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BACKGROUND
Only a handful of genetic discovery efforts in apparent treatment-
resistant hypertension (aTRH) have been described.

METHODS
We conducted a case–control genome-wide association study of 
aTRH among persons treated for hypertension, using data from 10 

cohorts of European ancestry (EA) and 5 cohorts of African ancestry 
(AA). Cases were treated with 3 different antihypertensive medi-
cation classes and had blood pressure (BP) above goal (systolic BP 
≥ 140 mm Hg and/or diastolic BP ≥ 90 mm Hg) or 4 or more med-
ication classes regardless of BP control (nEA  =  931, nAA  =  228). Both 
a normotensive control group and a treatment-responsive control 
group were considered in separate analyses. Normotensive controls 
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were untreated (nEA = 14,210, nAA = 2,480) and had systolic BP/dias-
tolic BP < 140/90 mm Hg. Treatment-responsive controls (nEA = 5,266, 
nAA  =  1,817) had BP at goal (<140/90  mm Hg), while treated with 
one antihypertensive medication class. Individual cohorts used 
logistic regression with adjustment for age, sex, study site, and 
principal components for ancestry to examine the association of 
single-nucleotide polymorphisms with case–control status. Inverse 
variance-weighted fixed-effects meta-analyses were carried out 
using METAL.

RESULTS
The known hypertension locus, CASZ1, was a top finding among EAs 
(P = 1.1 × 10−8) and in the race-combined analysis (P = 1.5 × 10−9) using 
the normotensive control group (rs12046278, odds ratio = 0.71 (95% 

confidence interval: 0.6–0.8)). Single-nucleotide polymorphisms in 
this locus were robustly replicated in the Million Veterans Program 
(MVP) study in consideration of a treatment-responsive control 
group. There were no statistically significant findings for the discovery 
analyses including treatment-responsive controls.

CONCLUSION
This genomic discovery effort for aTRH identified CASZ1 as an aTRH 
risk locus.

Keywords: blood pressure; hypertension; genome-wide association 
study; severe hypertension; treatment-resistant hypertension
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INTRODUCTION

Apparent treatment-resistant hypertension (aTRH) is an 
extreme form of hypertension (HTN) characterized by the 
use of 4 or more antihypertensive (AHT) medication classes 
to achieve blood pressure (BP) control. The estimated prev-
alence of aTRH in population-based studies is between 12 
and 15% among adults with HTN and higher among clinic-
based populations, e.g. >25% in those with chronic kidney 
disease.1,2 Risk factors for aTRH are increasing age, obe-
sity, reduced kidney function, and African-American race.1 
Research shows that individuals with aTRH are at an increased 
risk for cardiovascular disease events when compared with 
individuals with controlled HTN, demonstrating a need to 
understand the cause of nonresponse to improve BP con-
trol.3 We hypothesized that identifying the genetic architec-
ture may shed light on distinct underlying pathobiology.

Published genetic studies of aTRH have reported limited 
findings and are lacking in comparison to HTN.4–7 The pre-
sent study comprises European ancestry (EA) and African 
ancestry (AA) studies from the Cohorts for Heart and Aging 
Research in Genomic Epidemiology (CHARGE) consortium, 
for a case–control study of aTRH that capitalizes on epidemi-
ological data characterized by deep phenotyping. Common 
genetic variants in 931 EA aTRH cases were compared 
with 14,210 normotensive controls and separately to 5,266 
treatment-responsive controls, whereas 228 AA aTRH cases 
were compared with 2,480 normotensive controls and sepa-
rately to 1,817 treatment-responsive controls. Results were 
replicated in an aTRH case–control data set from the Million 
Veterans Program (MVP).

METHODS

Ten studies contributed data on EA participants, 
whereas 5 studies contributed data on AA participants 
(Supplementary Section 1). Data on medication use were 
extracted by medication inventory, self-report, or compu-
terized databases once for cohorts with cross-sectional data, 
or at each BP measurement for those with longitudinal data 
(Supplementary Section 1). AHT medications counted to-
ward the sum of classes are described in Supplementary Table 
1. Combination products were therapeutically co-classified 
based on their active ingredients. All diuretics were counted 
as one class including potassium-sparing diuretics.

