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1  | INTRODUC TION

In developed countries people spend on average about 16 hours per 
day indoor.1 Indoor air can be heavily polluted with non‐methane 
organic gases (NMOG)2,3 or high particle loadings4 posing a threat 
to the health of the inhabitants. While some studies suggest that 
the indoor air quality is mainly driven by regional outdoor pollu‐
tion,5 others argue that residential exposure to particle pollution 

far exceeds (eg, by 150%6) the exposure to particles from outdoor 
origins. Residential pollution exposure cannot be characterized by 
ambient measurements alone, and an accurate knowledge of indoor 
sources and loss processes is the key for assessing indoor air quality.

Cooking is already recognized as main source of indoor partic‐
ulate air pollution in developed countries.4,7 The processes used in 
cooking such as frying, roasting, grilling, boiling, and broiling con‐
tribute to particle emissions. The physical stirring of food has been 
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Abstract
Cooking is recognized as an important source of particulate pollution in indoor and 
outdoor environments. We conducted more than 100 individual experiments to char‐
acterize the particulate and non‐methane organic gas emissions from various cooking 
processes, their reaction rates, and their secondary organic aerosol yields. We used 
this emission data to develop a box model, for simulating the cooking emission con‐
centrations in a typical European home and the indoor gas‐phase reactions leading 
to secondary organic aerosol production. Our results suggest that about half of the 
indoor primary organic aerosol emission rates can be explained by cooking. Emission 
rates of larger and unsaturated aldehydes likely are dominated by cooking while the 
emission rates of terpenes are negligible. We found that cooking dominates the par‐
ticulate and gas‐phase air pollution in non‐smoking European households exceed‐
ing 1000 μg m−3. While frying processes are the main driver of aldehyde emissions, 
terpenes are mostly emitted due to the use of condiments. The secondary aerosol 
production is negligible with around 2 μg m−3. Our results further show that ambient 
cooking organic aerosol concentrations can only be explained by super‐polluters like 
restaurants. The model offers a comprehensive framework for identifying the main 
parameters controlling indoor gas‐ and particle‐phase concentrations.
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found to lead to primary aerosol generation due to the splashing of 
the ingredients. The ingredient combustion during cooking can lead 
to direct emissions, and hot vapors in the cooking fumes from oil 
decomposition8 may also cool and nucleate to form more particles. 
Other known indoor emission sources related to residential cooking 
are electrical and gas stoves emitting high amounts of small parti‐
cles (<10 nm)9 and nitrogen oxides.10 While many of the ingredients 
and cooking methods are common to various culinary techniques, 
particle emission rates from cooking span several orders of magni‐
tudes,11,12 affected by ingredients, procedures (eg, boiling vs frying 
vs charbroiling), and cooking temperature. Cooking has been also 
identified as an important outdoor source of primary organic aero‐
sols based on aerosol mass spectrometry measurements13; how‐
ever, the processes dominating these emissions remain unclear.14 
Currently, there is an urgent need for a systematic assessment of the 
processes controlling the cooking emission rates, in order to con‐
strain the contribution of these emissions to indoor and outdoor air 
quality.

In addition to particle emissions, cooking is known to gener‐
ate significant amounts of vapors, comprising aldehydes from oil 
heating15,16 or restaurant emissions.17 Recent studies discovered 
that many cooking processes may constitute an important source 
of NMOG indoors including potentially harmful substances like al‐
dehydes or terpenes.18-20 Studies on sources of indoor gas‐phase 
air pollution so far focused mostly on cleaning detergents and air 
fresheners (terpenes),21 scented candles (carbonyls),22 building ma‐
terials (all classes of compounds),23 or smoking.24 Also recognized 
as an important source of NMOG indoors is the transfer of outdoor 
air pollution to the indoor.25,26 However, how gas‐phase cooking 
emission rates compare to those from other indoor and outdoor 
sources remains unclear. Besides the direct effect of NMOGs on 
human health,27 they are also precursors of secondary organic aero‐
sol (SOA) through their reactions with ozone or OH radicals.28 Still 
not much is known about the production of SOA from most NMOG 
indoors. Most studies investigating SOA formation indoors focused 
on terpenoid reactions (mostly limonene from cleaning detergents) 
with ozone.29-33 Two recent studies trying to model the SOA for‐
mation indoors from different NMOG also concluded that SOA for‐
mation is dominated by high terpene (mostly limonene) emissions 
from cleaning products.34,35 However, all of these studies neglect 
the high amounts of various terpenes emitted from frying food with 
condiments 19 as well as the high amounts of aldehydes emitted by 
frying processes.18,36,37

Cooking‐induced primary and secondary pollution is not only 
controlled by the cooked ingredients and cooking style or setting 
(fuel,38 pan,39 oil used, and cooking method40), but also depends 
on the air exchange rates (eg, induced by ventilation41,42) and the 
oxidant precursor levels indoor and outdoor.35 Even though, sev‐
eral models describing indoor air pollution from different sources 
exist,34,43-46 none of these addresses both the particle and gas‐
phase emissions from cooking, where the aforementioned parame‐
ters driving the pollutants emission, their transformation, and their 
losses can be systematically varied.

Here, we have developed a modeling framework for estimating 
the influence of cooking processes on the indoor concentration of 
different compound classes. Pollutant emission rates used as model 
input parameters are based on a set of more than 100 cooking ex‐
periments including vegetable and meat frying and vegetable boil‐
ing. These pollutants include primary organic aerosols, acrolein, 
short‐chain saturated carbonyls, long‐chain saturated and unsatu‐
rated carbonyls, and terpenes. Model input parameters also com‐
prise the reaction rates of these compounds against OH radicals and 
ozone and their secondary organic aerosol yields determined based 
on 16 smog chamber experiments. The first part of the paper de‐
scribes the model implementation and input parameters, while in the 
second part the impact of residential cooking emissions on indoor 
and outdoor air is discussed and the main parameters driving the 
emission concentrations are identified.

2  | METHODS

2.1 | Experimental setup

The emission factor data as well as the specific reaction rates and 
secondary organic yields for the different compound groups were 
obtained from three measurement campaigns in 2012, 2014, and 
2015. The measurement setup was similar for all three campaigns 
and is described in detail elsewhere.18,19 Direct emissions generated 
during more than 100 cooking experiments were measured. Cooking 
processes studied include

1.	 Olive, canola, and sunflower oil heating at different temperatures;
2.	 Meat shallow frying and charbroiling at different temperatures;
3.	 Vegetable frying;
4.	 Deep frying;
5.	 Vegetable boiling; and
6.	 Condiment use (herbs and pepper).

The emissions from selected processes were injected into a simulation 
chamber to study their transformation upon aging. The chamber setup 
for the 2014 campaign is thoroughly described in Klein et al. (2016b),19 
while in 2012 the setup was similar to that described in Platt et  al. 
(2014,2017).47,48 After the emissions were injected and well equilibrated 

Practical Implications
•	 The model can be used for regulating indoor cooking 

emissions.
•	 Particle and organic gas emissions indoors are dominated 

by cooking processes.
•	 Higher cooking temperatures and frying processes en‐

hance emissions significantly.
•	 Concentrations may be substantially reduced with a 

proper ventilation.
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in the chamber, 4 sets of 10 UV lights, situated around the chamber, 
were switched on to induce aging. During 2014 measurements, nitrous 
acid (HONO), which forms OH radicals via photolysis, was introduced 
into the chamber at a flow rate of about 2 L min−1. This was not the 
case during the 2012 campaign, which resulted in significantly lower 
OH concentrations. The OH exposure in the chamber during both cam‐
paigns was estimated by measuring the decay of the d9‐butanol,49 in‐
troduced into the chamber through heated lines. All experiments were 
conducted at 50% relative humidity and a temperature of 20°C.

