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1. Introduction

Lumbar disc herniation (LDH) is a clinical syndrome in which localized displacement of 

disc material (nucleus pulposus or annulus fibrosus) is observed beyond the intervertebral 

disc, compressing and irritating nearby nerves, and may result in lower back pain and/or 

typical sciatica, manifested as pain, weakness and numbness in lower extremities.2,27 LDH 

is the most common etiology in low back pain. The overall prevalence of symptomatic 

lumbar disc herniation in the U.S. and European countries is reported approximately 1–3% 
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of the population,23,50 and a provincial level epidemiological investigation in China showed 

the incidence rate was 7.62%.51 Due to the inefficiency of medical treatment and persisting 

pain after surgery, LDH is a major source of chronic pain, rendering patients to physical 

inactivity, increased psychological distress, reduced social functional capacity, and thus 

remarkably diminishing their quality of life.19,25 On account of its high prevalence and 

significant contribution to disability, understanding brain functional properties of chronic 

pain consequent to LDH is of great importance.

Emerging evidence now support the idea that chronic pain is not just associated with 

molecular or structural changes in peripheral afferents and spinal cord circuitry that elicit 

disturbed nociceptive processes,24,45,49,54 but also accompanied with brain morphological 

and functional reorganization.8,11,16 This reorganization is observed in both event-related5,34 

and resting-state functional connectomes; for instance, increased associations between 

Default Mode Network (DMN) and mesolimbic regions across clinical pain populations,
7,12,35,47 and synchronization changes within and across brain intrinsic networks in different 

chronic pain conditions.6,36 Over the years, functional connectivity analysis has become an 

important tool for the characterizing brain physiological mechanisms of chronic pain.

Functional connectivity based networks can be studied regarding the topology of derived 

graphs as global markers of network disruption, unraveling relationships between disease 

conditions and brain function.1,26,48 Chronic pain is related to altered brain functional 

network topological measures, affecting the segregation and integration properties of brain 

information exchange both in animals and humans.4,40,57 The unitary global measure degree 

rank order disruption extent is associated with clinical properties of chronic back pain 

(CBP), complex regional pain syndrome (CRPS), and knee osteoarthritis (OA).31 The 

association was replicated in two independent CBP populations with two other graph 

indices.30 These observations suggest that examining graph topological measures and the 

extent of their disruption provides a new window for understanding the physiology of the 

brain in chronic pain.

Despite the remarkably high prevalence of LDH with chronic pain (LDH-CP), underlying 

brain physiology, especially the extent of disruption of global topological measures and how 

similar to, or different from, those observed in chronic back pain patients without LDH, 

remains unknown. Therefore, here we studied global brain functional properties in a large 

group of LDH-CP in Chinese population. We collected 146 LDH-CP and 165 healthy 

control (HC) subjects’ resting-state functional MRI (RS-fMRI) brain images, along with 

demographic information and pain-related behavioral measures. We applied a graph-theory-

based network analysis to compare brain properties between matched patients and healthy 

controls. The discovered results were then tested for corroboration in an out-of-sample 

validation group.

2. Methods

2.1. Participants

146 lumbar disc herniation (LDH) patients with chronic pain that persisted for at least 12 

weeks were recruited, and LDH was diagnosed by medical history, physical examination, 
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and consistent MRI assessment confirmed independently by two radiologists.27 These LDH 

patients were treated with physical therapy and/or took NSAIDs for pain relief. 165 healthy 

volunteers without chronic pain at least for the last 52 weeks (one year) were recruited as 

healthy controls (HC) (Fig. 1). Participants were excluded if they 1) were less than 18 or 

more than 75 years old; 2) reported history of head injury and/or cerebral disease (e.g. stroke 

or encephalopathy); 3) had diabetes and psychiatric disease; 4) reported history of brain 

neurosurgical procedures and/or epilepsy; 5) were unable to cooperate (e.g. psychogenic or 

cognitively impaired); 6) reported pregnancy, drug dependence or abuse; 7) were not suitable 

for MRI scan; 8) were enrolled in other clinical trial(s) involving investigational drug(s). All 

participants were scanned for structural and resting-state functional MRI (rs-fMRI). 10 LDH 

patients with chronic pain (LDH-CPs) and 8 HCs who didn’t pass our data quality control 

were removed from further data analyses (see “2.5. Quality control” for the details).

This study was approved by the Institutional Review Board of the Second Affiliated Hospital 

and Yuying Children’s Hospital of Wenzhou Medical University, China (Approval number: 

Clinical Scientific Research Ethical Review No. 8–2017) and all participants signed a 

written informed consent. All experiments were performed in accordance with Helsinki 

declaration, International Conference on Harmonization-Good Clinical Practice (ICH-GCP), 

the China Food and Drug Administration-Good Clinical Practice (CFDA-GCP) guidelines, 

and relevant laws and regulations in China.

2.2. Behavioral measures

All participants completed a demographic survey regarding age, gender, marital status, 

education (illiteracy, primary school, middle school, high school, undergraduate, and post-

graduate or higher), residence, smoking status (current smoker or not), alcohol drinking 

habits, exercise, and employment status. Educational levels were categorized to low 

education (middle school or below) and high education (high school or above). LDH-CPs 

reported their pain intensity and pain duration as well.

In addition, a battery of self-reported questionnaires related to pain were filled on the day 

when LDH-CPs were scanned, items included: Numerical Rating Scale (NRS)17, Oswestry 

Disability Index (ODI),15,29 McGill Pain Questionnaire - Short Form (sf-MPQ),13,21 Pain 

Catastrophizing Scale (PCS),44,46 Pain Anxiety Symptoms Scale (PASS),33,59 Positive and 

Negative Affect Schedule (PANAS),22,52 Beck Depression Inventory (BDI),10,58 and Pain 

Sensitivity Questionnaire (PSQ).41,43 NRS is an 11-point numerical rating scale used to 

measure pain intensity, where 0 corresponds to no pain and 10 indicates worst possible pain. 

