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Inhibition of NADPH Oxidase-Derived Reactive Hpdates
Oxygen Species Decreases Expression of Inflammatory
Cytokines in A549 Cells
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Rafal Pawliczak™*

Abstract—Various experimental models strongly support the hypothesis that airway in-
flammation can be caused by oxidative stress. Inflammatory airway diseases like ast-
hma and COPD are characterized by higher levels of ROS and inflammatory cytokines.
One of the sources of ROS is NADPH oxidase. Therefore, the aim of the study was to
investigate influence of NADPH oxidase inhibition on the expression of IL-6, IL-8,
TNF, TSLP, CD59, and PPAR-y in vitro. A549 cells were incubated with apocynin in
three concentrations (0.5 mg/ml, 1 mg/ml, and 3 mg/ml). Cells were trypsinized and
RNA isolated after 1 h, 2 h, and 4 h of apocynin incubation at each concentration.
Afterwards, reverse transcription was performed to evaluate mRNA expression using
real-time PCR. The time-response and dose-response study showed that apocynin
significantly influenced the relative expression of chosen genes (IL-6, IL-8, TNF,
PPAR-~, TSLP, and CD59). Apocynin decreased the mRNA expression of TNF-« at
all concentrations used, and of IL-6 at concentrations of 1 and 3 mg/ml (p <0.05).
TSLP mRNA expression was also reduced by apocynin after 1 h and 2 h, and CD59
mRNA after 1 h, but only at the highest concentration. The expression of PPAR-y was
reduced after apocynin in the highest concentrations only (p <0.05). The results might
suggest that proinflammatory agents’ expression levels are strongly connected to the
presence of oxidative stress generated by NADPH oxidase and this might be at least
partially eliminated by anti-oxidative action. Apocynin, as an effective inhibitor of
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NADPH oxidase, seems to be useful in potential anti-oxidative and anti-inflammatory

therapy.
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INTRODUCTION

Oxidative stress is a harmful process leading to the
development of many respiratory inflammatory diseases,
like asthma and chronic obstructive pulmonary disease
(COPD) though airway damage. The superoxide is a pre-
cursor of other ROS and RNS. Inhibition of its generation
seems to be an important therapeutic target. This can be
achieved by the use of apocynin, a molecule that inhibits
the activation of NADPH oxidase by blocking one of its
subunits [1-5].

It has been shown that lung cells release inflammatory
mediators and cytokines/chemokines, such as IL-6, IL-8,
and TNF- « in response to oxidative stress [6, 7]. Levels of
IL-6 have been shown to be elevated in a number of
inflammatory diseases such as asthma and COPD [8-10].
Liu et al. report that NAC attenuated the release of partic-
ulate matter-induced IL-6 in mouse plasma, suggesting that
ROS play a role of in IL-6 regulation [11].

It has been suggested that IL-6 is involved in the
repair process responding to oxidative stress and depletion
of reduced glutathione [12—14]. IL-6 has been demonstrat-
ed to have a protective effect against oxidative stress and
mitochondrial dysfunction, as indicated by the increased
toxicity of ROS in IL-6-deficient mice [14—16], and IL-6
has been found to be specifically induced as a response to
disturbed redox status [14]. The increased concentration of
serum IL-6 usually correlates with an increase in TNF-«
concentration, both of which have a similar origin in the
inflammatory processes [14]. TNF-« itself induces the
expression of multiple airway epithelial cell genes, includ-
ing those coding for such cytokines as IL-6 and IL-8 [17].

It is well documented that IL-8 production takes place
in alveolar epithelial cells after oxidative stress [18, 19],
and its inhibition might be connected with inflammatory
clinical symptoms.

