red
mark indicates the median, and the bottom edge represents the 25th percentiles, whereas the top edge of the box represents 75th percentiles. The whiskers
extend to the most extreme data points not considered outliers, and the outliers are plotted individually using the ‘+ ‘ symbol
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respects, these distinct tumour subtypes are different ` diseases
requiring different treatments58,66,67.

We noted differences in the efficacy of various anticancer drugs
between cell lines of the same primary cancer type. In some cases,
these differences were associated with the presence or absence of
alterations to genes involved in a particular metabolic pathway. This
is in concordance with several recent studies that have established
links between gene alterations and drug action23,58,68,89. This then
supports the assertion that for any given cancer patient, the overall
landscape of metabolic gene alterations could be used to identify
generally applicable anticancer drug classes, following which
alterations to specific metabolic genes could be used to eliminate the
remaining drug choices that have the highest chances of failure.

Our results have revealed that within each of the 32 cancer
types, there exist subtypes that have alterations in genes that are
involved in metabolic pathways that are less commonly associated
with cancers (Supplementary Fig. 9). Interestingly, we found that
for different cancer types, alterations of genes involved in a
particular metabolic pathway may not produce similar clinical
outcomes. For example, we found that for patients with altera-
tions to genes involved in abacavir metabolism, those afflicted
with oesophageal adenocarcinoma present with worse outcomes
whereas those afflicted with uterine corpora endometrial

carcinoma present with better outcomes (Fig. 9b, c). Such a
scenario has been shown in other cancers. For instance, activation
of the mitogen-activated kinase pathway is associated with worse
clinical outcomes in ovarian and colorectal cancer79,80, but with
better clinical outcomes in hormone receptor-negative breast
cancer and astrocytoma81,82.

Altogether, we have shown both that metabolic gene alterations
which potentially dysregulate metabolic pathways are a pervasive
phenomenon across all 32 of the investigated human cancer types,
and that numbers of metabolic gene alterations are linked to
treatment outcomes. Further, our analysis of the drug response
profiles of well-characterised cancer cell lines suggests that altera-
tions of genes of various metabolic pathways may also be predictive
of drug responses. While we cannot guarantee that simply scoring
gene alterations of particular metabolic pathways in patient tumours
will reveal the best available treatment choices for these patients, it is
apparent that such scores could nevertheless be leveraged to
increase the probability of making a good treatment choice.

Methods
We analysed a TCGA project dataset of 10,528 patient-derived tumours repre-
senting 32 distinct human cancers (see Fig. 1a)75, obtained from cBioPortal83

version 2.20 (http://www.cbioportal.org). The elements of the data that we used to

Fig. 9 a Dose-response profiles for drugs that have a degree of efficacy that is influenced by alterations in genes involved in specific metabolic pathways.
From left to right: the columns represent GDSC cancer cell lines of various cancer types. The sizes of squares represent the number of drugs with efficacies
that differ significantly between cell lines with and without gene alterations in the pathways indicated along the rows. The marks are coloured based on the
overall influence of the metabolic gene alterations on drug efficacy: with increasing blue intensities denoting increasing sensitivity and increasing orange
intensity denoting increasing resistance. The heatmap represents the overall numbers of drugs whose efficacy is influenced by the altered metabolic genes
that are involved in the represented pathways. The bar graphs represent the total numbers of drugs whose dose-responses are increased (blue) or
decreased (orange) by alterations of genes that are involved in the respective pathways. b Kaplan–Meier curve of the disease-free survival periods of
patients afflicted with oesophageal adenocarcinoma with or without alterations to genes involved in the abacavir metabolism pathway. c Kaplan–Meier
curve of the disease-free survival periods of patients afflicted with uterine corpus endometrial carcinoma, with or without alterations to genes involved in
the abacavir metabolism pathway
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identify gene alterations were gene copy number counts and somatic mutations
(point mutations and small insertions/deletions). We also used mRNA expression
data and comprehensive deidentified clinical data for all the TCGA study
participants.

Metabolic gene alterations in the TCGA cancers. We accessed information of all
human metabolic pathways from the Reactome pathways database version 6825.
Reactome pathways are arranged into several tiers with the Reactome term
“metabolism” (Reactome ID: R-HSA-1430728), encompassing 68 different meta-
bolic pathways (see https://reactome.org/PathwayBrowser/#/R-HSA-1430728). The
first-tier pathways include sixteen curated metabolic pathways which involve
2325 genes.