ODI assesses physical impairment in relation to pain; sf-MPQ is a well-validated pain 

measure with sensory and affective components of pain (MPQ/s and MPQ/a), which also 

includes a visual analog pain scale (VAS) of pain. PCS is a 5-point instrument to assess 13 

thoughts or feelings on past pain experience. PCS yields three sub-scale scores assessing 

rumination (PCS/r), magnification (PCS/m), and helplessness (PCS/h) aspects. PASS 

measures fear and anxiety responses specific to pain. The PASS consists of four aspects of 

pain-related anxiety: cognitive suffering (PASS/c), escape-avoidance behaviors (PASS/e), 

fear of pain (PASS/f), and physiological symptoms of anxiety (PASS/p). PANAS has two 

mood scales, one measuring positive affect (PANAS/p) and the other measuring negative 
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affect (PANAS/n). Each scale is rated on a 5-point, 10-item scale. BDI is a 21-item 

instrument for measuring the severity of depression. PSQ is a 11-point, 17-item instrument 

used to assess individual pain sensitivity. PSQ is based on pain intensity ratings of 

hypothetical situations, which include various modalities (heat, cold, pressure, pinprick) and 

measures (pain threshold, intensity ratings). PSQ-minor (PSQ/min) and PSQ-moderate 

(PSQ/mod) were two subscales corresponding to mildly painful and moderately painful 

situation respectively. HCs were only required to fill PANAS, BDI, and PSQ.

All questionnaires were administered in Chinese and collected on an electronic tablet device 

using Research Electronic Data Capture (REDCap).20 REDCap is a secure, convenient, and 

efficient web application for capturing electronic survey data.

2.3. MRI scanning parameters

Subjects were scanned on a 3 Tesla GE-Discovery 750 scanner at Wenzhou Medical 

University (WMU), Zhejiang, China. T1-anatomical brain images were acquired with 

following parameters: voxel size 1 × 1 × 1 mm3; TR/TE = 7.7/3.4 ms; flip angle = 12°; in-

plane resolution = 256 × 256; slices per volume = 176; field of view = 256 mm. Rs-fMRI 

images were acquired on the same day with the following parameters: TR/TE = 2500/30 ms; 

flip angle = 90°; voxel size = 3.4375 × 3.4375 × 3.5 mm3; in-plane resolution = 64×64; 

number of volumes = 230; number of slices = 42, which covers the whole brain from the 

cerebellum to the vertex.

2.4. Rs-fMRI data preprocessing

A preprocessing pipeline was applied to all collected rs-fMRI data and NITRC open data 

from NITRC 1000 functional connectomes project (http://fcon_1000.projects.nitrc.org/), 

which were used as an off-site control. We used the FMRIB Expert Analysis Tool 

(www.fmrib.ox.ac.uk/fsl), MATLB2016a, and Bash Shell Scripting, performing the 

following steps: discard the first 4 volumes (10 seconds) for magnetic field stabilization; 

motion correction; slice-time correction; intensity normalization; high-pass temporal 

filtering (0.008 Hz) for correcting low-frequency signal drift; regression of cerebrospinal 

fluid (CSF) signal averaged overall voxels of eroded ventricle region, averaged white matter 

(WM) signal, and averaged global signal of whole brain; motion-volume censoring by 

detecting volumes with frame-wise displacement (FD) larger than 0.5 millimeter, Derivative 

Variance Root mean Square (DVARS) after Z normalization larger than 2.3, and standard 

deviation (SD) after Z normalization larger than 2.3, and scrubbing above detected (number 

of volume = i) and adjacent four volumes (i-2, i-1, i, i+1, i+2).37,39 FD is a measure of head 

motion from one volume to the next, and is calculated as the sum of absolute value of three 

translational displacements in x, y, z axis and three rotational displacements in pitch, yaw, 

and roll (units of radians), which were multiplied 50 to convert to similar units to 

translational displacements.39 DVARS is a measure of the change in volume intensity within 

a pre-defined gray matter (GM) mask from one volume to the next, calculated as the root 

mean square of the backward differentiated volumes; SD is a measure of deviation of 

volume intensity within the pre-defined GM mask. Because we were interested in low-

frequency fluctuations of resting-state fMRI signal, the above scrubbed time series were 

band-pass filtered (0.008–0.1 Hz) by applying a Butterworth filter.
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All pre-processed rs-fMRI data were registered to our in-house MNI_152_2mm template 

using FNIRT [ref. https://www.fmrib.ox.ac.uk/datasets/techrep/tr07ja2/tr07ja2.pdf], which 

were derived from NITRC 1000 functional connectomes project data sets.

2.5. Quality control

For rs-fMRI images, a robust quality control pipeline was used, and each image was 

assessed for excessive motion or bad signal to noise ratio. The number of censored motion-

volumes after preprocessing reflects the extent of a subject’s motion during scanning, so the 

number of remaining-volume is evaluated for each subject. Any subject with less than 120 

remaining volumes was excluded, which guaranteed a minimum of 5-minute-scanning 

images for functional connectivity analysis (Fig. 2A).

In addition, to further increase the consistency of functional connectivity within LDH-CPs 

or HCs, an outlier detection procedure was performed and the details were as follows: firstly 

for each subject, correlation coefficients of resting-state functional connectivity (RSFC) 

between 256 ROIs were generated; then, the upper (or lower) triangular correlation matrix of 

each subject was transformed into a vector; and correlation coefficients of all subjects in 

each group (146 LDH-PCs or 165 HCs) were separately calculated (Fig. 2B); finally, 

average of each column was calculated, representing the mean correlation coefficient across 

subjects of correlation coefficient across the 256 ROIs. The subjects with low average within 

group correlation (reflecting low similarity with the rest of the group; > two standard 

deviations from the average in each group), were identified as outliers and excluded from 

further analyses (Fig. 2C).

