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Abstract

Background and Aims: To examine whether Heart Rate Variability (HRV) measures can be 

used to detect Neurocardiogenic Injury (NCI).

Methods: 326 consecutive admissions with aneurysmal subarachnoid hemorrhage (SAH) met 

criteria for the study. 56 of 326 subjects (17.2%) developed NCI which we defined by wall motion 

abnormality with ventricular dysfunction on transthoracic echocardiogram or cardiac troponin-I > 

0.3 ng/mL without ECG evidence of coronary artery insufficiency. HRV measures (in time and 

frequency domains, as well as nonlinear technique of detrended fluctuation analysis) were 

calculated over the first 48 hours. We applied longitudinal multilevel linear regression to 

characterize the relationship of HRV measures with NCI and examine between group differences 

at baseline and over time.

Results: There was decreased vagal activity in NCI subjects with a between group difference in 

Low/High Frequency Ratio (beta 3.42, SE 0.92, p=0.0002), with sympathovagal balance in favor 

of sympathetic nervous activity. All time-domain measures were decreased in SAH subjects with 

NCI. An ensemble machine learning approach translated these measures into a classification tool 

that demonstrated good discrimination using the area under the receiver operating characteristic 
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curve (AUROC 0.82), the area under precision recall curve (AUPRC 0.75), and a correct 

classification rate of 0.81.

Conclusions: HRV measures are significantly associated with our label of NCI and a machine 

learning approach using features derived from HRV measures can classify SAH patients that 

develop NCI.
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Introduction

Aneurysmal subarachnoid hemorrhage (SAH) patients are at risk for neurocardiogenic 

injury (NCI) via a neurally mediated process of excessive catecholamine release by cardiac 

sympathetic nerve terminals.1, 2 Myocardial necrosis occurs with a release of cardiac 

enzymes unrelated to coronary artery insufficiency.2-4 It is a mostly reversible condition that 

can occur in the first 3 days in 15-22% of SAH patients3, 5-11 In its severe form, regional 

wall motion abnormalities (RWMA) and/or ventricular dysfunction (VD) can be seen on 

transthoracic echocardiogram (TTE).5, 8, 12 This is known as neurogenic stunned 

myocardium (NSM).13 The diagnosis of NCI is dependent on clinical triggers for cardiac 

troponin-I (cTI) and TTE testing; cTI indications include ECG changes or chest pain, while 

TTE indications include cTI levels > 0.3 ng/mL,3, 14 ECG abnormalities, symptoms of 

hypotension, chest pain, or arrhythmia.3, 15, 16 Studies of NSM expectedly suffer from 

biased samples in which not all SAH patients meet the clinical triggers to undergo TTE. 

NSM can be seen with cTI levels of < 0.3 ng/mL.7, 17

ECG monitoring is universal in the intensive care unit. Online computational analyses 

already enable ectopy and arrhythmia detection and alarm-setting for goal-directed clinical 

attention.18-20 A large body of literature suggests that HRV measures may play a role in 

classifying outcome in a variety of disease types including sepsis,21 stroke,22 trauma,23 and 

others.24, 25 In small studies of subjects with26 and without27 SAH (both n = 13), time-

varying HRV measures were found to be associated with NSM.

We sought to test the association of HRV measures with NCI in SAH patients in a large 

dataset with consecutive SAH subjects with universal TTE per protocol. In addition, we 

explored whether HRV features could be used to build a machine learning classifier for NCI 

in SAH patients. There is no consensus definition of NCI; the label used to train our 

classifers was defined as an ejection fraction < 55% (abnormal) with hypokinesis/akinesis of 

any cardiac wall on TTE and without a history of cardiomyopathy or congestive heart 

failure, or cTI > 0.3 ng/mL without ECG evidence for coronary artery insufficiency.14, 17, 28
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Materials and Methods

Patient Cohort

Consecutive patients with SAH admitted to the neurologic intensive care unit (NICU) were 

prospectively enrolled in an observational cohort study designed to identify novel risk 

factors for secondary injury and poor outcome. Inclusion criteria were SAH secondary to 

ruptured aneurysms that were secured (by clipping or coiling). We excluded patients with 

SAH secondary to perimesencephalic bleeds, trauma, arteriovenous malformation, patients < 

18 years old, or history of congestive heart failure with decreased ejection fraction on initial 

transthoracic echocardiogram (only 1 patient). The study was approved by the Columbia 

University Medical Center Institutional Review Board. In all cases, written informed consent 

was obtained from the patient or a surrogate.