Participants with conditions that may lead to secondary 
forms of HTN (including estimated glomerular filtration 
rate < 30 ml/min/1.73 m2 or body mass index > 40 kg/m2) 
were excluded. aTRH cases were defined as those treated 
with 3 AHT medication classes and BP above goal (sys-
tolic BP ≥ 140  mm Hg and/or diastolic BP ≥ 90  mm Hg) 
or 4 or more AHT medication classes regardless of BP con-
trol. aTRH cases fitting the above definition who were not 
treated by a diuretic were excluded.8 The analysis included 
2 control groups: (i) Normotensive controls: participants 
not hypertensive and not treated with an AHT medication 
and (ii) Treatment-responsive controls: participants who 
had BP at goal (<140/90  mm Hg) on treatment with one 
AHT medication class. Details of the case and control def-
inition in cohorts with longitudinal data are described in 
Supplementary Section 1.

Genome-wide single-nucleotide polymorphism (SNP) 
genotyping was performed within each study using com-
mercial genotyping arrays (Supplementary Table 2). Cohorts 
most commonly imputed to the 1000 Genomes version 3 
reference panel. After imputation cohorts filtered out SNPs 
with imputation quality score < 0.3. SNPs with minor allele 
frequency < 5% and which were not represented in 2 or more 
cohorts were filtered out at the meta-analysis stage.

Statistical Analysis

Logistic regression models or generalized estimating 
equations were used for case–control association analysis 
(Supplementary Table 3). The variable of interest was SNP 
dosage of the effect allele. Models were adjusted for age, 
sex, and study-specific covariates (e.g., study site, principal 
components for ancestry and, if applicable, exchangeable 
correlation matrices to account for family relatedness). 
For cohorts with longitudinal data, the average age across 
the visits included was used as the covariate. In total, there 
were 4 models, one for each control group and one for 
each ancestry grouping. Inverse variance-weighted, fixed-
effects meta-analysis was performed for each of the 4 strata, 
using METAL software (www.sph.umich.edu/csg/abecasis/
metal/). Statistical heterogeneity across studies was evaluated 
using Cochran's χ 2 test (Q-test). P-values < 5  × 10−8 indi-
cated genome-wide significant results. Results of the race-
stratified analyses from METAL were then combined using 



1148 American Journal of Hypertension 32(12) December 2019

Irvin et al.

a similar approach (one meta-analysis per control group). 
Linkage disequilibrium was evaluated using the rAggr tool 
(http://raggr.usc.edu/). Regional plots were created using 
Locus Zoom with a window of 500  kb (v0.4.8).9 In a sen-
sitivity analysis of top SNP results, we conducted a meta-
analysis that included only cohorts with >50 cases.

Replication

We sought replication in non-Hispanic EA (78%) and 
AA (22%) MVP participants (Supplementary Section 1).10,11 
Participants with estimated glomerular filtration rate ≥ 
60 ml/min/1.73 m2 were included. Total numbers of samples 
across ethnicities included 16,833 cases (11,762 EAs and 
5,071 AAs) and 53,931 controls (42,850 EAs and 11,081 
AAs). Cases were defined using the same definition as the 
discovery analysis. Controls were patients who achieved 
BP control (<140/90 mm Hg) on 1 or 2 medication classes. 
Case–control status was regressed onto additively coded 
genotypes imputed to 1000 Genomes phase 3 version 5, 
adjusting for age, age2, sex, body mass index, and 10 prin-
cipal components within ethnicity using SNPTEST v2.54. 
Genotyping, quality control, and imputation procedures 
have been described.10

RESULTS

Overall EA and AA cases were older than controls and 
more likely male (Supplementary Table 4a and 4b). The 
average number of AHT medication classes for EA cases 
ranged from 3.2 to 3.8 and from 3.3 to 3.9 for AAs. Across the 
individual cohort genome-wide association study (GWAS) 
analyses, there was not excessive evidence for the deviation 
of P-values from their expected values (Supplementary Table 
5). Manhattan plots and QQ plots for each discovery meta-
analysis are presented in Supplementary Figures 1a–d and 
2a–d for the comparison of AA cases to AA normotensive 
controls, EA cases to EA normotensive controls, AA cases 
to AA treatment-responsive controls, and EA cases to EA 
treatment-responsive controls, respectively. Meta-analysis 
corrected inflation that existed in the cohort-specific 
analyses.