2.6. Study design

136 QC-passed LDH-CP (87 males and 49 females, mean age = 44 years, age range = 18–69 

years) were evenly allocated to either an exploratory group (Discovery) or a validation group 

(Validation) with matched demographics and pain-related behavioral data (Table 1). For 

each group, 68 HCs were randomly chosen from the pool of 157 QC-passed HCs with 

matched age and gender to its corresponding LDH-CP group (Table 2, 3). In addition, 272 

off-site healthy control subjects (174 males and 98 females, mean age = 42.4 years, age 

range = 18–85 years) were chosen from NITRC 1000 functional connectomes project (http://

fcon_1000.projects.nitrc.org/) as an external reference group. Data explorations were first 

performed only in the Discovery group (68 LDH-PCs and 68 HCs) and the results acquired 

in the Discovery were tested for corroboration in the Validation group (68 LDH-PCs and 68 

HCs).

2.7. Principal component analysis for reducing dimensionality of behavioral measures

Principal component analysis (PCA) with the varimax rotation method by Kaiser 

normalization was used to convert 16 correlated behavioral measures (NRS, MPQ/vas, ODI, 

MPQ/s, MPQ/a, PCS/r, PCS/m, PCS/h, PASS/c, PASS/e, PASS/f, PASS/p, PANAS/n, BDI, 

PSQ/min, and PSQ/mod) into linearly uncorrelated, orthogonal, principal pain-related 

components. Considering that pain characteristics are more related to negative psychological 

factors, the only positive measure, PANAS/p was removed from this dimensionality 

reduction analysis. Two criteria for component selection were employed: (1) eigenvalue 
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more than 1, and (2) percentage of explained variance above 10%. After the principal 

components were selected, component scores corresponding to each LDH-CP subject were 

created on each principal component and standardized along subject column to reflect a z-

score.

2.8. Global graph properties

As shown in Fig. 3, 256 regions of interest (ROIs) originated from 264 ROIs38 (excluded 8 

ROIs located in cerebellum) were used to construct ROI-based functional networks. Blood 

oxygenation level dependent (BOLD) signal of each ROI was extracted as an average over 

voxels within 10 mm diameter spheres centered at peak coordinates. Following this, a 256 × 

256 correlation matrix was generated, using Pearson correlation coefficients between BOLD 

signals for pairs of ROIs, representing resting-state functional connectivity (RSFC) strengths 

before thresholding. Fisher’s z transformation was applied to convert the Pearson correlation 

coefficient to normalized distributions. As described previously,1,31 to compare extracted 

functional networks and calculate global graph metrics, it is necessary to predetermine a link 

density, which is defined as the percentage of links (edges) with respect to the maximum 

number of possible links. In this study, 9 link densities were applied, from 2% to 10%.38 

Any pair of nodes of the brain functional network was set as “undirectly connected” if their 

correlation coefficient was above a subject-dependent threshold, thus generating a binarized 

network.

Under each given link density, 6 nodal-level (local) graph properties were respectively 

computed for each subject using the brain connectivity toolbox (BCT):42 ‘degree’ - a 

measure of network hubness, ‘clustering coefficient’ - a measure of network segregation, 

‘betweenness centrality’ - a measure of within-network communication, ‘efficiency’ - a 

measure of network integration, ‘small-worldness’ - a measure of network randomness’, and 

‘participation coefficient’ - a measure of diversity within a network. The average for each of 

the six metrics across 256 nodes produced their corresponding global graph metrics, for each 

subject. Note that global degree of each subject is the same for a given link density. 

Differences in global graph metrics between groups (LDH-CP, HC, and off-site HC) were 

computed using a repeated measure ANCOVA with age, gender, educational level, and 

current smoking status as covariates of no interest.

2.9. Graph topological disruption index (KD)

Graph topological disruption index (KD) is a well-recognized network-based assessment for 

brain functional reorganization, indicating a network property change in some regions while 

the opposite trend in other regions of the brain.30,31,48 By definition, KD is relative to a 

normative topological network. In this study, the topological network derived from 272 

subjects chosen in NITRC 1000 functional connectomes project was used as the off-site 

control and 5 graph topological disruption indices were computed in terms of their nodal 

metrics: degree (D), betweenness centrality (BC), clustering coefficient (CC), efficiency (E), 

and participation coefficient (PC) and referred as KD_D, KD_BC, KD_CC, KD_E, and 

KD_PC, respectively.
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To construct KD_D for any given subject, as shown in (Fig. 3), degree of each node was 

subtracted from the mean degree of off-site control of its corresponding node at a pre-

defined link density. Following this, the difference of nodal degree (y axis) was plotted 

against the mean degree of off-site control (x axis) for all 256 nodes. Then KD_D is defined 

as the gradient of a straight line fitted to a scatter plot following the linear regression (y = 

KD_D *x + b), where y = nodal degree of the subject – mean nodal degree of off-site 

controls, x = mean nodal degree of off-site controls, and b = residual or intercept of the 

regression. Similarly, the above method for deriving KD_D was used to construct the other 4 

KDs.

For each KD, difference between groups (LDH-CP and HC) were computed using a repeated 

measure ANCOVA with age, gender, educational level, and current smoking status as 

covariates of no interest. Pearson’s correlation analyses were performed to calculate 

correlation coefficient between KDs within all HCs (n = 157) and all LDH-CPs (n = 136), 

respectively.