Cardiac Testing

All patients had an ECG and cTI on admission. cTI was repeated in all patients with an 

abnormal ECG (Q waves, QTc prolongation, ST-segment abnormalities, or T-wave 

inversion) or clinical signs or symptoms of potential cardiovascular dysfunction (pulmonary 

edema, hypertension or hypotension demonstrated by systolic blood pressure > 160 or < 100 

mmHg respectively, arrhythmia, or chest pain).3, 15, 29 Standard practice at our institution 

was to obtain TTE within 3 days of admission on all SAH patients.15 All echocardiograms 

were interpreted by an attending cardiologist who was not blinded to the clinical status of 

the patient (diagnosis of SAH may have been known). Echocardiograms were performed 

using two-dimensional sector scanning, Doppler color flow mapping, and pulsed and 

continuous wave Doppler interrogation. Standard parasternal long axis, short axis, and apical 

2- and 4- chamber views were obtained for analysis of WMA. Left ventricular ejection 

fraction (LVEF) was visually estimated and rated as normal (LVEF ≥ 55%), mildly (LVEF 

40-54%), moderately (LVEF 30-39%), or severely (LVEF < 30%) depressed. Repeat TTE 

was performed as clinically indicated, as a result of new ECG changes, cTI > 0.3 ng/mL, 

arrhythmias, unexplained hemodynamic changes (e.g. falling blood pressure), or 

unexplained pulmonary edema.

Data Collection

Baseline demographic and clinical information were collected (Table 1), including age, sex, 

underlying conditions that influence autonomic nervous system activity or HRV 

interpretation (history of acute myocardial infarction, congestive heart failure, diabetes, 

history of beta-blocker use prior to hospitalization, and atrial fibrillation or arrhythmia), 

aneurysm location, ICU length of stay, Hunt Hess (HH) grade, Modified Fisher Scale 

(MFS), Glasgow Coma Scale (GCS), World Federation of Neurological Surgeons Grading 

System (WFNS), and DCI. ECG data was acquired using a high-resolution acquisition 

system (BedmasterEX; Excel Medical Electronics Inc, Jupiter, FL, USA) from General 

Electric Solar 8000i monitors (Port Washington, NY, USA; 2006-2013) at 240 Hz, from ICU 

admission to discharge. HRV analysis was restricted to non-overlapping 300-s (5-min) 

epochs of ECG data, as is standard practice. Features were created from summary statistics 

of 48 hours of HRV analyses since admission.
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The targeted classification outcome was NCI, which currently lacks a consensus definition. 

We defined NCI as an ejection fraction < 55% (abnormal) with hypokinesis/akinesis of any 

cardiac wall on TTE and without a history of cardiomyopathy or congestive heart failure, or 

cTI > 0.3 ng/mL without ECG evidence for coronary artery insufficiency.14, 17, 28

Statistical Procedures

Frequency comparisons for categorical variables were performed by Fisher exact test. Two-

group comparisons of continuous variables were performed with the non-parametric Mann-

Whitney U test, to avoid any assumption about the distribution of the data. All statistical 

tests were two-tailed and a p-value < 0.05 was considered statistically significant.

To assess whether NCI discrimination could be achieved via commonly acquired clinical 

data, median HR, oxygen saturation (SPO2), systolic (SBP), and diastolic blood pressure 

(DBP) were compared.

R-wave detection was achieved by wavelet decomposition of ECG signal, using an 

algorithm verified on over 10,000 clinical studies.30 The algorithm includes artifact 

detection for the selection of artifact-free segments. More details of ECG analysis are 

provided in Appendix A. HRV analysis, per standard practice, was restricted to non-

overlapping 300-s (5-min) epochs of ECG data.31 Various time- and frequency-domain 

methods were used to quantify HRV (descriptions in Appendix B). Time-domain measures 

included mean of normal R-R intervals (MNN), standard deviation of interbeat intervals 

(SDNN), coefficient of variation of interbeat intervals (CV of HR), root mean square of 

successive differences of interbeat intervals (RMSSD), and the Poincare plot statistics (SD1, 

SD2, and their ratio). Frequency-domain measures included normalized low frequency (LF) 

power, normalized high frequency (HF) power, and LF/HF ratio. A description of these 

methods is found in a consensus guide for the measurement and physiologic interpretation of 

ECG for clinical use.31 Detrended fluctuation analysis (DFA) is a nonlinear technique which 

quantifies the long-range correlation behavior in nonstationary physiological time series 

data.32 More details of DFA are provided in Appendix C.