2.2 | Instrumentation

Non‐methane organic gases were measured using a proton‐trans‐
fer time‐of‐flight mass spectrometer (PTR‐TOF‐8000, IONICON 
Analytik G.m.b.H.) operated in H3O

+ mode. This limits the measure‐
ments to NMOG with a proton affinity higher than that of water. 
A detailed description of the instrument can be found elsewhere.50 
Operating conditions and data treatment procedures are described 
in Klein et al. (2016a).18

The primary and secondary organic aerosol loads were obtained 
from a high‐resolution time‐of‐flight aerosol mass spectrometer 
(HR‐TOF‐AMS, 600°C vaporizer temperature, Aerodyne Research, 
Inc.). The instrument was equipped with a PM2.5 lens enabling us 
to measure particles with a vacuum aerodynamic diameter of up 
to 3 μm.51 A detailed description of the instrument and data treat‐
ment procedures can be found in DeCarlo et al. (2006).52

3  | MODEL FR AME WORK

The scheme in Figure 1 illustrates the fate of cooking emitted organic 
gases (OG) and aerosol (POA) in the model and the variables used in 

the mass balances and secondary organic aerosol (SOA) production 
expressions. The model used is a box model; that is, the mass balance 
equations for each pollutant assume the indoor environment to be a 
single well‐mixed volume with air exchange due to infiltration. The 
OG concentrations in both the indoor air and the indoor surfaces 
are simulated in the model. The OGs are grouped into five differ‐
ent compound classes according to their chemical nature, reactivity 
against oxidants, and SOA yields. These classes include

1.	 C1 compounds, which refer to carbonyls with less than six 
carbon atom backbone (mainly acetaldehyde, propylaldehyde, 
butylaldehyde, pentylaldehyde from meat cooking, and acetone 
from vegetable cooking, see Klein et  al. (2016a)18);

2.	 C2 compounds, which refer to saturated carbonyls with more 
than five carbon atom backbone (see Klein et al. (2016a)18);

3.	 C3 compounds, which refer to unsaturated carbonyls with more 
than five carbon atom backbone (see Klein et al. (2016a)18);

4.	 ACR which consists only of acrolein (see Klein et al. (2016a)18);
5.	 Terpenes, which comprise p‐cymene, monoterpenes, oxygenated 

monoterpenes, and sesquiterpenes (see Klein et al. (2016a)18).

In addition to directly emitted POA, SOA production from the oxida‐
tion of terpenes (TerpSOA) and of the aggregate of C2, C3, and ACR 
(CSOA) is modeled. The sum of both fractions shall be considered 
as our best estimate of the total indoor SOA (totSOA) from indoor 
cooking processes.

The model simulates the emissions from meat frying, vegetable 
frying and boiling, deep frying, condiment use, and oil heating for the 
three different frying processes considered here. In the following, 
let i and j be the indices for a generic compound class emitted from 
a generic cooking process, respectively. The evolution of the mass 
concentration (in μg m−3) of a compound i, Ci|g (where g denotes the 

F I G U R E  1   Model schematic
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gas‐phase), with time, t, may be described by the following general‐
ized differential Equation 1:

where Prodi, j denotes the production rate of a compound i from 
a cooking process j and Lossi the loss rate of i. In the Sections 3.1 
and 3.2, we present the modeling of the production and loss 
processes for OGs and POA, respectively. The representation of 
the SOA production from OG oxidation is described in Section 
3.1, and the generation of input model parameters is detailed in 
Section 3.1. Input variables were modeled as probability distribu‐
tions and used in a Monte Carlo operation such that distributions 
of resulting time‐dependent concentrations could be predicted 
and the influence of inputs on these concentrations could be 
quantified. Later, k shall represent a generic Monte Carlo trial.

3.1 | Production rates

The production term in the model is developed to mimic as faith‐
fully as possible the dependence of the emissions to the cooking 
processes and conditions applied, based on our experimental data. 
The processes applied to generate these data are in agreement with 
cooking book recommendations and our experimental data.

The time‐dependent production term (in μg m−3 s−1) of a primary 
compound i may be presented by Equation 2: 

The definition and the general formulation of the different parameters 
in Equation 2 are expressed explicitly in the following:

•	 Vhouse (in m3) is the total house volume calculated as the total 
house floor area (Ahouse) times the room height (hroom) (from 
European commission report 53). Ahouse is expressed as the prod‐
uct between the house area per person,54 Apers, and the number of 
persons per household,54 Npers. The occurrence of a given number 
of persons in a given space is a classic Poisson process, where 
Npers, which occurs independently and with a known average rate, 
is a discrete independent random variable following a Poisson dis‐
tribution. In European households, the average Npers is 2.3 per‐
sons, leading to the following probabilities: ℙ(Npers=0), ℙ(Npers=1)

, ℙ(Npers=2), ℙ(Npers=3), ℙ(Npers=4) equal to 0.1, 0.23, 0.27, 0.20, 
and 0.12, respectively. To avoid empty households in the model, 
we have considered Npers to rather follow a shifted geometric 
distribution, which yields similar results: ℙ(Npers=0), ℙ(Npers=1), 
ℙ(Npers=2), ℙ(Npers=3), ℙ(Npers=4) equal to 0, 0.43, 0.24, 0.14, and 

(1)
Ci|g
dt

=
∑

j
Prodi,j−Lossi (2)Prodi,j=

xj ∗�
�
j
(t)∗ERi,j

Vhouse

  GM GSD P10 P25 P50 P75 P90

Npers (#)a  — — 1 1 2 3 4

Apers (m
2)a  45 1.5 27 34 46 60 75

hroom (m)a  — — 2.5  2.6  2.7  2.9  3.1 

Vhouse (m3) — —  91  121  210  397  650 

(S∕V)house 
(m2 m−3)b

 3.4  1.2  2.7  3  3.4  3.9  4.4 

λ × 105 (s−1)c  20  2.1  8  12  20  34  52 

 βPM × 105 (s−1)c  22  1.35  15  18  22  27  32 

 �O3
×105 (s−1)d  70  1.5  40  53  71  91  114 

�NO2
×105 (s−1)e   33  1.5  19  25  33  43  55 

 JHONO × 105 (s−1)f   5.7  2.48  1.7  3  5.8  10  18 

CO3,out
 (ppb)g   26  2.01  11  18  27  44  66 

 CNO,out (ppb)g   1.8  3.53  0.34  0.81  1.8  4.4  9.3 

 CNO2 ,out
 (ppb)g  — —  0.84  1.8  4.2  11  23 

aData are relative to European households from the European commission report on standard 
building specifications53 and Eurostat.54 Npers is generated using a geometric distribution with an 
average of 2.3 capita per household (see text for more explanations regarding the choice of the 
geometric distribution); hroom = hmin + hk, where hmin is the minimum ceiling height for European liv‐
ing spaces = 2.4 m and hk a random variable following a lognormal distribution with GM = 0.3 and a 
GSD = 1.8. Vhouse is Npers × Apers × hhouse. 
bHodgson et al. (2004).55 
cWeisel et al. (2005).56 
dLee et al. (1999)57; Morrison et al. (2011).58 
eSpicer et al. (1993).59 
fAlvarez et al. (2013).60 
gEPA (2013)61 monitoring data, similar to data in Europe. CNO2,out = CNO,out × (NO2/NO)out with 
(NO2/NO)out being the ratio between CNO2,out

 and CNO,out generated following a lognormal distri‐
bution with GM = 2.4 and a GSD = 1.4. 

TA B L E  1   Input parameters used in 
the Monte Carlo simulations for the 
description of the household, loss rates, 
and pollutant outdoor concentrations
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0.08, respectively. Apers follows a geometric distribution with a 
geometric mean, GM, equal to 45 m2 54 and a geometric standard 
deviation, GSD, equal to 1.5 (calculated based on the intercountry 
and intracountry variability for Apers). From these calculations, we 
estimate a median Vhouse of 210 m3 (probability density function 
of house sizes can be seen from Figure S1), which is smaller than 
household volumes in the US,62 GM = 387 m3. All the input pa‐
rameters can be found in Table 1.