2.10. Correlation between graph disruption indices and pain-related components

Pearson’s correlation coefficients were computed between KDs at 5% link density and 3 

pain-related principal components derived from behavioral measures: pain intensity, pain 

emotion, and pain sensitivity. As LDH-CP patients were stratified to males (n = 43), females 

(n = 25), males with low education (Male-LE, n = 23), and males with high education 

(Male-HE, n = 20), correlation analyses were repeated within each stratified subgroup. 

Females were not educationally stratified because most (21 out of 25) were low-educated. 

Bonferroni’s corrected p value, 0.017 (0.05/3) was used as a significant threshold 

considering that the tests were repeated 3 times for the 3 pain-related components in each 

subgroup for each KD. At the end, a repeated measure ANOVA was performed to confirm a 

significant association not only at 5% link density but also across all densities.

2.11. Software

Statistical analyses were performed using MATLAB 2016a and JMP Pro version 13.2 (SAS 

Institute, Cary, NC). Visualized network schemas were generated by Cytoscape, an open 

source software.14 Brain schemas of ROI and functional connectivity network were 

visualized on a surface rendering of a human brain atlas with the BrainNet Viewer (http://

www.nitrc.org/projects/bnv/).55

3. Results

3.1. Demographics and pain characteristics of LDH-CP patients

Table 4 summarized demographics and pain characteristics of the LDH-CP patients. Mean 

NRS (0–10; 0 = no pain, 10 = worst pain imaginable) was 4.99/10 with a standard error (SE) 

of 0.18; median pain duration was 104 weeks and the range of pain duration was between 12 

and 1040 weeks. 58.8% of the patients were males and 64.0% were with middle school or 

below education, respectively.
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Compared to HCs in this study, there was a significant difference in current smoking status 

(p < 0.01), PANAS/p (p < 0.01), PANAS/n (p < 0.01), and BDI (p < 0.01), indicating LDH-

CP patients suffered from more negative mood and depression. Other relationships between 

demographic variables and pain-related outcomes were not significant.

3.2. Three pain-related principal components derived from behavioral measures in LDH-
PC patients

PCA was used to convert 16 correlated behavioral measures in LDH-PC patients (Fig. 

4A)into linearly uncorrelated, orthogonal, principal components, which correspond to the 

latent dimensions of the data. In our study, only 3 components with an eigenvalue greater 

than one and explained variance > 10% were determined as principal components: pain 

emotion (explained variance 37.9%, eigenvalue 6.1), pain intensity (explained variance 

14.4%, eigenvalue 2.3), and pain sensitivity (explained variance 10.1%, eigenvalue 1.6) (Fig. 

4B). As shown in Fig. 4B and Table 5, using a threshold of 0.5 loading, components of pain 

emotion consisted of PASS/e, PASS/c, PASS/f, PCS/r, PCS/m, and PCS/h; pain intensity of 

NRS, MPQ/vas, and ODI; and pain sensitivity of PSQ/min and PSQ/mod. The three pain-

related principal components explained 62.4% variance of the data and the relationship 

between the three components and the reorganized network of behavioral measures after 

thresholding (top 25% linkage density) are shown in Fig. 4C.

3.3. Global graph metrics show significant difference in Discovery and a trend in 
Validation

Significant difference in global graph metrics between LDH-PC and HC was observed in the 

Discovery using a repeated measure ANCOVA with age, gender, educational level, and 

current smoking status as covariates of no interest. Compared to HC, clustering coefficient 

(F(1,130) = 9.08, p < 0.01) and betweenness centrality (F(1,130) = 5.45, p = 0.021) of LDH-

PC decreased across all link densities (Fig. 5A). The two metrics in HC were closer to those 

in the off-site HC than LDH-CP (Fig. 5A). However, when tested in the Validation group, 

the two global graph metrics only showed a trend of decrease in clustering coefficient 

(F(1,130) = 2.89, p = 0.091) and betweenness centrality (F(1,130) = 3.38, p = 0.068) (Fig. 

5B). No statistical differences were shown in the global efficiency, the small-worldness, and 

the participation coefficient between HC and LDH-CP in the Discovery group (Fig. 5C).

3.4. LDH-CP patients’ brain network is significantly disrupted

In the Discovery group, a repeated measure ANCOVA, with age, gender, educational level, 

and current smoking status as covariates of no interest, determined that graph disruption 

index of degree, KD_D, of LDH-CP was statistically significantly decreased compared to 

HC across all link densities (F(1,130) = 4.13, p = 0.044), which was replicated in the 

Validation group (F(1,130) = 5.58, p = 0.020) (Fig. 6A), and the most disrupted ROIs in 

LDH-CP were shown in Fig. 6B, which are located in medial ventral prefrontal cortex (red 

circles) and sensory motor cortex (blue circle). LDH-CP patients also showed decreased 

KD_CC (F(1,130) = 5.92 , p = 0.016) and KD_E (F(1,130) = 5.16, p = 0.025), with 

replication in the Validation group (KD_CC: (F(1,130) = 8.09, p < 0.01; KD_E: F(1,130) = 

5.41, p = 0.022) (Fig. 6C, 6D).
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3.5. LDH-CP patients’ graph degree disruption index is associated with pain intensity in 
males with high educational level

Since the graph degree disruption index, KD_D, was not significantly associated with any 

pain-related component derived from behavioral measures, we stratified the patients by 

gender and educational level to take these effects away from the analyses. Only in males 

with high educational level (Male-HE), the component of pain intensity and KD_D was 

significantly inversely correlated after Bonferroni’s correction (Fig. 7A, 7B). Fig. 7C 

depicted this correlation in the discovery (r = −0.56, p < 0.01) and validation results (r = 

−0.55, p = 0.017) at 5% link density. This correlation was further confirmed across all 

densities by a repeated measure ANOVA performed in both the Discovery (F(1,18) = 7.40, p 

< 0.01) and the Validation group (F(1,16) = 6.17, p = 0.024) (Fig. 7D).