The top 5 results for each case–control model are presented 
in Table 1. When comparing aTRH cases to normotensive 
controls, the top finding for AAs was rs76967376 intronic 
to myosin-Vb (MYO5B). At that SNP, the direction of effect 
was consistent across each of the 5 cohorts and the odds of 
being a case were 2.65 (95% confidence interval: 1.9–3.8) 
times higher among those with the A allele vs. the C allele. 
Among EAs, the top findings for the normotensive control 
comparison were intronic to castor zinc finger 1 (CASZ1). 
In the race-combined analysis, CASZ1 rs12046278 T carriers 
were less likely to be a case (P = 1.5 × 10−9, odds ratio = 0.71 
(95% confidence interval 0.63–0.80)). Another SNP within 
3,500  bp to DNA (cytosine-5-)-methyltransferase 3 alpha 
(DNMT3A) was associated with aTRH (P = 4.9 × 10−8) in 
the race-combined analysis using normotensive controls. 
Regional plots (Supplementary Figures 3–5) for rs76967376 
(MYO5B), rs12046278 (CASZ1), and rs11674660 (near 

DNMT3A) display linkage disequilibrium support for these 
top findings. Results of the race-combined analysis are 
presented in Supplementary Table 6 and Supplementary 
Figure 6.

When comparing aTRH cases to treatment-responsive 
controls no SNP was statistically significant after correcting 
for multiple testing in either racial stratum. Race-combined 
analysis did not increase the significance of top hits. In the 
sensitivity analysis limiting contributing cohorts to those 
with >50 cases results were generally consistent with the 
main findings in Table 1 (Supplementary Table 7).

The MVP cases in the replication study were older (63 ± 
9 vs. 62 ± 10 years for EAs and 58 ± 9 vs. 56 ± 10 years for 
AAs) and had slightly higher body mass index compared 
with the treatment-responsive controls. Results for AAs as 
well as the EAs for the treatment-responsive control group 
were not replicated in the MVP. However, results from the 
EA discovery for the normotensive control group were ro-
bustly replicated with the same direction of effect for SNPs 
in CASZ1 (P  <  5  × 10−8) and the direction of association 
for rs11674660 intergenic to DNMT3A, DTNB was con-
sistent in direction but not statistically significant (P = 0.09) 
(Supplementary Table 8).

DISCUSSION 

Although the genetics of BP and essential HTN have been 
extensively investigated, few genetic studies have explored 
genes associated with less common and more severe aTRH. 
Using data available from observational epidemiological co-
hort studies, the current meta-GWAS study examined SNPs 
associated with aTRH in EA and AA cases with respect to 2 
different control sets. Our study confirmed the known BP 
locus, CASZ1, as being robustly associated with aTRH in the 
discovery and replication data set. Other notable findings, 
MYO5B and DMNT3A/DTNB, warrant additional replica-
tion efforts.

To our knowledge our top finding in the AA stratum 
(rs76967376 in MYO5B involved in cell trafficking and 
plasma membrane recycling) has been associated with lipid 
levels in previous GWAS, but has not been associated with 
HTN. The nearest published BP locus (rs745821) is in the 
MAK4 gene (~505 kb in distance) and is not in linkage dis-
equilibrium with our finding (r2 < 0.01).12 At least one an-
imal model has reported MYO5B may regulate an atrial 
voltage-gated potassium channel (Kv1.5) important for 
cardiac excitability.13 This result was not replicated in the 
MVP aTRH case–control data set. Future studies may still 
be warranted given the differences in the replication data set 
that used treatment-responsive controls with estimated glo-
merular filtration rate ≥ 60 ml/min/1.73 m2. The top finding 
among EAs was the known HTN locus CASZ1, a zinc finger 
transcription factor which plays a key role in cardiac devel-
opment and postnatal adaptation.14 The gene has been pre-
viously associated with BP and HTN in Asian ancestry and 
EA populations.15–17 The biological role of CASZ1 in aTRH 
needs additional investigation but may be related to expres-
sion changes in genes that regulate BP or AHT response.18 
Taken together the significant results from the discovery and 
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replication analysis suggest CASZ1 is an aTRH locus among 
EAs. The result for the top SNP was consistent but mar-
ginally significant for AAs in CHARGE (odds ratio = 0.69 
(95% confidence interval: 0.48–0.99); P = 0.04 for the T al-
lele). Rs880315 in CASZ1 from Table 1 was marginally sig-
nificant in MVP AAs (odds ratio  =  1.09 (95% confidence 
interval: 1.03–1.15); P  =  0.008 for the C allele). Loci near 
DMNT3A/DTNB on chromosome 2 have been identified in 
a recent BP GWAS study (~300 kb downstream of ADCY3) 
though rs11674660 from our study and previously published 
ADCY3 rs55701159 are not in linkage disequilibrium (r2 < 
0.01).12 DMNT3A is causal for clonal hematopoiesis of in-
determinate potential (CHIP), and mutations in DMNT3A 
have been associated with coronary heart disease.19 The 
isoprenylcysteine carboxyl methyltransferase (ICMT) locus 
was the only gene near a previously identified HTN gene 