We created longitudinal multilevel linear regression models where each HRV measure was 

the outcome (resulting in 12 separate models), and NCI was the exposure of interest. We 

studied whether expected values of the intercepts and slopes were affected by NCI; that is, 

the inter-group difference and intra-subject variability (accounting for multiple 

measurements per person) over time. These models enabled us to show if HRV is different 

between groups (NCI+/ NCI−), and whether the shape of the HRV trajectory changes over 

time. An alpha level of 0.05 was significant for these models. Statistical analysis was 

performed using SAS software (SAS Institute 2011, Cary, NC). See Appendix D for further 

explanation of the multilevel linear regression method.

While traditional statistical approaches can demonstrate significant between-group 

differences, they do not function as a translatable tool for classification in an individual.33, 34 

In other words, while there may be significant between-group HRV differences, there is 

enough overlap of data points for the two groups that precludes distinction of a clinical 

diagnosis.35 To translate our findings into a tool for classification, we applied an ensemble 
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machine learning approach. We computed summary statistics (mean, median, standard 

deviation, entropy, and slope) for each of the 12 HRV measures for the first 48 hours from 

the time of their admission resulting in 60 features. We applied minimal redundancy and 

maximal relevance (mRMR)36 criterion to select the features that maximally stratify these 

two classes. We maximized the mutual information between features and classes (i.e. 

relevance) while minimizing the mutual information among features (i.e. redundancy). 

These features were ranked in order of relevance and 25 features were selected empirically 

to maximize the performance of the classifier. We then built L1-regularized logistic 

regression (LR), linear and kernel support vector machine (SVM-L, SVM-K), random forest 

(RF), and ensemble classifiers. Ensemble classifiers (EC) are based on soft voting, which 

predicts the class labels based on the predicted probabilities for classifiers, i.e.,

y = arg max
i

∑j = 1
m wjpij

Where y is the computed probability by the voting classifier, Wj is the weight assigned to the 

jth classifier and i ∈ {0,1} for a binary classifier.

We performed nested five-fold cross-validation to tune model parameters and to report the 

accuracy. More details of how nested cross-validation is used to prevent over-fitting are 

provided in Appendix E. All classifiers were evaluated for good discrimination using the 

area under the receiver operating characteristic curve (AUROC). We report the median 

AUROC, ± standard deviation (SD). AUROC can generate overly optimistic estimates of 

discriminative performance when the frequency of events is rare.37-39 We therefore also 

calculated precision recall curves40 and confusion matrices to show the overall correct 

classification rates. Computation of features was performed in Matlab (Mathworks, Natick, 

MA) and machine learning models were built in Python (www.python.org).

Results

326 SAH subjects from April 2006 to January 2013 were included for analysis. 56 (17.18%) 

subjects had NCI. The mean age was 55.70 (± 14.06) years, 227 were women (69.63%), and 

217 were non-white (66.56%). Underlying diseases that influence autonomic nervous 

activity were balanced between those with and without NCI, including history of acute 

myocardial infarction (1.79 vs 2.65%, p=1), congestive heart failure (1.79 vs 1.14%, 

p=0.54), diabetes (5.36 vs 8.68%, p=0.59), prior beta-blocker use (12.50 vs 12.96%, p=1), 

and atrial fibrillation or arrhythmia (3.57 vs 0.76%, p=0.14). There were no differences in 

aneurysm location. Subjects with NCI had higher scores on clinical scales quantifying 

neurological impairment on admission (HH, GCS, and WFNS). There were no differences in 

a grading scale on admission for DCI (MFS) or for incidence of DCI. Average length of ICU 

stay was longer for NCI+ subjects (15.69 vs. 12.84 days, p=0.014). (Table 1). 294 of 326 

subjects (90.18%) underwent TTE, on average 1.65 days after admission. 321 of 326 

subjects (98.47%) had cTI levels. 40 of 56 NCI+ subjects (71.4%) met TTE criteria for 

NSM. Using Mann-Whitney U test, median HR, SPO2, and DBP were different between 

groups of NCI+ and NCI− subjects, while SBP was not (Appendix F). There was notable 

overlap in the distribution of simple vitals data, indicating the need for more sophisticated 
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methods to classify individual patients (Figure 1). For summary statistics of HRV features 

for NCI+ and NCI− groups, refer to Appendix G.