In COPD, it is possible that oxidative stress from
cigarette smoke contributes towards elevated TSLP expres-
sion in BAL fluid [20, 21]. Nakamura et al. showed that
CSE induced TSLP expression in the mouse lung in a
manner dependent on oxidative stress and TNF-A-o

receptor I level [22]. Similar findings from mouse models
have been observed in human asthmatic subjects, where
higher concentrations of TSLP have been detected in the
lungs, correlating with Th2-attracting chemokines and dis-
ease severity [20, 21, 23]. This phenomenon is connected
with oxidative stress and antioxidants might potentially
regulate it. Oxidative stress is also associated with a de-
crease in PPAR-y expression. Blanquicett et al. demon-
strated that oxidative stress, potentially through activation
of inhibitory redox-regulated transcription factors, attenu-
ates PPAR-y expression and activity in vascular endothe-
lial cells through suppression of PPAR-y transcription
[24]. Recent studies have suggested that oxidative stress
modulates PPAR-y; for example, H,O,-induced oxidative
stress was found to significantly reduce PPAR-y activity in
renal tubular epithelial cells [25] and osteoblasts [24, 25].

CD359 is a membrane anchored complement regula-
tory protein that inhibits membrane attack complex (MAC)
formation, thereby preventing complement-mediated cell
lysis [26-28]. Li et al. detected high expression of CD59 in
the tissues of patients with lung cancer. CD59 expression in
non-small cell lung cancer tissues is much higher than in
the surrounding tissue, and suggests that CD59 might be a
biomarker for lung cancer progression [29]. Many of the
known inflammatory target proteins, such as matrix
metalloproteinase-9 (MMP-9), intercellular adhesion
molecule-1 (ICAM-1), vascular cell adhesion molecule-1
(VCAM-1), cyclooxygenase-2 (COX-2), and cytosolic
phospholipase A2 (cPLA2), are associated with NADPH
oxidase activation and ROS overproduction in response to
proinflammatory mediators [6, 30-35]. Thus, oxidative
stress regulates both key inflammatory signal transduction
pathways and target proteins involved in airway and lung
inflammation [6].

Because oxidative stress, also generated by NADPH
oxidase, contributes to inflammatory pathology, the aim of
the study was to evaluate the influence of apocynin
(NADPH oxidase inhibitor) on the expression of selected
genes involved in the inflammation and antioxidant reac-
tions in A549 cells (IL-6, IL-8, TNF-«, PPAR-y, TSLP,
and CD59).
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MATERIALS AND METHODS

Cell Culture

A549 cells, a human adenocarcinoma cell line, were
obtained from ECACC (European Collection of Cell Cul-
tures, Heath Protection Agency, Salisbury, UK) and were
grown in Ham’s F-12K medium (Sigma-Aldrich, St. Louis,
MO) with 10% fetal bovine serum and 2 mM of I-
glutamine (Sigma-Aldrich, St. Louis, MO). All experi-
ments were performed after six to nine passages (n=0),
when the cell sheets were 80 to 90% confluent.

Experimental Procedure

A549 cells were incubated with apocynin at three
concentrations (0.5 mg/ml, 1 mg/ml, and 3 mg/ml). These
concentrations were selected experimentally as the most
effective. The experiments were also performed in the
absence of the stimulus (control).

The cells were trypsinized and RNA was isolated after
1 h, 2 h, and 4 h of apocynin incubation with each concen-
tration. Following this, reverse transcription was per-
formed to assess mMRNA expression using real-time PCR.
A time-response and dose-response study showed that
apocynin significantly influenced the relative expression
of the selected genes (IL-6, IL-8, TNF-A, PPAR-~, TSLP,
and CD59).

RNA Extraction and cDNA Synthesis

Total RNA was isolated from the stimulated cells
using RNeasy Cell Mini Kit with QIAshredder
(Qiagen). RNA was DNase treated, purified, eluted in
30 wl of RNase-free water, and stored at — 80 °C for
further analysis. Total RNA (1 pg) was reverse tran-
scribed using High Capacity ¢cDNA kit (Applied
Biosystems, Foster City, CA, USA). All procedures
were carried out according to the protocols given by
the producer.