(~15  kb downstream of RNF207 rs709209)20 that we re-
port on for the treatment-responsive control group. The 
SNP rs11674660 near DMNT3A/DTNB and rs146183009 in 
ICMT were not replicated in the MVP.

We also compared our results with published GWAS 
studies.5,6 In the electronic MEdical Records & GEnomics 
study among 3,006 cases and 876 treatment-responsive 
controls, there were no statistically significant findings. In the 
INternational VErapamil SR Trandolapril STudy GENEtic 
Substudy, an SNP (rs12817819) in ATPase Plasma Membrane 
Ca2+ Transporting 1 (ATP2B1) was associated with aTRH in 
EAs and Hispanics. In our data, SNPs in ATP2B1 were most 
strongly associated with aTRH when cases were compared 
with normotensive controls (AAs rs58302337 (P  =  0.001), 
rs12580678 (P  =  0.004); EAs rs1401982 (P  =  0.006)) vs. 
treatment responsive controls (AAs rs152754 (P = 0.01); EAs 

Table 1. Top hits for genome-wide case–control association analysis of apparent treatment-resistant hypertension

rs# CHR A1/A2 EAF OR 95% CI P-value Direction* Location Gene(s)

228 AA cases          

 2,490 normotensive*          

  rs76967376 18 A/C 0.11 2.65 1.87, 3.78 5.75E-08 +++++ Intronic MYO5B

  rs185169399 5 A/G 0.94 11.96 4.53, 31.55 5.27E-07 +++?+ Intergenic CDH18

  rs114349263 5 A/C 0.06 0.08 0.03, 0.22 5.52E-07 ---?- Intergenic CDH18

  rs12665245 6 T/C 0.86 0.36 0.24, 0.54 1.34E-06 ----? Intronic ENPP3

  rs143255889 10 C/G 0.07 3.10 1.95, 4.92 1.80E-06 +++++ Intergenic LINC01519

 1,817 hypertensive*          

  rs138399316 6 T/C 0.15 5.85 3.00, 11.37 1.89E-07 ++?+? Intronic BPHL

  rs146183009 1 A/G 0.11 2.49 1.75, 3.54 4.41E-07 +++++ Intronic ICMT

  rs111285947 17 A/G 0.06 3.89 2.21, 6.83 2.16E-06 +?++? Downstream LINC00670

  rs1651805 19 C/G 0.26 1.84 1.43, 2.36 2.17E-06 +++++ Intergenic LSM14A,KIAA0355

  rs114511751 1 T/C 0.10 2.44 1.68, 3.53 2.20E-06 +++++ Intronic TMCC2

931 EA cases          

 14,201 normotensive*          

  rs12046278 1 T/C 0.63 0.71 0.63, 0.80 1.11E-08 ------------? Intronic CASZ1

  rs34071855 1 C/G 0.64 0.72 0.64, 0.81 4.87E-08 ------------+ Intronic CASZ1

  rs11674660 2 T/C 0.15 1.53 1.31, 1.80 7.63E-08 +++-+++-+++-+ Intergenic DNMT3A,DTNB