Using multilevel linear regression models to account for repeated measures over time within 

each subject, we found an association between many of the HRV measures and NCI (Table 2 

and Figure 2). There were significant between-group differences for all HRV measures 

except HFP, LFP, and DFA Alpha 1. Overall, subjects with NCI had decreased HRV values, 

as indicated by the Beta (MNN, SDNN, CV, RMSSD, SD1, SD2) reported in (Table 2). 

LHR, SD Ratio, and DFA Alpha 2 were higher in those with NCI. All HRV measures had 

significant changes over time in NCI+ subjects, except for SD2, DFA Alpha 1, and DFA 

Alpha 2. We found that while there were no significant differences for LFP and HFP values 

between NCI groups, the change over time in these measures (LFP, HFP) was statistically 

significant. The SD2 and DFA Alpha 2 values were significantly different between NCI 

groups. However, the change in these HRV measures (SD2, DFA Alpha 2) over time were 

not statistically significant. There was no statistically significant association for DFA Alpha 

1, either between NCI groups or over time.

Machine learning approaches were applied to ascertain the power of these HRV measures 

for classifying NCI. The top 25 ranking features selected by MRMR are listed in Appendix 

H. Model evaluation for the five different classifiers are reported in Appendix I and Figure 3. 

Ensemble classifier performed the best with AUROC of 0.82 ± 0.05; AUPRC of 0.75 ± 0.10 

(EC). EC was able to classify NC1+ with an accuracy of 75 ± 13% (median ± SD) and NCI− 

with an accuracy of 86 ± 8% (median ± SD), indicating that the classifier is not biased to 

one group (NCI+ or NCI−).

Discussion

Early and passive recognition of NCI after SAH would enable identification of patients at 

increased risk for cardiopulmonary complications, delayed cerebral ischemia (DCI), death, 

and poor functional outcome.3 Those that also have NSM could benefit from enlightened 

vasopressor choices and awareness of obstacles to maintaining cerebral perfusion in cases of 

DCI.41-46

In a prior study of 13 patients with takotsubo cardiomyopathy, HRV measured shortly after 

hospital admission demonstrated lower values of the time-domain features SDNN and 

SDANN. In a pilot study of 13 high grade SAH patients, the time-domain feature RMSSD 

had significant between group differences for NSM,26 the severe form of NCI with RWMA 

or VD. In our analysis of patient data from a prospectively collected observational cohort, 

we found that HRV measures are significantly influenced by NCI in SAH patients. To our 

knowledge, this is the largest human study of HRV in SAH patients with NCI, and the only 

one to use machine learning approaches to classify NCI.

We were able to show that HRV measures are significantly influenced by NCI (both baseline 

values and changes over time). Notably, all time domain HRV values were lower in NCI 

subjects compared to those without NCI. Also, LHR values were higher in NCI subjects 

compared to those without NCI. It is known that there is increased blood catecholamine 
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concentrations in the first two days of SAH.47 The between group difference in LHR 

suggests a sympathovagal imbalance tipped in favor of enhanced sympathetic nervous 

activity, vagal withdrawal, or relative lack of augmentation in vagal activity specific to those 

who develop NCI.

To translate our findings into a tool for classification, we applied an ensemble machine 

learning approach, which showed good discrimination with an AUROC of 0.82, an AUPRC 

of 0.75, and a correct classification rate of 0.81. The threshold of accuracy required of a 

clinical decision-making tool is dependent on clinical context. For a critical and unique 

laboratory test which requires utmost accuracy, favoring zero false positives and negatives, 

an AUROC should approach 1.0. For a clinical prediction tool which is meant to support 

clinical decision making and allow better cognitive framing of an individual patient for 

which one must allocate invasive testing or monitoring resources, a threshold of 0.8 may be 

sufficient. For example, current and foreseeable models of breast cancer risk achieve AUCs 

of 0.6 to 0.7 and yet are useful for counseling and prevention activities48.