•	 xj is an independent random variable which takes a value of either 
1 or 0, when the process j does or does not occur, respectively. For 
each Monte Carlo simulation k, xj is generated through a Bernoulli 
trial, with a predefined probability of xj = 1, ℙ(xj=1), equal to pj. As 
the logarithm transformed outputs are examined in the Result sec‐
tion, we have replaced xj = 0 by xj = 10−9. The value for xoilheatingforj is 
set to be equal to xj, with j = vegetable frying, meat frying, or deep 
frying (ie, oil heating for a certain frying process only occurs if this 
process occurs). We have also set ℙ(xvegetablefrying∪xvegetableboiling) and 
ℙ(xvegetablefrying∩xvegetableboiling) equal to 0.9 and 0.1, respectively. 
Simulations where xj  =  0 for all processes are excluded (no food 
cooked). For the accepted simulations (in total 1940 out of 2000), 
meat frying, vegetable frying, vegetable boiling, deep frying, and 
condiment use occur for 77, 54, 51, 5.3, and 50% of the times, consis‐
tent with the pj values we have set. This approach yields reasonable 
amounts of food cooked per person (Figure S2, eg, it is highly improb‐
able that all processes occur together and that the amount of food 
per person exceeds a certain threshold), while still accounting for the 
variability in the emissions from the different processes applied.

•	 �′
j
(t) is a (unitless) kernel function representing the derivative of 

the cooking time as a function of time, such that

and

Here, Δtj denotes the total time for a given cooking process j, where Δtj 
equals the product of the number of cooking batches, NBj, times the 
cooking time per batch, Γj. The number of cooking batches is set to one 
for all processes, except for deep frying where a batch per two persons 
is considered. �′

j
(t) used here takes the form of a product between two 

sigmoid functions, as written in Equation 5.

•	 Here, tj is the starting time of a cooking process j, with tj = 0s for oil 
heating, tj = Δtoilheating for vegetable, meat, and deep frying (as the 
frying only occurs after heating the oil) and tj = 600s for vegetable 
boiling (time required for bringing water to boil). For condiment use, 
the same rules as for Δtcondimentuse apply to tcondimentuse. τrise = 20 
s and τfall = 8 s are the time constants for the beginning and the 
end of a cooking process j, respectively. These time constants are 
chosen based on an average heating rate observed during our 

experiments. While any other kernel could be used for the rep‐
resentation of the progress of a cooking process, we opted for a 
continuous function, such that the concentrations of the different 
components in time can be differentiated. Other kernel forms also 
tested yielded very similar results. Δtj values are largely based on 
our experiments and are consistent with cookbook recommenda‐
tions.63 The geometric mean (geometric standard deviation) for 
Δtoilheating, Δtmeatfrying, Δtvegetablefrying, Δtvegetableboiling, and Δtdeepfrying 
is set to 240, 900, 1500, 1500, and 600 s (1.2, 1.4, 1.4, 1.4 and 
1.2), respectively. The values for Δtcondimentuse are set to be equal 
to either Δtmeatfrying or Δtvegetablefrying (with equal probability) if both 
(meat and vegetable frying) occur. If only one of the two processes 
occurs, then Δtcondimentuse takes the value of Δtj set for this process. 
Otherwise, Δtcondimentuse is set to zero. Considering that cooking ac‐
tivities occur simultaneously and twice a day yields an estimated 
time spent on cooking per day of around 1 hour. The distribution of 
these estimated values is in accordance with the reported number 
of hours spent for cooking per household per day, ranging from 
0.5 hours for households in South Korea to 1.9 hours in India.64

•	 ERi,j represents the emission rate of a product i from a process 
j. The expression of the emission rates depends on the cooking 
process applied. For oil heating where emissions depend on the 
oil surface per m2 of oil Soil

j
, ERi,j is

Here, ERs
i,j
 (in μg  m−2  s−1) denotes the emission rate of a product i 

from a process j per m2 of oil. The geometric mean for Soil
j

 was set 
to 0.020  m2 for shallow frying (assuming only part of the pan to 
be covered by oil when pan frying) and 0.045  m2 for deep frying 
(GSD = 1.5 and 1.05). Based on our experimental results, ERs

i,j
 fol‐

lows an Arrhenius behavior and therefore is expressed against the 
oil temperature Toil

j
 (in K), as follows:

In Equation 7, As
i
 (in μg m−2 s−1) and Bs

i
 (in K) are the Arrhenius con‐

stants determined from our experimental data, reported for the 
different species in Table 2. The oil temperatures were assumed 
to follow a lognormal distribution with GM equal to 165°C and 
190°C (GSD = 1.07 and 1.03), for shallow frying and deep frying, 
respectively, based on the average temperatures applied during 
our experiments. To account for emission variability, we have gen‐
erated temperature‐dependent ERs

i,j
 probability distributions using 

the prediction intervals from the error analysis of the linear re‐
gressions of the experimental ERs

i,j
 data against (1∕Toil

j
) (Table  2), 

according to Equation 8:

(3)�(t)=∫ ��
j
(t)

(4)�(∞)=∫
∞

0

��
j
(t)=Δtj

(5)��
j
(t)=

⎧
⎪⎨⎪⎩
1−

1

1−exp
�

Δtj+tj−t

�fall

�
⎫
⎪⎬⎪⎭
×

⎧
⎪⎨⎪⎩

1

1−exp
�

tj−t

�rise

�
⎫
⎪⎬⎪⎭

(6)ERi,j=oilheating=Soil
j
∗ER

s

i,j

(7)ln(ER
s

i,j
)= ln(As

i
)−

Bs
i

Toil
j

(8)ER
s

i,j
=exp

⎧
⎪⎪⎨⎪⎪⎩

ln (AS
i
)−

BS
i

Toil
j

+SES
i
∗ tdist,dF ∗

�������1+
1

dF
+

�
1

Toilj

−
1

Toilj

�2

SSD
�

1

Toilj

�

⎫
⎪⎪⎬⎪⎪⎭
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Here, SES
i
 is the regression standard error calculated as the square 

root of the sum of unexplained variance normalized by the degree of 
freedom (dF = 26). tdist,dF is the student distribution for dF = 26, and 
(1/Toil

j
) and SSD(1∕Toil

j
) are the average temperature inverse and its 

associated sum of squared deviations, respectively.
For any other cooking process, it is convenient to express ERi,j as 
a function of the amount of raw food cooked, as data pertinent to 

purchased goods are typically accessible. Accordingly, ERi,j may be 
written as

where M̄j (in kg) designates the average raw food mass per person per 
meal (considering two meals per day) cooked following a process j, and 
ER

M

i,j
 (in μg kg−1 s−1) the emission rate of a product i from j per one kg of 

food cooked.
For vegetable boiling, deep frying, and condiment use, indepen‐

dent values for ERM

i,j
 are utilized, as indicated in Table  3. Terpenes 

are emitted from vegetables and from condiments, while vegetable 
boiling emits small amount of POA. Meanwhile, large amounts of 
POA and aldehydes are emitted from deep frying. For vegetable and 
meat frying, temperature‐dependent ERM

i,j
 probability distributions 

were generated (here, AM
i

, in �g kg−1s−1, and BM
i

, in K are used), using 
the parameters in Table 2 and similar equations as Equation 7 and 
Equation  8. The same temperature, Toil

j
, is kept for oil heating and 

frying. Most of the variance in the relationship between ERS

i,j
 and Toil

j
 

inverse can be explained by the emission variability with the type of 
oil used. We note that compared to oil heating only, emission rates 
manifest a weaker dependence on temperature, especially for spe‐
cies whose emissions are enhanced in the presence of food.18 These 
include small aldehydes present in the meat (included in C1), acetone 
present in onions (included in C1), and POA emitted from the contact 
between food liquids and hot oil. In addition, the presence of food 
may change the oil surface properties (eg, total surface, tempera‐
ture), which in turns varies the emission rates from oil heating.