3.6. Correlations between graph disruption indices and their associations with pain-
related components

The correlations between graph disruption indices were evaluated and shown in Fig. 6E. 

KD_D, KD_CC, KD_E, and KD_BC were significantly correlated with each other within 

either HC or LDH-CP. In particular, KD_D, KD_CC, and KD_E showed quite high 

correlation coefficients (more than 0.6, p < 0.01). Except for the significant association 

between KD_D and pain intensity in Male-HE, a statistically significant correlation between 

KD_E and pain intensity at 5% link density was also found in Male-HE in the Discovery (r = 

−0.50, p = 0.014) (Fig. 7E), although not replicated in the Validation (r = −0.26, p = 0.306) 

(Fig. 7E). Similar results can be observed when link densities were at 6%, 7%, 8%, 9%, and 

10% respectively (F(1,16) = 1.83, p = 0.195) (Fig. 7F)

Discussion

Even though a substantial population suffers from LDH, usually accompanied with chronic 

pain, and the condition is associated with a staggering health care cost, there is a lack of 

knowledge on how the brain adapts to this condition and how such brain adaptions relate to 

pain characteristics of LDH. To unravel these relationships, we collected 146 LDH patients’ 

resting-state functional MRI images along with their demographical and behavioral 

measures and approximately same number of age- and gender-comparative healthy controls. 

We constructed brain connectome networks, measured their global topological properties 

and graph disruption indices together with their interactions with pain-related questionnaire 

outcomes, trying to identify how brain functional connectivity network under LDH chronic 

pain condition is reorganized.

The most important and robust finding was that LDH-CP patients’ whole-brain network 

structure was altered. Graph disruption indices derived from three network topological 

measurements, degree, clustering coefficient, and efficiency, which respectively represents 

network hubness, segregation, and integration, were significantly decreased compared to HC 

across all predefined link densities, in both Discovery and Validation group. This graph-

theory-based functional connectivity analysis with a rigorous validation strategy32 is a 

reliable and reproducible approach53 and provides robust conclusions and generalization to 

the population at large. Similar to discoveries in patients with chronic back pain (CBP), 
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complex regional pain syndrome (CRPS), knee osteoarthritis (OA),31 the observation of 

alterations in whole-brain network of LDH-CP patients demonstrates that chronic pain is a 

disorder where the brain is globally reorganized in such a way that a network property 

changes in some regions while the opposite trend of change occur in other regions of the 

brain.

LDH-CP has its unique way of change in global network properties. Two of its global graph 

metrics, clustering coefficient and betweenness centrality, significantly differentiate patient 

and healthy control in the Discovery group and showed a similar trend in the Validation 

group, opposite to those in CBP, CRPS, and OA.31 A network with low clustering coefficient 

is characterized by weak connectivity in the local clusters, indicating the brain network of 

LDH-CP has highly connected inter-clusters and less connected intra-clusters; while 

betweenness centrality is a measure of the centrality of a node in a network, implying brain 

of LDH-CP has less nodes with stronger influences within its own network. Biologically 

these results putatively suggest that in LDH-CP within region synaptic contacts are 

weakened and at the same time synapses of long-distance axonal tracks are strengthened. 

These global network properties may attribute to the complexity of LDH-CP since pain 

location (lower back and/or lower extremities), dominating sensations (pain and/or hypo- or 

hypersensitivity, numbness and/or tingling), and limitation of mobility may coexist and vary 

in LDH-CP. As a result, the chronic pain accompanied by LDH may have specific 

nociceptive (peripheral and spinal cord) and non-nociceptive (central limbic) characteristics,
3 manifesting different global network properties from other musculoskeletal chronic pain 

conditions.

The stratified approach of LDH-CP revealed that graph degree disruption, KD_D, is 

associated with the pain intensity only in the subgroup of males with high education (Fig. 

7C, 7D), higher pain intensity always corresponding to a larger disruption. This 

phenomenon deviates from previous studies in the USA,31 where the association is not 

dependent on gender and education level. The deviation may be mainly caused by education 

level in the LDH-CP patients (64% finished middle-school or below education), which plays 

a major role in the development of pain perception for chronic pain patients18. Unlike the 

study in the US where most of participants completed at least high-school education, the 

participants in China with low education may degrade responses to the pain-related 

questionnaires or pain ratings, and/or directly diminish the linkage between graph degree 

disruption and perceived/experienced pain. Because we did not enroll enough females with 

high-education level, we cannot reach a conclusion regarding the gender effect on graph 

degree disruption. Therefore, future studies need to examine a more varied Chinese patient 

group regarding socioeconomic status and cultural background.

Five graph topological disruption indexes (KDs) in terms of their nodal metrics: degree (D), 

betweenness centrality (BC), clustering coefficient (CC), efficiency (E), and participation 

coefficient (PC) and referred as KD_D, KD_BC, KD_CC, KD_E, and KD_PC were used to 

study the topology of the brain functional network for LDH-CP. The correlation analyses 

across five KDs showed that, except KD_PC, the other 4 KDs are highly correlated with each 

other (Fig. 6E), among which KD_D, KD_CC, and KD_E significantly decreased in both the 

Discovery and the Validation groups when compared LDH-PC with HC (Fig. 6A, 6C, 6D). 
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These observations imply that although local network properties are independent 

measurements, the graph topological indices derived from these local properties similarly 

reflect brain disorder and the extent of correlation may depend on clinical conditions.