The challenge to timely detection of syndromes such as NCI is the insidious or subtle nature 

of symptom onset, and the dependency on obtaining a TTE. The development of an 

automated operator-independent monitoring tool and non-invasive biomarker for early 

detection has the potential to improve patient outcomes. This approach is increasingly 

pursued for other subclinical or subtle syndromes, such as neonatal decline49, sepsis50-57, 

pre-cardiac arrest58, or vasospasm.59 The universal availability of telemetry in critical care 

units positions ECG and heart rate variability (HRV) analyses as a high-yield target for 

clinical decision support.

Our study has several limitations. First, there is no consensus definition of NCI, and the 

criteria we have used for NCI has not been validated. This limits immediate generalization 

of the findings, but as our definition is based on data typically collected as part of routine 

medical care this will allow validation on an independently collected dataset. Second, while 

the rigorous definition of NCI would necessitate the exclusion of coronary artery disease, 

this has proved impractical in a clinical setting because SAH patients are not typically stable 

enough to undergo coronary catheterization nor qualify for anticoagulation, so diagnostic 

maneuvers are delayed until a future time of stability and/or allowance for treatment (if 

indicated). At that future state, NCI has typically declared itself by its reversibility. This 

practice is supported by a well-defined literature showing that the phenomenon of 

catecholamine-mediated neurocardiogenic injury, specifically neurogenic stunned 

myocardium, occurs in the presence of normal coronary arteries (by autopsy or 

angiography)10, 60-63. In the clinical setting, practical criteria are used to differentiate 

myocardial infarction from NCI after SAH17. As cardiac injury may influence HRV64, it is 

possible that our model may have the potential to also identify patients with non-NCI 

cardiac injury. While our model is not designed to identify all patients with any cardiac 

injury, if non-NCI cardiac dysfunction was identified, this lack of specificity would not be 

harmful. Third, there are challenges to overcome when using HRV for clinical diagnosis, 

including the influence of noise and artefacts inherent within ECG signals collected within 

the in-hospital setting, the lack of specificity, the lack of “normal” or threshold values, high 

inter-subject variability, and unpredictable responses to standard physiological interventions.

Megjhani et al. Page 7

Neurocrit Care. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



35,65,71 Excluding artefactual segments from HRV analysis and using a machine learning 

approach for classification minimizes the impact of these issues. Fourth, other factors that 

affect autonomic tone were not included in our prospectively collected data (i.e. precise 

doses of sedation medication). While timing and dosing of medications may influence our 

ability to interpret the precise interactions between NCI and HRV features, the advantage of 

employing machine learning methods is that full understanding of causality is not necessary 

for classification; the presence of a relationship between HRV features and NCI is 

sufficiently reflected by the successful performance of the model.

The availability of cardiac telemetry in critical care units makes HRV a high-yield target for 

further studies. Future effort will explore a more robust feature set and advanced machine 

learning models to improve the performance of our classifiers. We also plan to implement 

and validate a temporal classification model as a clinical decision support tool delivered to 

relevant clinicians (treating physicians and nurse) for the early detection of NCI after SAH, 

perhaps as a trigger for diagnostic TTE.

Conclusions

A consensus definition of NCI does not exist, but it is recognized that it increases risk for 

cardiopulmonary complications, delayed cerebral ischemia (DCI), death, and poor 

functional outcome after SAH. HRV measures are significantly associated with our 

definition of NCI (between groups and within group changes over time). A machine learning 

approach using features derived from HRV measures can classify SAH patients that develop 

neurocardiogenic injury.
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Figure 1. 
Distribution of commonly acquired vital signs. While heart rate (HR), oxygen saturation 

(SPO2), and diastolic blood pressure (DBP) are statistically different between NCI+ and 

NCI− groups, none of these standard vital signs can be used to distinguish individual 

subjects’ NCI classification because of overlap. * indicates statistical significance, using 

Mann-Whitney U test.
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Figure 2. 
Difference of HRV measures between NCI groups and changes over time. Asterisk(*) 

indicates there are significant between-group differences. Hashtag(#) indicates the HRV 

measures change over time with statistical significance. (HRV = heart rate variability; NCI = 

neurocardiogenic injury). The x-axis represents the time since admission and y-axis 

represents the normalized values of different HRV measures, solid lines indicate median 

values and shaded parts indicate the variance.
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Figure 3. 
Illustrating the performance of five different classifiers and the feature weights associated 

with, e.g., the LR classifier. (A) cross-validation results of five classifiers displayed using 

box plots, (B) area under the receiver operating characteristic curves, (C) area under 

precision recall curves, (D) confusion matrices of the five classifiers (LR = logistic 

regression, SVM-L = support vector machine – linear, SVM-K = support vector machine – 

kernel, RF = random forest, EC = ensemble classifier).
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Table 1.