Ample data on average yearly consumption per capita exist in 
the literature including reports for different countries and differ‐
ent types of food. These data will be used to determine our best 
estimate for M̄j values. Meat consumption data calculated using a 

(9)ERi,j≠oilheating=
Npers ∗ M̄j ∗ER

M

i,j

pj ∗NBj

TA B L E  2   Arrhenius input parameters determined by fitting 
the experimental ERS

i,j
 and ERM

i,j
 data against the temperature 

inverse, which can be used for the determination of temperature‐
dependent emission rate probability distributions used in the 
Monte Carlo simulations. Ai denotes both AS and AM, in μg m−2 s−1 
and μg kg−1 s−1 for heating oil and for frying processes

  Bi (K) lnAi SEi

Parameters for ERS
i,j

POA 9183 24.9 0.6

ACR 8461 23.5 0.4

C1 5670 17 0.5

C2 10 352 28.7 0.4

C3 9128 25.7 0.5

Parameters for ERM
i,j

POA 4607 12.4 0.5

ACR 5700 14.5 0.4

C1 2831 9.8 0.3

C2 6114 16.6 0.4

C3 5718 15 0.3

Note: The standard error is calculated as the square root of the sum of 
unexplained variance normalized by the degree of freedom (dF = 26). 
Other parameters used include the average of the temperature 
inverse (0.00228 K−1) and the associated sum of squares of deviations 
(1.1 × 10−6K−1 and 2.0 × 10−6 K−1).

  GM GSD P10 P25 P50 P75 P90

ERM
i,deepfrying

 (μg kg−1 s−1)

POA 7.6 2.25 2.8 4.3 7.6 14 22

ACR 4.2 1.29 3 3.5 4.2 5 5.8

C1 5.7 1.21 4.5 5.1 5.7 6.5 7.3

C2 17 1.2 13 15 17 19 21

C3 34 1.31 24 29 34 41 47

Terp — — — — — — —

ERM
i,vegetableboiling

 (μg kg−1 s−1)

POA 0.0085 1.2 0.0067 0.0075 0.0085 0.0096 0.011

ACR — — — — — — —

C1 1.7 1.2 1.4 1.5 1.7 1.9 2.1

C2 — — — — — — —

C3 — — — — — — —

Terp 0.65 1.21 0.51 0.57 0.64 0.73 0.83

Note: Terp are also emitted from vegetable frying and from condiment use with 
ER

M

Terp,vegetablefrying
=ERTerp,vegetableboiling and ERM

Terp,condimentuse
 = 750 μg kg−1 s−1, respectively.

TA B L E  3  ERM
i,j

 data for deep frying and 
vegetable boiling used in the Monte Carlo 
simulations
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trade balance approach would yield the carcass mass availability, 
which ranges between 70 and 120  kg per capita per year for de‐
veloped countries.65 This estimate does not include losses in retail 
and food service, and thus does not represent the actual raw meat 
mass purchased for cooking. Losses in retail are estimated to be 5% 
for red meat and poultry,66 and another 5% loss can be estimated 
as food waste 67 (amount not cooked at all). Losses due to debon‐
ing, trimming, and cooking are not considered as our emission rates 
are normalized to the raw meat mass cooked (were these losses to 
be considered, the meat mass available per capita would be half of 
the carcass mass availability, based on USDA 68). Based on these 
estimates, we determined a geometric mean value for M̄meatfrying of 
0.120 kg per capita per meal. Elmadfa (2009)69 estimates an aver‐
age intake of vegetables, starchy roots, and potatoes of about 400 g 
per capita per day in European countries, similar to estimates for 
the United States (460 g, PBH foundation70). These numbers were 
used to generate a geometric mean value for M̄vegetablecooking=0.2 kg. 
Half of the mass of vegetable cooked was considered boiled and the 
other fried. Geometric mean values for M̄deepfrying and M̄condiments are 
set to 1.0 × 10−2 kg and 1.2 × 10−3 kg (considering an average yearly 
consumption of condiments of 900 g, based on ESA71), respectively. 
For all processes, we varied the amounts of food used per capita 
within 25% (ie, GSD = 1.25). We calculate the total mass of raw food 
cooked per person, Mfood in kilogram (Figure S2), as the sum of Mj 
from all processes, with average Mfood equal to 0.37 kg.

The production rates from all processes were integrated against 
time, which provides the total mass of a component i emitted per 
volume. Assuming that cooking occurs twice a day, we estimated the 
average amount of i emitted per time per volume, Ei, which can be di‐
rectly compared to scaled emission rates of the different compounds 
reported in the literature (see, eg, Figure 2).

3.2 | Loss rates

The loss term includes (a) transport to outdoor of gas‐ and particle‐
phase components due to air exchange, (b) POA and SOA deposition, 
(c) OG oxidation, and (d) OG sorption onto indoor surfaces.

3.2.1 | Particle losses

The loss of particles (PM, with PM = POA or SOA) can be described 
as follows:

where λ (in s−1) is the air exchange rate, due to infiltration and or 
open doors and windows and βPM (in s−1) the particle deposition 
rate (Table 1). βPM is dependent on particle size, turbulence, and 
the available surface in a house. These dependences are weak 
in the range of conditions encountered in indoor environments. 
First, particles in the accumulation mode (0.1–1 μm), such as those 
present in cooking emissions, have very similar deposition rates.72 

Second, turbulence, which is typically driven by the temperature 
profile indoor and air velocity/exchange rate, has little to no influ‐
ence on the deposition behavior. For example, particle deposition 
rates have been reported to vary by <20% in the range of air ve‐
locity relevant for indoor environments (0‐0.5  km  h−1, Thatcher 
et  al. (2002)72). Third, as the variation of the particle deposition 
rates is linear with the S/V ratio, this parameter, which varies by 

(10)
LossPM=

exchange

⏞⏞⏞

�∗CPM +

deposition

⏞⏞⏞⏞⏞⏞⏞

�PM ∗CPM

F I G U R E  2   Production rates of POA and organic gases from 
cooking and other indoor sources. Mean values as well as 5th 
and 95th percentiles (whiskers) and 25th and 75th percentiles 
(box) are shown for modeled total indoor source emission rates 
from Waring (2014) 34 (A) and for modeled cooking emission rates 
from this study (B) as well as the contributions of the different 
cooking processes to the total emissions (C) of POA, acrolein (Acr), 
formaldehyde (F), saturated carbonyls with less than 6 carbons 
(C1tot) or excluding formaldehyde (C1), saturated aldehydes with 
more than 5 carbons (C2), unsaturated carbonyls with more than 5 
carbons (C3), and terpenes (Terp). Red stars in B are median values 
from A

(A)

(B)

(C)
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<20% (Table 1), is not expected to significantly affect the depo‐
sition rates. Therefore, we have opted for using an independent 
deposition rate coefficient (βPM), which we vary within the range 
encountered in indoor environments, similar to previous studies.34

3.2.2 | OG losses

The loss term for an OG i is formulated in Equation 2 and the pro‐
cesses/parameters therein shall be successively described in the 
following:

Oxidation

We considered the oxidation of the organic gases with hydroxyl radi‐
cals and ozone. The reaction of nitrate radicals was not included as 

their impact on the indoor VOC conversion is expected to be one to 
two orders of magnitudes lower than the impact of hydroxyl radicals 
and ozone.35 In Equation 2, COH and CO3

 denote the hydroxyl radicals 
and ozone concentrations and kOH,i and kO3,i

 are the rate constants 
for their reactions against OG, respectively.

Determination of OGs reaction rates: The distribution of kOH,i and 
kO3,i

 values, presented in Table 4, are determined from our experi‐
mental results or taken from literature when not accessible. We con‐
sider in the following that saturated and unsaturated carbonyls react 
only with hydroxyl radicals, while terpenes may react with both 
ozone and hydroxyl radicals, given their relative reaction rates and 
COH and CO3

 under our conditions.
For ACR, we estimate based on our chamber results a median k

OH,ACR = 1.9 × 10−11 molec−1 cm3 s−1, in perfect agreement with the 
literature values74,77 of kOH,ACR = 2 × 10−11molec−1 cm3 s−1. The reac‐
tion of ACR toward ozone was taken from Grosjean et al. (1993).75

C1 compounds are produced from the oxidation of higher molec‐
ular weight species, and thus, their reaction rates toward hydroxyl 
radicals could not be reliably determined from our chamber data. 
Instead, kOH,C1 values for the entire class of C1 compounds are de‐
termined using the rates of individual compounds from Atkinson and 
Arey (2003),73 weighted by the compounds’ relative abundances 
in the emissions. The latter are varied through an initial, separate 
Monte Carlo simulation to take into account emission variability, re‐
sulting in a kOH,C1 distribution that could be used in the model.