An important limitation in this study is demographically imbalanced subjects present both 

between LDH-CP and HC and within LDH-CPs. It was difficult to recruit HCs with similar 

demographic background to LDH-CP because most of LDH-CP patients were older, and 

lived in rural areas with low education level in China. Due to a large gender gap of 

educational level in China,9,56 we do not have enough statistical power to make conclusions 

regarding the effect of gender on brain reorganization of LDH-CP. Furthermore, a national 

survey of prevalence and patterns of smoking among Chinese adults demonstrate that only 

3.4% of women are smokers compared to more than 50% in men.28 Thus these demographic 

differences also bias our results.

Another limitation is a lack of details of perceptional abnormalities accompanying LDH. 

Depending on various forms of herniation, each individual may have different laterality and 

location of pain on the back or leg(s). In addition, LDH phenotypes such as existence of 

back pain or not, hypo- and/or hypersensitivity, numbness, and defects of motor functions 

should have been assessed and might bias our results.

In conclusion, in this paper we looked at the brain network changes of lumbar disc 

herniation patients with chronic pain and discovered that LDH-CP patients showed whole-

brain functional network disruption. The relationship between pain and graph disruption 

indices was limited to males with high education. These results deviate somewhat from 

recent similar analysis for other musculoskeletal chronic pain conditions, yet we cannot 

determine whether the differences are due to types of pain or also to cultural differences 

between patients studied in China and the US.
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Figure 1. Chart of study flow.
146 lumbar disc herniation patients with chronic pain (LDH-CP) and 165 healthy controls 

(HC) participated in this study and their brain anatomical and resting-state functional MRI 

images were acquired, of which 10 LDH-CPs and 8 HCs were excluded based on quality 

control (QC) (expounded in 2.5). The 136 QC-passed LDH-CPs were allocated to either the 

discovery or the validation group with matched age, gender, education level, current 

smoking status, pain duration and three pain-related components (the details are in 2.7). For 

each group, 68 HCs were randomly chosen from the pool of 157 QC-passed HCs with 

matched age and gender to its corresponding LDH-CP group. As an external reference 

group, 272 age- and gender-matched HCs were chosen from NITRC 1000 Connectome 

project database.
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Figure 2. Quality control of functional MRI data.
A) Histogram of remaining volumes after preprocessing (scrubbing). At this stage, 8 

subjects (3 HCs and 5 LDH-CPs) were excluded with less than 120 volumes (equivalent to 

5-minute scanning). B) Correlation matrixes across subjects of correlation matrix across 

ROIs of resting-state functional connectivity (RSFC) on regions of interest (ROIs) between 

subjects. Darker green represents less similarity of RSFC on the ROIs. C) Histograms of 

mean correlation coefficient (between subjects) of correlation matrix of RSFC (r-RSFC) on 

the ROIs. Dot and error bars show an average and double values of standard deviation (SD). 
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Outliers were these subjects whose mean correlation coefficient is less than 2*SD from the 

average. At this stage, 10 subjects (5 HCs and 5 LDH-CPs) were excluded.
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Figure 3. Calculation of graph local and global metrics and disruption indices.
For each subject in LDH-CP, LDH-HC, and off-site HC, 256 ROIs originated from 264 

ROIs38 (excluded 8 ROIs located in cerebellum) were used to construct ROI-based 

functional networks. BOLD signal of each ROI was extracted as an average over voxels 

within 10 mm diameter spheres centered at peak coordinates. Following this, a 256 × 256 

correlation matrix was generated, showing Pearson correlation coefficient between BOLD 

signals. Then under each of 9 given link density (from 2 to 10%), nodal-level (local) graph 

properties were respectively computed using the brain connectivity toolbox (BCT)42. 

Finally, the average of each property across 256 nodes produced their corresponding global 

graph metrics. Meanwhile, using the mean nodal-level graph properties across 272 subjects 

chosen in NITRC 1000 functional connectomes project as normative topological properties, 

for each subject in LDH-CP and LDH-HC, firstly degree (or other graph metrics) of each 

node was subtracted from the mean degree (or other graph metrics) of off-site HC (n = 272) 

of its corresponding node, at a pre-defined link density. Following this, the difference of 

degree (y axis) and its corresponding mean degree of off-site HC (x axis) was plotted across 

all 256 ROIs. Then KD was estimated as the slope of the fitted line. The details about 

calculating graph topological disruption index are expounded in 2.9.
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Figure 4. Three pain-related components of behavioral measures in all lumber disc herniation 
patients with chronic pain (n = 136).
A) Correlation matrix of behavioral measures. Principal component analysis (PCA) was 

applied to reduce behavioral dimensions. B) Loadings of each original measure on three 

components. Three pain-related components were selected with larger than 1.0 eigenvalue 

and more than 10% explained variance: pain emotion, pain intensity, and pain sensitivity. 

Note that gray dot lines represent ± 0.5 component loadings. C) The relationship between 

reorganized network of behavioral measures and the three pain-related components. The 

three components, pain emotion (green), pain intensity (red), and pain sensitivity (blue) 

accounted for %37, %20, and 10% of total variance. The network shows only top 25% 

linkage density and the width of a link represents correlation strength (0.40–0.99). Each 

original measure was projected onto 3 principal components using a threshold of 0.5 loading 

and circle-colored correspondingly. Three measures (MPQ/s, MPQ/a, and PASS/e) did not 

make significant contribution to the 3 principle components. (NRS: Numerical Rating Scale; 

MPQ: McGill Pain Questionnaire; MPQ/vas: MPQ/visual analog scale; MPQ/s: MPQ/

sensory; MPQ/a: MPQ/affective components of pain; ODI: Oswestry Disability Index; 

PASS: Pain Anxiety Symptoms Scale; PASS/e: PASS/escape-avoidance behaviors; PASS/c: 