For each of the 32 human cancers, we calculated the overall percentage of
samples with mutations and/or copy number alterations in genes that belong to
each of the sixteen first-tier metabolic pathway as defined in the Reactome pathway
database (see the spreadsheet, “Metabolic Pathways - First Tier”, of Supplementary
file 2). This provided us with alteration frequencies for each metabolic pathway in
each human cancer (Fig. 1c). We applied unsupervised hierarchical clustering with
the squared Euclidean distance metric to these data to identify altered metabolic
gene supertypes of human cancers (Supplementary Fig. 1). Based on the clustering
dendrogram that this yielded, we identified two cancer supertypes, which for
simplicity, we named as either HM or LM, for those that respectively displayed
higher or lower numbers of first-tier metabolic pathway associated gene alterations.
The clustering of tumours into the two supertypes was highly coherent, with a
cophenetic correlation coefficient of 0.89 and a Spearman’s rank correlation
between the dissimilarities and the cophenetic distances of 0.954.

We extracted information relating to the genes that encode proteins of the
second-tier metabolic pathways for only three of the first-tier pathways: those of
carbohydrate, lipid and amino acid metabolism. Again, we used the approach for
determining the extent of gene alterations (as described above) to calculate the
fraction of tumours with alterations to genes involved in second-tier metabolic
pathways across each cancer type (Fig. 3). Also, using the same approach, we
calculated the fraction of tumours with alterations in the genes that encode
enzymes of the central metabolic pathway and their regulators (Fig. 4).

Analysis of mRNA expression profiles of metabolic pathway genes across
cancers. We collected mRNA expression data of the genes that were profiled by the
TCGA. Among this mRNA transcript data, we found information on only 1977
genes out of the 2325 genes that are involved in metabolism. We used the t-
Distributed stochastic neighbourhood embedding algorithm to minimise the
divergence between the 1977-mRNA transcripts across cancers to return a two-
and three-dimensional embedding of the 32 human cancers84. The overall struc-
ture of these transcript embeddings was visualised using scatter plots, first based on
the cancers’ metabolic supertypes (HM and LM) and second based on the cancer
types (Fig. 5a–c). To test for correlations between the mRNA transcripts of human
cancers, we first calculated the mean transcript levels of the 1,977 metabolic
pathway genes for each cancer and then used these mean values to calculate
pairwise Pearson’s linear correlation coefficients between each pair of the 32
human cancers (Fig. 5d)85.

We retrieved all 20,502 of the mRNA transcripts that were measured by the
TCGA project across all cancer studies and applied t-SNE to visualise the clustering
of HM tumours across a dimensional space (Supplementary Fig. 6A). Further, we
applied DBSCAN54 to cluster tumours belonging to the HM cancer supertype into
various subgroups (Supplementary Fig. 6A).

Gene expression and enrichment characteristics of the HM and LM cancer
supertypes. The differentially expressed genes between the cancer supertypes
were identified using the Student t-test with unequal variance and with the
Benjamin-Hochberg correction applied to p-values86,87. Further, we queried
Enrichr with two lists of 803 and 1118 genes found to be upregulated in HM
tumours and LM tumours, respectively, to return enriched Gene Ontology (GO)
molecular functions for each supertype (see Supplement File 3)88. A custom
MATLAB script was used to create an enrichment network based on the enriched
GO-molecular function designations. This enrichment network was visualised in
yEd (Supplementary Fig. 6).

Alterations of metabolic genes in cancer cell lines. We obtained mutation and
copy number alteration data for 1,002 cancer cell lines and 224,202 dose-response
profiles of these cell lines to 267 anticancer drugs from the Genomics of Drug
Sensitivity in Cancer (GDSC) database version 7.0 (www.cancerRxgene.org)23. For
downstream analyses, we focused on only the 812 cancer cell lines for which a
complete set of gene alterations and drug response data was available.

Next, we calculated the frequencies of alterations in genes involved in the
sixteen first-tier metabolic pathways in the cancer cell lines using the approach
previously described for the 32 human cancers (Fig. 8a, Supplementary Fig. 7).
Finally, we used χ2 tests to identify possible differences between the TCGA cancers
and the GDSC cell lines concerning the alteration counts of genes involved in the
first-tier metabolic pathways (see results in supplementary file 1).

Dose-response characteristics of the LM and HM cancer cell lines. From the
list of 812 GDSC cancer cell lines, we returned only 653 cancer cell lines for which
the GDSC have assigned a TCGA classification to the cell lines’ primary cancer.
Altogether, these 653 cell lines corresponded to only 23 of the 32 different human
cancers profiled by the TCGA (Fig. 7). The GDSC treated these 653 cancer cell lines
with 251 distinct anticancer drugs that target 24 different signalling pathways and
biological processes (Supplementary Fig. 8).