Analysis of Gene Expression

Real-time PCR was conducted in order to indicate
the changes in expression of /L-6, IL-8, TNF-A, PPAR-
v, TSLP, and CD59. cDNA was subjected to qPCR
using the assays designed for the selected genes (Life
Technologies, Carlsbad, CA); each sample was mea-
sured in duplicate using a TagMan analyzer 7900 (Life
Technologies, Carlsbad, CA). Using the Q AAC
method, data was presented as gene expression
normalized to (-actin as an endogenous reference
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gene and relative to a control. The fold change of
mRNA expression in each patient was calculated by
comparing RQ (2724,

Statistical Analyses

The results were analyzed using Statistica soft-
ware (v. 10.0; StatSoft, Tulsa, OK). The distribution
of data and the equality of variances were checked by
the Shapiro-Wilk test and Levene’s test, respectively.
Significant changes were determined by ANOVA, with
the appropriate post hoc tests as multiple comparison
procedure. Values of p < 0.05 were considered statisti-
cally significant.

RESULTS

Apocynin Decreased mRNA Expression of
Proinflammatory Cytokines

Lung epithelial cells in the respiratory tract are the
first barrier in contact inhaled oxidants, and A549 human
lung epithelial cells have been wildly used as in vitro
models to assess airway inflammation, asthma, and respi-
ratory sensitization, and, in case-control studies, for in vivo
validation [36-40].

The expression of the proinflammatory cytokines
analyzed in the study appeared to be decreased by
apocynin. Real-time PCR analysis revealed a signifi-
cant decrease in IL-6 mRNA expression 2 h and 4 h for
3 mg/ml apocynin (p <0.05), but only after 2 h for
1 mg/ml apocynin (p <0.05, Fig. 1). Interestingly,
apocynin significantly decreased TNF-A mRNA ex-
pression in all doses and at all time points (p <0.05,
Fig. 2). However, while no significant changes in IL-8
expression were caused by apocynin, decreases in IL-8
expression were observed for all administered concen-
trations (p >0.05, Fig. 3).

The Effect of Apocynin on CD59 and TSLP mRNA
Expression

CD-59 mRNA expression was significantly influ-
enced by 3 mg/ml apocynin after 1 h of application
(p<0.05). A similar, but insignificant, relationship was
also observed after 2 h, but no such relationship was found
after 4 h (p > 0.05, Fig. 4).

Similarly, a significant decrease of TSLP mRNA
expression was observed for all doses of apocynin
after 1 h of application. Only the highest
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Fig. 1. mRNA expression levels of /L-6 in response to apocynin. Apocynin decreased IL-6 mRNA expression in A549 cells after 2 and 4 h of incubation at
1 mg/ml and 3 mg/ml concentrations (p < 0.05). Data presented as relative expression (RQ) + SD, *p < 0.05.

concentration of apocynin significantly decreased
TSLP expression after 2 h of application (p <0.05),
and no significant changes were observed after 4 h
(»p>0.05); nevertheless, the trend was maintained
(Fig. 5).

Apocynin Upregulated PPAR-y mRNA Expression

At each time point, apocynin increased the expression
of PPAR-y in a dose-dependent manner; however, only
after 2 h of apocynin application, this change was signifi-
cant (1 mg/ml and 3 mg/ml, p <0.05, Fig. 6).
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DISCUSSION

As oxidative stress has previously been confirmed to
play a role in the pathogenesis of many airway diseases
[41-46], the present study evaluates the biological effect of
the inhibition of NADPH oxidase by apocynin. To achieve
this, qPCR was used to analyze the mRNA expression of
selected genes, thus confirming their activity and the sig-
nificance of apocynin in their potential regulation.

Our previous study on the effectiveness of inhaled
apocynin on hydrogen peroxide, nitrate, and nitrite con-
centrations in humans found noticeable effects in healthy
subjects, asthmatics, and COPD patients without any
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Fig. 2. The effect of apocynin on relative expression of TNF-ox in A549 cells. A549 cells presented significantly decreased expression in response to
apocynin after incubation at all concentrations and in all time points (p < 0.05). Data presented as relative expression (RQ) = SD, *p <0.05.
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Fig. 3. Relative expression of IL-8 after apocynin stimulation. No statistical significance in expression of IL-8 was observed after apocynin treatment

(p>0.05). Data presented as relative expression (RQ) = SD.

adverse effects [47—49]. In this study, unstimulated epithe-
lial A549 cell was used. Our goal was to investigate the
effect of the ROS restriction in such cells, as they might be
regarded as more nearly reflecting the in vivo situation.
ROS reduction by apocynin turned out to trigger the effect
on the basal state of the cells. This might indicate further
direction of the research to understand the mechanisms of
this phenomenon and its consequences.