The reaction rates of C2 compounds against hydroxyl radicals 
are estimated from our chamber data to range between 1.9 × 10−11 
and 2.5 × 10−11molec−1 cm3 s−1 (first and third quartiles), compara‐
ble to values reported for linear aldehydes (eg, kOH,hexanal = kOH,hep‐

tanal  =  3.0  ×  10−11molec−1  cm3s−1, Atkinson and Arey (2003)73 or 
kOH,heptanal=3.6×10−11molec−1cm3s−1, Bowman et al. (2003)78).

C3 compounds mainly comprise α,  β‐unsaturated aldehydes 
with different carbon chain lengths,18 depending on the type of oil 
used. The reaction rates of C3 compounds against hydroxyl radicals 
are estimated from our chamber data to range between 4.9 × 10−11 
and 5.6  ×  10−11molec−1  cm3  s−1. Gao et  al. (2009)79 report similar 
values for C6, C8, and C9 trans‐α,  β‐unsaturated aldehydes, with 
kOH = 4 × 10−11molec−1 cm3 s−1. α, β‐unsaturated aldehydes react with 
ozone less efficiently than their alkene structural homologues,75 
as ozone reaction with double bonds is an electrophilic addition. 
Colman et  al. (2015)76 reported a relationship between kO3,C3

 and 
kOH,C3, from the study of the degradation of C7–C9 biogenic α, β‐
unsaturated aldehydes: ln(kOH,C3) = 0.16 ln(kOH,C3) − 7.55. Here, we 
used this relationship together with kOH,C3 determined from our 
chamber to predict kO3,C3

 values and their distribution: Estimated 
kO3,C3

 values range between 3.4 × 10−18 and 13×10−18molec−1cm3s−1 
(first and third quartiles). These rates are relatively low compared to 
other indoor relevant compounds, such as terpenes.

Unlike the other compound classes, terpenes are highly reactive 
against ozone and therefore under our chamber conditions may react 
with both ozone and hydroxyl radicals. The reaction rates of identi‐
fied terpenes19 against ozone and hydroxyl radicals span almost two 
orders of magnitude and therefore cannot be directly used in the 

(11)

LossOG=

exchange

⏞⏞⏞⏞⏞

�∗ [OG]+

oxidation

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

kOH,OG ∗COH ∗COG|g+kO3,OG ∗CO3
∗COG|g +

adsorption∕desorption

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

ka,OG ∗

(
S

V

)

house

∗COG|g−
ka,OG

Ke,OG

∗

(
S

V

)

house

∗COG|s

TA B L E  4   Lognormal parameters (GM: geometric mean and GSD: 
geometric standard deviation) for the reaction rates of cooking‐
related organic gases against hydroxyl radicals and ozone

  GM GSD P10 P25 P50 P75 P90

kOH×10
11(molec−1cm3s−1)

ACRa  1.8 1.17 1.5 1.7 1.9 2.1 2.3

C1c 1.5 1.19 1.2 1.4 1.5 1.7 1.9

C2a  2.2 1.23 1.7 1.9 2.2 2.5 2.8

C3a  5 1.19 4 4.4 5 5.6 6.3

Terpc 2.9 1.36 2 2.4 2.9 3.6 4.3

kO3
×1018 (molec−1 cm3 s−1)

ACRd  2.6 1 — — — — —

C1e  — — — — — — —

C2e  — — — — — — —

C3f  6.9 2.61 1.8 3.4 7 13 23

Terpc 250 1.54 150 190 250 340 440

aFrom this study based on the decay of these compounds against time 
and the estimated COH in the chamber based on the d‐9 butanol decay 
(equivalent to using the relative decay technique). 
bFrom Atkinson and Arey (2003).73 Rates were weighted by the 
compounds’ relative abundances, and these abundances were varied 
through an initial, separate Monte Carlo simulation to determine the 
variability of these rates. 
cUsing Terp decay rates and COH and CO3

 from this study and 
(kOH,Terp∕kO3 ,Terp

) ratios for a mix of terpenes from Atkinson and Arey 
(2003),73 through a separate Monte Carlo simulation. 
dFrom NIST (2016)74 (taken from Grosjean et al. (1993)75). 
eConsidered to be inert against ozone. 
fEstimated using the reaction of C3 against hydroxyl radicals, kOH,C3, 
from this study and the relationship between kOH,C3 and kO3 ,C3

 reported 
in Colman et al. (2015)76 for α, β‐unsaturated aldehydes: ln(kO3 ,C3

)=0.16

~ln(kOH,C3) − 7.55. 
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model. In contrast, the average lifetimes of terpenes in our chamber 
are fairly reproducible. Therefore, in order to determine the average 
kOH,Terp and kO3,Terp

 for the terpene mixture in the chamber, we used 
another separate Monte Carlo simulation to generate a probability 
density function of the (kOH,Terp∕kO3,Terp

) ratio, assuming a randomly 
generated mixture of the most important mono‐ and sesquiterpenes 
identified and using reaction rates from Atkinson and Arey (2003).73 
Using this ratio distribution, the calculated lifetime distributions, 
and the hydroxyl radicals and ozone concentrations in the chamber 
for these specific experiments (2.5 × 107 and 1.0 × 1012 molec cm−3, 
respectively, see Klein et  al. (2016b)19), we determine an average 
kOH,Terp and kO3,Terp

 of 2.9  ×  10−11molec−1  cm3  s−1 (32% error) and 
2.5 × 10−16molec−1 cm3 s−1 (54% error), respectively.

Determination of indoor oxidant concentrations: The prediction of 
COH and CO3

 would require a detailed understanding of indoor oxi‐
dant sources and sinks, which in turn entails the knowledge of out‐
door reactive gases (O3, NOx, and OG), their penetration through 
the building envelope, their potential indoor sources, and their in‐
door transformation through photolysis, reactions, and deposition. 
Waring and Wells (2015)35 developed a Monte Carlo framework 
for predicting the indoor COH and CO3

, considering established and 
newly realized oxidant sources. A brief description of the oxidant 
framework and the main processes involved will follow.

In the framework of Waring and Wells (2015),35 outdoor‐to‐in‐
door transport is the principal indoor source of ozone, the initiator 
and the main driver of indoor chemistry, with a penetration coef‐
ficient >0.8.80 In the model, ozone is lost by reacting in the gas‐
phase with alkenes 73 or by chemical uptake onto building materials 
via heterogeneous reaction with surface‐sorbed alkenes,81,82 with 
an average deposition rate �O3

 of 7 × 10−4 s−1 (Table 1, Spicer et al. 
(1993)59). As a result, indoor ozone concentrations often correlate 
with outdoor concentrations and are 20%‐70% of ambient values.83 
Owing to their short lifetimes, outdoor‐to‐indoor transport of hy‐
droxyl radicals is not a significant indoor source 84 and therefore is 
not considered in the model. An important hydroxyl radical source 
in the model is the aforementioned reactions between ozone and 
alkenes and the subsequent rearrangement and decomposition of 
the resulting stabilized Criegee intermediates. These reactions are 
traditionally considered the almost exclusive drivers of indoor hy‐
droxyl radicals.85 However, more recently the photolysis of indoor 
nitrous acid (HONO) formed from combustion or NO2 hydrolysis on 
indoor surfaces 60 has been identified as another potentially import‐
ant hydroxyl radical source indoors and therefore is included in the 
model. This source is especially important at high indoor actinic light 
fluxes in the range of 340‐405  nm and in the presence of indoor 
combustion sources.35 The hydroxyl radicals are lost by reaction 
with the OGs and NO2.