We used Student t-tests to compare the mean differences in the logarithm
transformed IC50 values between the HM and LM cell lines for each class of
anticancer drugs that we segregated based on the target signalling pathway and/or
biological process (Fig. 8b, also see Supplementary file 2). Additionally, we
compared the mean differences in the logarithm transformed IC50 values between
HM and LM cell lines for each anticancer drug separately (Supplementary file 2).

Identification of metabolic disease subtypes for each cancer type. For each of
the 32 human cancer types, we calculated the frequency of alterations to genes
involved in the 16 first-tier metabolic pathways. We then applied unsupervised
hierarchical clustering to these data to identify subtypes of disease for each cancer
(see examples in Supplementary Fig. 9).

Comparison of dose-response profiles within each cancer type for tumours
with or without specific pathway alterations. For each particular human cancer,
we collected all corresponding cell lines from the GDSC database. Then, for each of
the 16 first-tier metabolic pathways, we segregated these cancer cell lines into two
groups: those with and those without alterations in genes involved in a particular
metabolic pathway. Finally, we compared the logarithm transformed IC50 values
for each of the 251 anticancer drugs between the two groups of cell lines using the
Wilcoxon rank sum test. Subsequently, we only returned drugs that had associated
IC50 values which differed between cell lines of human cancers with and without
alterations of genes involved in a particular metabolic pathway (Supplementary
Fig. 9 and Supplementary file 2). Note that these comparisons were only made in
the cases were at least four cell lines had alterations of genes involved in a particular
metabolic pathway and at least four other cell lines did not have such alterations.

Survival analysis. The Kaplan–Meier method was used to estimate overall survival
and the duration of disease-free survival between the HM and the LM supertypes of
human cancer36. To validate our findings concerning the overall survival of the
TCGA HM and LM supertypes, we downloaded an independent dataset of overall
survival outcomes from the ICGC data portal37 for individuals afflicted with
tumours of types corresponding to those in the TCGA database. Since the ICGC
data portal also contains some cancer datasets from the TCGA, we removed these
to return a dataset of 3146 patient tumours that are unique to the ICGC. Next, we
classified these ICGC patient tumours into the HM or LM supertype categories
based on the TCGA classification label provided within the ICGC database. We
then compared the overall survival of these HM and LM patients. Also, the
Kaplan–Meier method was applied to assess the survival outcomes of oesophageal
adenocarcinoma and uterine corpus endometrial carcinoma patients who had
tumours with or without alterations to genes involved in the abacavir metabolism
pathway.

Further, for each of the 32 cancer types, we individually classified tumours into
two categories: those with either higher or lower alteration frequencies to metabolic
genes. Here, we used the median alteration rate within each cancer type as the cut-
off point for dichotomising the tumours into higher and lower metabolic gene
alteration frequency categories. For each of the 32 cancer types, we compared the
clinical outcomes of patients by comparing the OS and DFS periods between them
(see Supplementary file 2).

The Kaplan–Meier method was also used to estimate OS and DFS between the
subgroups of HM tumours that we identified using DBSCAN.

Statistics and reproducibility. All statistical analyses were performed in
MATLAB 2019a. Fisher’s exact test was used to assess associations between cate-
gorical variables. The independent sample Student t-test or the Wilcoxon rank sum
test and the one-way Analysis of Variance were used to compare continuous
variables where appropriate. Statistical tests were considered significant at p < 0.05
for single comparisons, whereas the p-values of multiple comparisons were
adjusted using the Benjamini–Hochberg method.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Ethical approval. The University of Cape Town; Health Sciences Research Ethics
Committee IRB00001938 approved the protocol of this study. This study involved
the analysis of publicly available datasets that were collected by the TCGA, ICGC,
GDSC and other databases from consenting participants. All methods were per-
formed following the relevant policies, regulations and guidelines provided by the
TCGA, ICGC, GDSC and other databases for analysing their datasets and reporting
of the findings.
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Data availability
The data that support the findings of this study are available from the following
repositories: cBioPortal (https://www.cbioportal.org/), Genomics of Drug Sensitivity in
Cancer (https://www.cancerrxgene.org/), and International Cancer Genome Consortium
(https://icgc.org/). The source data in cancer studies and genomic alterations are shown
in Supplementary Data 1. Analyses used to show dose-response differences are presented
in Supplementary Data 2. Full lists of differentially expressed genes are presented in
Supplementary Data 3.

Code availability
Custom MATLAB code used for data processing and analysis is freely available at:
https://github.com/smsinks/Pancancer-Metabolic-Gene-Alterations. The repository
includes some predownloaded datasets and conversion files required to reproduce the
analysis.
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