PASS/cognitive suffering; PASS/f: PASS/fear of pain; PASS/p: PASS/physiological 

symptoms of anxiety; PCS: Pain Catastrophizing Scale; PCS/r: PCS/rumination; PCS/m: 

PCS/magnification; PCS/h: PCS/helplessness; PANAS: Positive and Negative Affect Scale; 

PANAS/n: PANAS/negative; BDI: Beck Depression Inventory; PSQ: Pain Sensitivity 

Questionnaire; PSQ/min: PSQ/minor; PSQ/mod: PSQ/moderate)
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Figure 5. Significant difference in global graph metrics between LDH-PC and HC in the 
Discovery and a trend in the Validation.
A) In the Discovery, a repeated measure ANCOVA with age, gender, educational level, and 

current smoking status as covariates of no interest determined that global graph metrics of 

brain networks differed statistically significantly between LDH-PC and HC. Clustering 

coefficient (F(1,130) = 9.08, p < 0.01) and betweenness centrality (F(1,130) = 5.45, p = 

0.021) significantly decreased across all link densities. The two metrics of HC were closer to 

the off-site HC than LDH-CP. Data plotted as mean+/−SEM. B) In the Validation, global 

graph metrics showed a similar trend of difference. Clustering coefficient (F(1,130) = 2.89, p 

= 0.091) and betweenness centrality (F(1,130) = 3.38, p = 0.068). The significant differences 

were not replicated in the Validation. C) No significant difference between LDH-CP and HC 

in Discovery group for global efficiency (F(1,130) = 3.01, p = 0.09), small-worldness 

(F(1,130) = 0.40, p = 0.53), and participation coefficient (F(1,130) = 3.03, p = 0.08).
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Figure 6. Disruptions of degree (KD_D), clustering coefficient (KD_CC) and efficiency (KD_E) in 
LDH-PC patients reflect globally altered connectivity.
A) A repeated measure ANCOVA with age, gender, educational level, and current smoking 

status as covariates of no interest determined that KD_D of LDH-CP statistically 

significantly decreased compared to HC across all link densities in the Discovery (F(1,130) 

= 4.13, p = 0.044) and the result was replicated in the Validation (F(1,130) = 5.58, p = 

0.020) . Data plotted as mean+/−SEM. B) The left scatter plot showed the average KD_D 

and the most disrupted ROIs (colored circles) in LDH-CP. Insert shows individual KD_D 

value. The right brain schema indicated that the ROIs are located in medial ventral prefrontal 

cortex (red) and sensory motor cortex (blue). C) Other than KD_D, in the Discovery, a 

repeated measure ANCOVA with age, gender, educational level, and current smoking status 

as covariates of no interest determined that KD_CC, KD_E, and KD_BC of LDH-CP 
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statistically significantly decreased compared to HC across all link densities (F(1,130) = 

5.92, p = 0.016, (F(1,130) = 5.16, p = 0.025, and (F(1,130) = 4.24, p = 0.024). D) The 

decreases of KD_CC and KD_E were replicated in the Validation except of KD_BC 

(F(1,130) = 8.09, p < 0.01, (F(1,130) = 5.41, p = 0.022, and (F(1,130) = 0.23, p = 0.630). E) 
Four of graph disruptions, KDs of degree, clustering coefficient (CC), efficiency (E) and 

betweenness centrality (BC) were highly correlated with each other within both HC (upper 

triangular) and LDH-CP (lower triangular). Graph disruption of participation coefficient 

(PC) showed weak correlations to the other KDs except for that of BC. Pearson’s correlation 

analyses were performed; p < 0.1, p < 0.05, and p < 0.01.
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Figure 7. The extent of disruption of degree (KD_D) in LDH-CP patients is associated with pain 
intensity in males with higher education.
A) In the Discovery, Pearson correlation analyses were performed between 3 pain-related 

components (pain intensity, pain emotion, and pain sensitivity) and KD across all link 

densities for All group (n = 68), Male subgroup (n = 43), Female subgroup (n = 25), Male 

with Lower Education level subgroup (Male-LE, n = 23), and Male with Higher Education 

level subgroup (Male-HE, n = 20). KD_D in Male-HE subgroup showed a statistically 

significantly relationship to the component of pain intensity at 5% link density (p < 0.017 = 

0.05/3; Bonferroni’s correction). No statistically significantly association was found in the 

All group and the other three subgroups. B) KD_E in Male-HE subgroup showed a 

statistically significantly relationship to the pain intensity component at 5% link density (p = 

0.014). C) Significant association between KD_D and the pain intensity component in males 

with high education level was found and validated in the Discovery (p < 0.01, r = −0.55) and 

the Validation (p = 0.017, r = −0.55) at 5% link density. The decreased KD_D was associated 

with increased pain intensity. D) The significant association between degree disruption 

KD_D and the component of pain intensity in Male-HE were observed across all link 

densities in both the Discovery (F(1,18) = 7.40, p < 0.01) and the Validation (F(1,16) = 6.17, 

p = 0.024). E) KD_E was significantly associated with the pain intensity component in males 

with higher education level (p = 0.014, r = −0.50) in the Discovery but was not replicated in 
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the Validation (p = 0.306, r = −0.26) at 5% link density. F) Correlation coefficients of KD_E 

to pain intensity across all link densities in male-HE. The significant association in 

Discovery (F(1,18) = 8.46, p = 0.014) was not replicated in Validation (F(1,16) = 1.83, p = 

0.195; repeated measure ANOVA).
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Table 1.

No significant difference of demographic and pain-related characteristics between Discovery LDH-PC and 

Validation LDH-PC. Pain duration was log-transformed for the normal distribution assumption of statistical 

analysis. Two-tailed t-test was performed for parametric data and chi-square test was performed for categorical 

data.