In their framework, Waring and Wells (2015)35 considered a 
scenario with stable indoor background concentrations of 91 OGs 
(from Logue et al. (2011)86), variable outdoor O3 (CO3,out

) and NOx 
(CNO,out and CNO2,out

) concentrations, and variable indoor D‐limo‐
nene concentrations (Clim). This scenario will be considered here, 
while other scenarios were tested but provided similar results. By 

examining the effect of different model inputs on modeled indoor 
oxidant concentrations, Waring and Wells (2015)35 determined 
the most influential parameters and a relationship relating these 
parameters (VARl) with the natural log‐transformed outcome vari‐
ables, ln(COH) and ln(CO3

):

Here, yint,OH and yint,O3
 and RCOH,l and RCO3,l

 are the regression in‐
tercepts and coefficients for the different input variables taken 
from Waring and Wells (2015),35 for both OH and O3, respectively. 
Input variables, VARl, include CO3,out

, CNO,out, CNO2,out
, Clim, λ, �O3

, �NO2

, and JHONO, where �NO2
 is the deposition rate of NO2 and JHONO the 

photolysis rate of HONO. We have considered the same distribu‐
tions for VAR_l as in Waring and Wells (2015)35; these are reported 
in Table 1. While, similar to D‐limonene, cooking emitted organic 
gas reaction with ozone may lead to a decrease (increase) in ozone 
(hydroxyl radical) concentration, this effect is not significant (<5%) 
and therefore not considered in the following. This effect has been 
assessed by adding to Clim in Equations 12 and 13, and the sum of 
COG,i scaled by kO3,i

 relative to kO3,lim
, assuming an OH molar yield for 

OGi ozonolysis of 0.86, equals to that of D‐limonene ozonolysis.85

Sorption

Modeling the sorption of gases onto indoor surfaces is not 
straightforward. These processes heavily depend on the chemi‐
cal nature and physical properties of both binding gases and ad‐
sorbing material (eg, inhomogeneity, roughness, and composition) 
and may involve the diffusion of the gases within the material and 
complex interactions and competition between these gases.87,88 
Here, we did not attempt to reproduce exactly the equilibrium 
of the gases at the interface through a full‐scale, computation‐
ally intensive model, while lacking observational constraints for 
model parameters (measurements in indoor environment where 
all processes except gas‐surface interactions are characterized). 
Instead, we have opted for a rather simplified approach, where 
model inputs that represent the surfaces’ sorption properties can 
be effectively varied, such that the sensitivity of the model out‐
puts on the assumed parameters can be assessed. The approach 
is a linear absorption‐desorption model, which assumes the sorp‐
tion of OGs onto building materials to follow a Langmuir process. 
The parameters driving the partitioning of a compound between 
the gas and the absorbed phase are represented in Equation 14. 
These include (a) the gas adsorption rate, ka,i (in mh−1), (b) the 
equilibrium partitioning constant, Ke,i (in m), and (c) the indoor 
surface to volume ratio including furniture, (S/V )house (in m−1). The 
OGi concentration change due to adsorption is represented by 
ka,i * (S/V )house * Ci|g, while the change due to desorption is repre‐
sented by (ka,i/Ke,i)*(S/V )house*Ci|S, where Ci|S denotes the surface‐
sorbed concentration of OGi expressed as: 

(12)ln(COH)=
∑
l

RCOH,l ∗ ln(VARl)+yint,OH

(13)ln(CO3
)=

∑
l

RCO3,l
∗ ln(VARl)+yint,O3



     |  935KLEIN et al.

Here, we considered two main assumptions. (1) We consider the 
adsorption of gases on clean surfaces, which is a reasonable as‐
sumption if cooking emissions dominate the indoor concentration 
of the compound of interest. As it shall appear in the following, 
this assumption may hold for the different carbonyl species, but 
not for terpenes whose emissions are dominated by detergent use. 
(2) Based on the Langmuir theory, the adsorption onto a surface 
depends on the number of available sites, which means that com‐
pounds from cooking or other processes will compete for these 
sites. Nevertheless, under indoor conditions (high (S/V )house and 
Ke,i, and low Ci|g), the availability of these sites is not a limiting 
factor, and therefore, competition between the gases will not be 
taken into account. Based on assumptions (1) and (2), losses due to 
adsorption should be considered as highest estimates. The surface 
of indoor material available per volume is an important parameter 
for gas‐phase adsorption. The (S/V )house distribution (GM  =  3.4, 
GSD  =  1.2) is derived from values reported for 12 houses in 
California by Hodgson et al. (2004)55 and is consistent with values 
for furnished houses reported elsewhere (3.1  m2  m−3, Thatcher 
et al. (2002)72 and references therein). The equilibrium constant, 
Ke,i, depends on both the compounds chemical properties and its 
affinity toward the surface. The study of these data reveals the 
strong dependence of ln(Ke,i) on two parameters: 

1.	 The compound log‐transformed vapor pressure, log(Pvap,i) which 
for a given surface log(Ke,i) increases with the decrease of 
log(Pvap,i);

2.	 The type of surface considered where the variation of log(Ke,i) for 
two compounds with given log(Pvap,i) with the surface type exhib‐
its an excellent correlation.

By contrast, the gas adsorption rates, ka,i, depend on the compound col‐
lision frequency and its accommodation coefficient (effective surface), 
which is intrinsically a function of the surface properties. Literature 
data support this, showing a very strong effect of the surface consid‐
ered on log(ka,i) and only a little dependence on the log(Pvap,i). We note 
that the latter might be a mathematical artifact as log(Ke,i) and log(ka,i) 
are obtained simultaneously from fitting experimental data, which may 
lead to their interdependence.

These complex (real and unreal) interdependences may be effec‐
tively taken into account by considering the ensemble of log(Ke,i) and 
log(ka,i) of the different compounds as a single vector, v⃗ (with ten 
elements), whose distribution follows a multivariate normal distribu‐
tion, generated using Equation 15.

Here, 𝜇v⃗ is the mean vector containing mean values of log(Ke,i) and 
log(ka,i) for the different OGs and 

∑
v⃗ is the variance/covariance matrix 

presented in Table S1 in the supplement. The mean values for log(Ke,i) 
and log(ka,i) for different compounds are based on their log(Pvap,i)—see 
Table 5 and the relationship between average adsorption parameters 
against log(Pvap,i) derived from values reported in An et al. (1999).90 
These average parameters are as follows: exp ⋅v⃗= (0.028, 0.017, 
1.2, 3.5, 1.8) and exp ⋅v⃗= (3.1× 10−5, 2.7× 10−5, 7.8× 10−5, 1.0× 10−4, 
8.6× 10−5), which corresponds to Ke,ACR, Ke,C1, Ke,C2, Ke,C3, and Ke,Terp 
and ka,ACR, ka,C1, ka,C2, ka,C3, and ka,Terp, respectively.

Based on the Ke values, it can be clearly observed that compounds 
like long‐chain aldehydes and terpenes would tend to stay in the ad‐
sorbed phase, while short‐chain aldehydes are mostly in the gas‐phase. 
This is consistent with measurements in different indoor environments 
for a range of organic gases with a similar volatility as the cooking 
emissions investigated here. For example, Singer et  al. (2004)91 and 
(2017)92 reported Ke values between 1 and 3 m and between 2 and 7 
m for monoterpenes and for n‐alkanes with a carbon number similar to 
C3 compounds, respectively. The adsorption rates (times the S/V ratio) 
of gaseous cooking emissions range between 0.4 and 1.2 h−1, compa‐
rable to those reported for other compounds (eg, ozone; Table 2) or 
determined for organic gases from measurements in simulated indoor 
residential environments (eg, Singer et al. (2004)91 and (2007)93).