Characteristics of SAH patients with and without NCI

Patient Characteristics NCI+
(n=56)

NCI−
(n=270) p value 

a

Age, years (mean ± SD) 53.23 ± 15.82 55.01 ±13.71 0.46

Female Sex, % 75.00
(42/56)

68.52
(185/270) 0.42

Length of Intensive Care Unit Stay (mean ± SD) 15.69 ± 8.15 12.84 ± 7.06 0.014

History of Congestive Heart Failure, % 1.79
(1/56)

1.14
(3/264) 0.54

History of Beta-Blockers, % 12.50
(7/56)

12.96
(35/270) 1.00

History of Atrial Fibrillation/ Arrhythmia, % 3.57
(2/56)

0.76
(2/264) 0.14

History of Acute Myocardial Infarction, % 1.79
(1/56)

2.65
(7/264) 1.00

History of Diabetes, % 5.36
(3/56)

8.68
(23/265) 0.59

Aneurysm Location, % 0.17

Anterior 53.57
(30/56)

63.70
(172/270)

Posterior 46.43
(26/56)

36.30
(98/270)

Hunt Hess Grade, % <.00001

1-3 37.50
(21/56)

78.65
(210/267)

4-5 62.50
(35/56)

21.35
(57/267)

Modified Fisher Scale, % 0.29

0-2 20.41
(10/49)

28.92
(72/249)

3-4 79.59
(39/49)

71.08
(177/249)

Glasgow Coma Scale, % < .00001

3-8 60.71
(34/56)

20.97
(56/267)

9-12 16.07
(9/56)

9.74
(26/267)

13-15 23.21
(13/56)

69.29
(185/267)

World Federation of Neurological Surgeons Grading System, % < .00001

1-3 23.21
(13/56)

69.29
(185/267)

4-5 76.79
(43/56)

30.71
(82/267)

Delayed Cerebral Ischemia, % 35.71
(20/56)

24.44
(66/270) 0.12
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a
p values were calculated using Fisher exact test for frequency comparisons of categorical variables and Mann-Whitney U test for two-group 

comparisons of continuous variables. All statistical tests were two-tailed. Significant values are highlighted in bold. SAH = subarachnoid 
hemorrhage; NCI = neurocardiogenic injury; SD = standard deviation.
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Table 2.

Results of Longitudinal Multilevel Linear Regression

Heart Rate
Variability
Measures

Baseline Values Changes Over Time for NCI+

Beta Standard
Error

p-value Beta Standard
Error

p-value

MNN −0.10 0.018 <0.0001 0.00015 0.000016 <0.0001

SDNN −0.016 0.0045 0.0003 0.0000053 0.0000025 0.0354

CV −0.102 0.018 <0.0001 0.00028 0.000011 <0.0001

RMSSD −0.016 0.005 0.0022 −0.00001 0.0000029 <0.0001

SD1 −0.010 0.004 0.0194 0.0000094 0.0000017 <0.0001

SD2 −0.020 0.0048 <0.0001 0.0000028 0.0000033 0.4013

SD Ratio 0.079 0.031 0.0103 −0.00010 0.000030 0.0007

HFP −0.221 0.119 0.0646 0.00036 0.00012 <0.0001

LFP −0.185 0.233 0.4271 −0.0013 0.00029 0.0035

LHR 3.42 0.92 0.0002 −0.015 0.0011 <0.0001

DFA Alpha 1 −0.049 0.031 0.1132 0.0000061 0.000032 0.0560

DFA Alpha 2 0.0867 0.019 <0.0001 −0.00003 0.000043 0.4936

NCI = neurocardiogenic injury; MNN = mean of normal RR intervals; SDNN = mean of the standard deviations for all normal to normal RR 
intervals; CV = coefficient of variation of the RR interval time series; RMSSD = square root of the mean squared differences of successive NN 
intervals; SD1 = quantitative interpretation of Poincare plot and the standard deviation of the minor axis; SD2 = quantitative interpretation of 
Poincare plot and the standard deviation of the major axis; SD Ratio = SD1/SD2; HFP = high frequency power; LFP = low frequency power; LHR 
= LFP/HFP; DFA = detrended fluctuation analysis. For explanations of these terms, see Appendix B and C.
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