Discovery (n = 68) Validation (n = 68)
p value

Mean or n SEM or % Mean or n SEM or %

Age 44.0 1.5 44.0 1.4 0.99

Male 43 63.2 44 64.7 0.86

Low education 44 64.7 43 63.2 0.86

Current smoking 20 29.4 19 27.9 0.85

Pain duration (log) 1.97 0.07 1.97 0.06 0.98

Pain intensity 0.06 0.12 0.03 0.11 0.81

Pain emotion 0.01 0.11 0.02 0.12 0.93

Pain sensitivity −0.04 0.11 −0.01 0.11 0.84
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Table 2.

Demographic characteristics in Discovery group. HC and LDH-CP was age- and gender-matched, but 

significant difference in education level (p < 0.01) and current smoking status (p = 0.02). Two-tailed t-test was 

performed for parametric data and chi-square test was performed for categorical data.

HC (n = 68) LDH-CP (n = 68)
p value

Mean or n SEM or % Mean or n SEM or %

Age 43.7 1.7 44.0 1.5 0.87

Male 41 60.3 43 63.2 0.72

Low education 24 35.29 44 64.71 < 0.01

Current smoking 9 13.2 20 29.4 0.02
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Table 3.

Demographic characteristics in Validation. HC and LDH-CP was age- and gender-matched; had significant 

difference in education level (p < 0.01) but no difference in current smoking status (p = 0.10). Two-tailed t-test 

was performed for parametric data and chi-square test was performed for categorical data

HC (n = 68) LDH-CP (n = 68)
p value

Mean or n SEM or % Mean or n SEM or %

Age 43.6 1.7 44.0 1.4 0.83

Male 41 60.3 44 64.7 0.60

Low education 28 41.2 43 63.2 < 0.01

Current smoking 11 16.2 19 27.9 0.10
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Table 4.
Demographic characteristics of healthy controls (HC) and demographic and pain-related 
characteristics of lumbar disc herniation patients with chronic pain (LDH-CP).

Differences were observed in age (p = 0.01), gender (p = 0.01), education level (p < 0.01), current smoking 

status (p < 0.01), PANAS/p (p < 0.01), PANAS/n (p < 0.01), and BDI (p < 0.01). (SEM: Standard Error of 

Mean; y/o: years old; wks: weeks; -: Not Available; NRS: Numerical Rating Scale; MPQ: McGill Pain 

Questionnaire; MPQ/vas: MPQ/visual analog scale; MPQ/s: MPQ/sensory; MPQ/a: MPQ/affective 

components of pain; ODI: Oswestry Disability Index; PASS: Pain Anxiety Symptoms Scale; PASS/e: PASS/

escape-avoidance behaviors; PASS/c: PASS/cognitive suffering; PASS/f: PASS/fear of pain; PASS/p: PASS/

physiological symptoms of anxiety; PCS: Pain Catastrophizing Scale; PCS/r: PCS/rumination; PCS/m: PCS/

magnification; PCS/h: PCS/helplessness; PANAS: Positive and Negative Affect Scale; PANAS/n: PANAS/

negative; BDI: Beck Depression Inventory; PSQ: Pain Sensitivity Questionnaire; PSQ/min: PSQ/minor; PSQ/

mod: PSQ/moderate)

HC (n = 157) LDH-CP (n = 136) p value

Age, mean, SEM (y/o) 40.1 1.0 44.0 1.1 0.01

Male, n, % 77 49.0 80 58.8 0.01

Low education, n, % 53 33.8 87 64.0 < 0.01

Current smoking, n, % 13 8.3 39 28.7 < 0.01

Pain duration, median, min, max (wks) - - 104 12, 1040 -

Pain measures Mean SEM Mean SEM p value

NRS - - 4.99 0.18 -

MPQ/vas - - 4.88 0.18 -

ODI - - 19.8 0.9 -

MPQ/s - - 16.5 0.4 -

MPQ/a - - 7.2 0.2 -

PASS/e - - 13.1 0.6 -

PASS/c - - 7.4 0.5 -

PASS/f - - 7.9 0.6 -

PASS/p - - 3.4 0.4 -

PCS/r - - 8.2 0.3 -

PCS/m - - 4.0 0.2 -

PCS/h - - 7.1 0.5 -

PANAS/p 24.4 0.6 21.4 0.6 < 0.01

PANAS/n 15.5 0.4 17.4 0.5 < 0.01

BDI 3.8 0.4 8.9 0.6 < 0.01

PSQ/min 3.6 0.1 3.7 0.1 0.60

PSQ/mod 5.2 0.2 5.2 0.2 0.83
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Table 5.

Component loadings of 16 measures corresponding to 3 pain-related components. Each black-highlight item in 

the table indicates at least 25% of the variance in its original assessment was explained by its column-

corresponding component

Measures Pain emotion Pain intensity Pain sensitivity

NRS 0.07 0.89 0.22

MPQ-vas 0.00 0.88 0.21

ODI 0.22 0.62 −0.09

MPQ/s 0.37 0.28 0.21

MPQ/a 0.41 0.40 0.13

PASS/e 0.45 0.28 −0.16

PASS/c 0.86 −0.01 0.08

PASS/f 0.87 0.05 0.24

PASS/p 0.70 0.17 0.09

PCS/r 0.72 0.22 0.06

PCS/m 0.74 −0.03 0.11

PCS/h 0.77 0.16 0.20

PANAS/n 0.62 0.10 0.03

BDI 0.52 0.16 0.01

PSQ/min 0.10 0.17 0.82

PSQ/mod 0.17 0.09 0.83

Eigenvalue 6.06 2.31 1.62

Variance (%) 37.9 14.4 10.1
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