The variance of log(Ke,i) and log(ka,i) is calculated by propagat‐
ing the variation of these parameters with the surface properties 
and their variation due to the change in their composition and 
therefore their log(Pvap,i). We note that Ke,i values vary by a factor 
of 2.6, while ka,i values vary by a factor of 1.7. The covariance be‐
tween the parameters takes into account their similar dependence 
on the surface properties (ie, if surfaces in a house are highly ad‐
sorptive, then all gases would tend to be sorbed) and the inter‐
dependence between log(Ke,i) and log(ka,i). The covariance values 
indicate that the dependence on the surface properties explains 

(14)
dCi|S
dt

=ka,i ∗Ci|g−
ka,i

Ke,i

∗Ci|S

(15)f(v⃗)=
�∑v⃗ �−0.5

2𝜋
exp

�
−0.5(v⃗−𝜇v⃗)

T ∗

−1�
v⃗

(v⃗−𝜇v⃗)

�

  GM GSD P10 P25 P50 P75 P90

ACR 33 331 133 — — — — —

C1 63 995 173 45 329 54 662 63 995 77 327 90 659

C2 227 187 147 187 227 280 360

C3 53 200 32 41 53 71 89

Terp 133 187 87 108 133 173 200

Note: Data are from Lide et al. (1947),89 and ranges are determined based on the chemical specia‐
tion analysis of the different compound classes determined by the PTR‐TOF‐MS.

TA B L E  5   Lognormal distributions 
of the vapor pressures (Pa) of cooking‐
related organic gases used in the Monte 
Carlo simulations
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about 90% and 98% of the variability in log(Ke,i) and log(ka,i), re‐
spectively, while correlation coefficients (R2) between log(Ke,i) and 
log(ka,i) are around 0.18.

4  | SOA PRODUC TION

SOA production and loss can be described by the following 
expression:

Here, ySOA,i is the SOA yield from the oxidation of a compound i. We 
recognize that SOA yields depend on the activity of the oxidation prod‐
ucts in the particle and gas‐phase. However, this dependence is minor 
compared to other effects (eg, oxidation, emission composition, and 
strength), especially within the range of concentrations encountered in 
our chamber and indoor. Therefore, this dependence could not be ob‐
served within our uncertainties and will not be considered in the model. 
Further, we note that yields depend on NOx concentrations, which were 
typical of ambient atmospheres (10‐20 ppb); therefore, we expect the 
yields determined in our chamber to be representative. From our cham‐
ber experiments, we determine an effective yield from the aggregate 
sum of ACR, C2, and C3 of 0.22, comparable to values reported for the 
oxidation of alkane compounds with a similar carbon number,94 while 
slightly lower values are reported for long‐chain saturated carbonyls 
(0.1‐0.2).95 We determine a higher effective yield for terpenes (42%),19 
expected from the oxidation of a mix of mono‐ and sesquiterpenes. 
Single yield values, ySOA,ACR+C1+C2 = 0.22 and ySOA,Terp = 0.42 will be used 
to model SOA production from carbonyls and terpenes.

5  | RESULTS AND DISCUSSION

5.1 | Emission and loss rates

5.1.1 | Cooking contribution to indoor emissions

Modeled rates of indoor cooking emissions presented in Figure 2 are 
estimated in μg m−3 h−1 based on total daily emissions in the entire 
house assuming two meals cooked per day. Rates are highly variable 
due to the different cooking processes involved (Figure 2B) and the 
amount of food cooked (Figure S2), but remain constrained within 
a factor of <10 (P90/P10) for all species. We compare the emission 
rates estimated here with those available in the literature from cook‐
ing emission studies. To estimate the importance of cooking com‐
pared to other indoor emission processes, we also compare these 
cooking emission rates to those compiled by Warring et al. (2014)34 
representing the sum of indoor emission sources (Figure 2A).

POA emissions (GM rate 1.7 in μg  m−3  h−1) are dominated by 
frying vegetables (49%) and meat (37%). Average POA emission 
factors from frying correspond to 5  mg  kg−1, consistent with the 
range found in previous studies for frying emissions.96 For example, 

Schauer et al. (2002)37 reported the organic aerosol emission factors 
from vegetable stir frying and potato deep frying to range between 
7 and 16  mg  kg−1. We note that Asian‐style cooking could gener‐
ate much higher particulate emissions than Western‐style cooking 
(100 mg kg−1)12; therefore, our results cannot be generalized to other 
locations. We also note that we have not observed particle emissions 
from heated empty pans due to desorption/nucleation of sorbed 
organics recently suggested as a primary source of particles from 
cooking processes.39 Therefore, we have not considered this addi‐
tional source in our model, although such processes can still occur if 
pans are not cleaned well. Based on the calculations of Waring et al. 
(2014),34 we can infer that cooking can explain about half of the total 
POA emission rates indoor, including smoking.

The general picture is the same for aldehydes but with higher 
influence from oil heating. Acrolein GM emission rate is estimated as 
0.8 μg m−3 h−1. While cooking emission rates for acrolein are higher 
than those estimated for overall indoor sources, they compare well 
to values from a study estimating cooking‐related acrolein emission 
rates (0.9‐1.5 μg m−3 h−1) by comparing the acrolein concentrations 
in a house with and without cooking events.97 C1 carbonyl emis‐
sion rates are estimated to be 7.3  μg  m−3  h−1, mostly generated 
through frying processes (vegetables: 50%, meat: 43%). Cooking 
can explain the average emission rates of small carbonyl indoor 
(neglecting formaldehyde which was not measured in our case), but 
the maximum values reported by Waring and coworkers are much 
higher. The emission rates of C2 and C3 carbonyls are estimated as 
2.5  μg  m−3  h−1 and 1.3  μg  m−3  h−1, respectively. This corresponds 
to a GM emission factor for C2 compounds of 7.5 mg kg−1, a factor 
of 5 lower than values reported by Schauer et al. (2002)37 for stir 
frying of vegetables, potentially due to the different cooking style 
applied (cooking on a restaurant hot plate). Unfortunately, for most 
of the C2 or C3 carbonyls, Waring and coworkers did not calculate 
emission rates. However, the emission rate they reported for hex‐
anal compares well with our estimated GM emission rate, suggesting 
that large saturated and unsaturated carbonyl indoors may also be 
dominated by cooking events. Terpenes are generated by frying and 
boiling vegetables (46%), and the use of seasonings (54%). A recent 
study reported monoterpene emission rates from several peppers 
used in Chinese cuisine to range between 2 and 25 μg g−1 min−1,20 
comparable to the emission rates determined here (45 μg g−1 min−1 
of terpenes half of which are monoterpenes). The emission rates re‐
ported for terpenes from all indoor emissions dominated by clean‐
ing product use are about a factor of ten higher than the terpene 
emission rates calculated for cooking. Therefore, the emission of 
terpenes from cooking is overall minor compared to other indoor 
sources, but may play a role in confined kitchens (see below).

5.1.2 | Indoor cooking contribution to 
outdoor emissions

The analysis above highlights that cooking dominates the emissions 
of most of the pollutants indoor. Here, we assess the influence of in‐
door cooking on outdoor air pollution. The origin of cooking organic 

(16)

dCSOA,i

dt
= ySOA,i ∗

(
kOH,i ∗COH ∗Ci|g+kO3,i

∗CO3
∗Ci|g

)
−

�∗CSOA,i−�PM ∗CSOA,i
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aerosol (COA) identified during meal times in ambient air by AMS 
analysis has been lately challenged and the processes by which this 
fraction is emitted in the atmosphere remain unclear.14 The attempt 
of modeling cooking organic aerosols in Paris 98 and London 99 sug‐
gests that the observed concentrations are consistent with an emis‐
sion rate of 80 and 320 mg person−1 day−1, respectively. These rates 
are significantly higher than the rates determined for indoor cooking, 
equal to 4.4 mg person−1 day−1 on average. Indeed, recent results in‐
dicate that cooking organic aerosol can be overestimated in ambi‐
ent air compared to emission measurements by up to a factor of 4 
due to the higher relative ionization efficiency (RIE) for this fraction 
and the use of a collection efficiency (CE) of 0.5.100 In our case, the 
CE/RIE factor was constrained based on scanning mobility particle 
sizer (SMPS) volume measurements using a density of 0.8 consistent 
with oil droplets obtained by comparing the aerodynamic diameter 
(from AMS) with the mobility diameter (SMPS). Data are consistent 
with a CE of ~1, if we assume the default RIE value used for organic 
aerosols. Despite this possible overestimation of outdoor COA, in‐
door cooking emissions cannot explain the observed concentration 
in ambient air, pointing toward the presence of other emission pro‐
cesses. The most likely source of outdoor COA must be related to 
restaurants, where emission rates are much higher than domestic 
emissions. For example, emission rates from meat charbroiling are 
around 15 g kg−1,36 three orders of magnitudes greater than those 
obtained here or reported for domestic cooking. The significantly 
higher emissions from commercial kitchens compared to domestic 
kitchens are also observed in the case of China,12 where COA is a 
prominent fraction of the aerosol in urban environments.101 This hy‐
pothesis is consistent with the observation of COA downwind of res‐
taurants 102 and during mobile measurements in restaurant areas.103 
As emissions from restaurants are about two orders of magnitude 
higher than top‐down estimates of cooking emission rates based on 
ambient measurements, it only requires <1% of food cooked in com‐
mercial kitchens to reproduce the observed ambient COA. Therefore, 
restaurant emissions may be considered as super‐polluters. We note 
that the VOC/COA ratio from these emissions is relatively low (\~1, 
see Schauer et al. (1999)36) compared to that found in domestic cook‐
ing emissions (\~10, this study or Schauer et al. (2002)37). Therefore, 
unlike for domestic cooking emissions where SOA production poten‐
tial may exceed the emitted POA, for commercial cooking this would 
be unlikely. More studies are necessary to assess the SOA produc‐
tion potential of commercial kitchen emissions.