Although elevated IL-6 has long been considered a
general marker of inflammation, Naik et al. suggest that IL-
6 is not just a proinflammatory marker, but a key factor that
contributes to the pathogenesis of some important inflam-
matory diseases, including asthma; it may hence serve as

both a biomarker and a therapeutic target for asthma [10,
50]. Plasma levels of IL-6 are known to be increased in
patients with stable COPD compared to controls [51],
remain elevated for a period, and may contribute to the
increased risk of depression and mortality associated with
COPD [52-54].

The present study examined the expression of proin-
flammatory cytokines known to be associated with inflam-
matory airway diseases such as asthma and COPD (IL-6,
IL-8, and TNF-ax mRNA) after apocynin treatment.
Apocynin appeared to lower the mRNA expression of
each; however, only in the case of IL-6 and TNF- were
the results significant. These data confirm those of Kim
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Fig. 4. CD-59 expression in PBMC of smokers and nonsmokers. Apocynin caused significant decrease of CD-59 mRNA expression after 1 h of application
at 3 mg/ml concentration only (p < 0.05). Data presented as relative expression (RQ) £ SD, *p < 0.05.
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Fig. 5. mRNA expression levels of 7SLP in response to apocynin. Apocynin decreased TSLP mRNA expression in A549 cells after 1 h of incubation at all
concentrations used and after 2 h at the highest concentrations only (p < 0.05). Data presented as relative expression (RQ) + SD, *p <0.05.

et al. [55] who found that TNF-« production was signifi-
cantly attenuated after treatment with apocynin in a mouse
model. They also demonstrated that treatment of OVA-
induced asthma mice with apocynin effectively attenuated
airway lung inflammation, Th2 cytokine production, and
the infiltration of inflammatory cells, such as macrophages
and eosinophils, into lung tissues [55].

Kilic et al. report that application of apocynin re-
versed elevated levels of IL-8 [56]. These findings confirm
those of Perng et al. [57] and those of our present study.
Moreover, Higai et al. indicate that apocynin, next to NAC,
suppressed IL-8 mRNA expression induced by glycated

4h hours

human serum albumin [58], which also correlates with our
research.

The inhibitory effect of apocynin on the produc-
tion of proinflammatory cytokines was previously
demonstrated in ventilator-induced lung injury models,
where treatment with apocynin repaired the structural
lung injury [56, 59]. Interestingly, our findings indicate
that another proiinflammatory cytokine, TSLP, was
inhibited by all administered concentrations of
apocynin after 1 h of application. In human bronchial
epithelial cells, TSLP expression is associated with
asthma severity [20, 60-62].
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Fig. 6. The effect of apocynin on relative expression of PPAR-y in A549 cells. A549 cells showed an increase of PPAR-y relative expression after 4 h of
incubation in the two highest concentrations of apocynin (1 mg/ml and 3 mg/ml, p <0.05). Data presented as relative expression (RQ) + SD, *p < 0.05.
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TSLP expression in the airway epithelium is induc-
ible through an NF-kB-dependent pathway [54, 63, 64].
An increased number of cells expressing TSLP mRNA has
been reported in the bronchi of stable COPD patients and
smoking controls with normal lung function, and increased
TSLP immunostaining has been shown in the smooth
muscle of patients with stable COPD compared to non-
smoking subjects [21, 54, 65]. Furthermore, NF-kB, which
regulates the release of many cytokines and chemokines, is
shown to be responsive to oxidative stress [20, 66]. It has
been proposed recently [67] that the elevated TSLP pro-
duction in the bronchial mucosa in COPD may be associ-
ated with the activation of NF-«kB by oxidative stress from
cigarette smoke [20, 64, 68].