  rs17035646 1 A/G 0.35 1.36 1.26,1.59 7.90E-08 ++++++++++++- Intronic CASZ1

  rs880315 1 T/C 0.65 0.74 0.66, 0.83 1.19E-07 ------------+ Intronic CASZ1

 5,266 hypertensive*          

  rs74725390 7 T/C 0.07 1.70 1.38, 2.09 5.36E-07 +++-+-+++-+? Intergenic COBL,POM121L12

  rs12050053 13 T/G 0.06 2.43 1.71, 3.47 8.39E-07 ++???+?++??? Intergenic EEF1DP3,FRY-AS1

  rs4844662 1 C/G 0.47 1.31 1.18, 1.47 9.01E-07 +++-++++-+++ Intronic PLXNA2

  rs111281682 7 A/G 0.83 0.72 0.63, 0.82 1.63E-06 +----++----- Intergenic MYL10,CUX1

  rs77270397 13 A/G 0.07 2.09 1.54, 2.82 1.75E-06 ++???+-+++?? Intergenic EEF1DP3,FRY-AS1

AA order: ARIC, HyperGEN, JHS, PHG, MESA. EA order: normotensive, AFTER-EU, AGES, ARIC, HyperGEN, NEO, CHS, HVH1 cases, 
HVH1 controls, HVH2 cases, HVH2 controls, PROSPER, FHS, MESA. EA order: treatment responsive, AFTER-EU, AGES, ARIC, HyperGEN, 
NEO, CHS, HVH1 cases, HVH1 controls, HVH2 cases, HVH1 controls, PROSPER, MESA. Significant P-value after correction for multiple 
testing <5 × 10−8. Abbreviations: AA, African American, EA, European American, EAF, effect allele frequency; OR, odds ratio; CI, confidence 
interval; A1, allele 1, effect allele; A2, allele 2.

*Controls.
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rs34205054 (P = 0.006)). Differences between these studies 
and our own include the use of clinical rather than observa-
tional populations and the consideration of only controlled 
hypertensive patients as controls.

Strengths of the present study include collaboration 
among well-characterized cardiovascular disease cohorts for 
which BP measurement and the recording of AHT informa-
tion was a focus. Furthermore, we replicated our findings in 
a large data set with comparable ethnic groups. However, 
aTRH is complex and our study had several weaknesses 
including lack of information on white coat HTN, adher-
ence information, and medication dosage data, which may 
contribute to phenotypic misclassification which could di-
lute our results. We were unable to distinguish AHT use for 
conditions other than HTN such as glaucoma. Other lim-
itations included heterogeneity among study populations 
regarding phenotypic focus (e.g., obesity, cardiovascular 
disease) and different methods for the measurement of BP. 
Finally, the case–control group available for the replication 
analysis was not identical to our discovery data set.

Despite being common among persons with HTN, little is 
known about the genetic etiology of aTRH. In this discovery 
and replication effort, the main finding included a transcrip-
tion factor and known HTN locus involved in cardiac de-
velopment (CASZ1). MYO5B and DMNT3A/DTNB were 
biologically interesting cardiovascular candidates that were 
not replicated but remain worthy of further investigation for 
this severe form of HTN.

SUPPLEMENTARY MATERIAL

Supplementary data are available at American Journal of 
Hypertension online.
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 - VA Maine Healthcare System (Todd Stapley)
 - VA New York Harbor Healthcare System (Scott Sherman)
 - VA Pacific Islands Health Care System (Gwenevere Anderson)
 - VA Palo Alto Health Care System (Philip Tsao)
 - VA Pittsburgh Health Care System (Elif Sonel)
 - VA Puget Sound Health Care System (Edward Boyko)
 - VA Salt Lake City Health Care System (Laurence Meyer)
 - VA San Diego Healthcare System (Samir Gupta)
 - VA Southern Nevada Healthcare System (Joseph Fayad)
 - VA Tennessee Valley Healthcare System (Adriana Hung)
 - Washington DC VA Medical Center (Jack Lichy)
 - W.G. (Bill) Hefner VA Medical Center (Robin Hurley)
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 - William S. Middleton Memorial Veterans Hospital (Robert 

Striker)
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