The expression of TSLP mRNA in neutrophils and
epithelial macrophages is also significantly higher in asth-
matics than healthy controls. There is also a negative
correlation between levels of lung function in asthmatics
and TSLP expression [21, 69]. Therefore, our results indi-
cate oxidative stress influences TSLP level and may act as
an inhibitor.

Huang et al. report that PPAR-y activation attenuates
TNF-x-enhanced ICAM-1 expression [70]. These data
confirm our present results, which note that an increase
of PPAR-y mRNA expression is accompanied by a de-
crease of TNF-oc after apocynin treatment. Previous studies
have suggested that PPAR-y activation alleviates asthmatic
features, as evidenced by decreased expression of cyto-
kines, reduced bronchoconstriction, and impaired eosino-
phil accumulation [71-73].

Xu et al. note that the administration of rosiglitazone,
a PPAR-y agonist, attenuated asthmatic features including
airway eosinophil accumulation, inflammatory cytokine
levels, smooth muscle layer thickness, and collagen depo-
sition in a mouse model. These findings suggest that the
therapeutic effect against asthma exerted by rosiglitazone
was associated with activation of PPAR-y and its down-
stream pathways [71].

In addition, Soletti et al. report that pharmacolog-
ical PPAR-y activation protects from smoke-induced
inflammation in vivo in mice, and attenuates the cellu-
lar and molecular intermediates of emphysema patho-
genesis in humans. Pparg induction in epithelial cells
appears to represent a protective mechanism against
cigarette smoke-induced injury response, where it
may function to suppress NF-kB-mediated proinflam-
matory chemokine expression in an activation-
dependent fashion [74].

The current study indicates that inhibition of NADPH
oxidase decreased CD59 mRNA expression after 1 h. The
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functions of the CD59 protein are mainly involved in the
MAC of human complement [75] signal stimulant, induc-
ing the activation of T lymphocytes [76], and acting as a
ligand of CD2. As bronchial epithelial cells express high
levels of CD59 and that CD59 release is associated with
cellular damage [28, 77], Budding et al. hypothesize that
CD59 may be a marker for inflammatory lung tissue dam-
age [26]. Therefore, the CD59-decreasing function of
apocynin may shed new light on inflammation resolution
and maintenance.

Apocynin appears to be a noteworthy molecule,
with various promising features that can be employed
in anti-oxidative and anti-inflammatory therapy; how-
ever, our study has some limitations. One such weak-
ness is that it examines mRNA expression, but not
protein expression. In addition, the A549 line used in
the study are cancer cells: The main disadvantage of
using cell lines is that the phenotype they express
may not be consistent with the true phenotype of
their primary counterparts [78]. Nevertheless, A549
cells constitute a useful in vitro model for studying
human respiratory epithelial cell biology, as they
exhibit characteristics similar to human alveolar type
IT cells [79].

We are aware that the weakness of the study is the
lack of protein expression results and that mRNAs are not
equal with regard to translation into proteins; thus, our
results must be interpreted with caution. The mRNA ex-
pression alone analysis is incomplete, but shows that
apocynin causes visible changes that can also be expressed
at the protein level. This, however, indicates apocynin as a
molecule worthy of interest.

With awareness of the effects of ROS on airway
inflammation growing, antioxidant interventions have be-
come a popular therapeutic target. Different research teams
have reported that «-tocopherol and vitamin C combina-
tion therapy was effective in mitigating the effect of ozone-
induced lung function decrements in asthmatics [80-83],
or in normal volunteers who had consumed an antioxidant-
depleted diet for 3 weeks to mimic a state of poor antiox-
idant nutritional status [81, 83].

In conclusion, oxidative stress plays an important role
in many diseases, especially in inflammatory diseases. Its
strong and effective inhibition might help to reduce inflam-
mation and local pathogenic changes. The results presented
in the current study suggest that inhibition of NADPH
oxidase might be a potential target in inflammatory dis-
eases, and apocynin seems to be an interesting molecule in
this regard; however, wider studies are needed to specifi-
cally explore this topic.
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