5.1.3 | Loss rates

In this section, we examine the relative importance of the main pro‐
cesses by which the different pollutants are lost. We compare the 
integrated losses over 12 hours and note that some processes such 
as the interaction of the gases with indoor surfaces become a source 
of VOCs after several hours of emissions. POA is lost equally by 
exchange and deposition. Meanwhile, acrolein and short‐chain car‐
bonyls (C1) are lost almost exclusively through air exchange, as their 
reaction toward ozone and their deposition onto indoor surfaces 

are negligible. The losses of the other compounds, that is, C2, C3, 
and Terp, by different processes are compared in Figure 3. Air ex‐
change remains the dominant process by which all of these gases 
are lost (median contribution of 80%, 60%, and 56% for C2, C3, and 
Terp, respectively). Losses by deposition are significant, especially 
for unsaturated aldehydes with the lowest vapor pressures (median 
contribution of 34%). Our results are consistent with measurements 
in different indoor environments reporting that sorption does not 
greatly affect indoor concentrations of highly volatile species, while 
it appears to be a relevant indoor process for lower volatility com‐
pounds sorbed at rates close to typical residential air change rates 
(Singer et al. (2004)91 and (2007)93). Oxidation affects predominantly 
species reactive against ozone, as OH concentrations are very low. 

F I G U R E  3   Contribution of air exchange, adsorption on surfaces, 
and gas‐phase oxidation to the loss of C2, C3, and terpene 
compounds during the first 12 hours after being emitted. CDF is 
the cumulative distribution function which gives the probability 
that the contribution of a loss mechanism is less or equal than a 
certain contribution
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Accordingly, oxidation is only an effective loss mechanism for ter‐
penes (median contribution of 14%). We note that we have not con‐
sidered multiphase oxidation processes occurring at indoor surfaces, 
because of the dearth of quantitative data describing the loss rates 
of cooking emissions from surfaces. For compounds that are almost 
quantitatively adsorbed onto surfaces (eg, terpenoids104), multiphase 
oxidation with ozone rivals the homogeneous oxidation in the gas‐
phase. Therefore, multiphase chemistry is a non‐negligible loss 
mechanism only for terpenes from cooking, which are reactive to‐
ward ozone and partition equally between the gas‐phase and indoor 
surfaces. We also note that multiphase chemistry may contribute to 
the transformation of the unsaturated acids and glycerides contained 
in the POA deposited onto indoor surfaces, which may constitute a 
secondary source of carbonyls. However, we note that this source 
is negligible compared to direct carbonyl emissions from frying (as 
(C1+C2+C3)/POA ~10 in the emissions). More effort should be de‐
voted in the future to quantify the fate of cooking emissions indoor, 
with a particular focus on surface deposition and reactions.

5.2 | Indoor pollutant concentrations

The emissions from cooking processes can generate significant gase‐
ous and particulate pollutant concentrations in indoor environments 
(Figure  4). All gaseous compounds reach their peak concentration 
about half an hour after the start of the cooking process. The maxi‐
mum peak concentrations modeled are about 5‐600 μg m−3 for the 
C1 compounds (Figure 4B), while the minimum peak concentrations 
modeled are about 0.5‐10 μg m−3 for the terpenes (Figure 4E). The 

peak concentrations for acrolein, C2, and C3 are 2‐100 μg m−3, 8‐200 
μg m−3, and 5‐90 μg m−3, respectively (Figure 4A,C,D). This indicates 
that cooking processes can generate total gaseous pollutant concen‐
trations of up to 1000 μg m−3, spread over the whole house.

The peak concentrations determined from this study compare well 
with aldehyde concentrations measured in a room directly after different 
deep frying processes.105 The average acrolein, C1, C2, and C3 concen‐
trations resulting from the different deep frying processes are 47, 144, 
71, and 41 μg m−3, respectively. While acrolein and C1 concentrations 
decrease constantly to background levels, the concentrations of C2, C3, 
and terpenes reach a plateau at about 2, 1, and 0.1 μg m−3, respectively. 
These plateaus are generated by desorption of the compounds from 
surfaces where they have been deposited before. This nicely explains 
the long‐term odorous contamination of the house after certain cooking 
procedures like cooking fish or preparing dishes with onions.

The POA reaches its peak concentration after half an hour with 
5‐200  μg  m−3 (Figure  4F) followed by a constant decrease to zero 
within 6 hours. This modeled lifetime of cooking POA is confirmed by 
measurements of cooking aerosol in a kitchen performed by Hussein 
et al. (2006)106 who reported a lifetime of 4‐6 hours. The decrease 
can be explained by irreversible deposition of the particles on sur‐
faces and removal by air exchange. The modeled POA concentrations 
compare well with measured cooking‐related indoor concentrations 
from various studies conducted by Levy et al. (2002)107 (200 μg m−3), 
See and Balasubramanian (2006; 2008)108,109 (66‐190  μg  m−3) or 
Buonanno et al. (2009)110 (13‐389 μg m−3). SOA concentrations reach 
a maximum after about one hour with 0.05‐2 μg m−3 (Figure 4J). The 
maximum amount of SOA formed from the oxidation of the carbonyls 

F I G U R E  4   Time‐dependent probability 
density functions of indoor pollutant 
concentrations in European homes 
originating from Occidental style cooking 
processes. The left‐hand panels show 
the evolution of the gaseous pollutants, 
acrolein (A), saturated carbonyls with less 
than six carbons (B), saturated carbonyls 
with more than 5 carbons (C), unsaturated 
carbonyls with more than 5 carbons (D), 
and terpenes (E). The right‐hand panels 
show the evolution of the particulate 
species, POA (F), SOA formed from 
carbonyl oxidation (G), SOA formed from 
terpene oxidation (H), and total SOA 
formed (J)

(A) (F)

(B) (G)

(C) (H)

(D) (J)

(E)
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and terpenes (Figure 4G,H) is comparable, with 0.03‐1 μg m−3 and 
0.02‐1 μg m−3, respectively. The total SOA decreases slowly, reaching 
a plateau of about 0.01 μg m−3 after 6 h. This plateau is generated 
by the oxidation of gases which desorb from the surface they have 
been adsorbed on before. For the first 6 hours after cooking, POA 
is clearly dominating the indoor particulate concentrations while 
SOA formation creates a small but constant particle background. 
The 12‐hour average and maximum concentration distributions re‐
veal that frying processes dominate the emissions of most gas‐ and 
particle‐phase species (Figure  5). As can be seen from the color 
code, the probability for higher concentrations of acrolein, C1, C2, 
C3, and POA increase almost monotonically with temperature. As 
expected, the use of seasonings increases the probability for higher 
terpene concentrations and SOA formed from terpenes compared 
to only frying processes. Since the carbonyl emissions are mostly 
dominated by frying processes, also the formation of SOA from the 
carbonyls is mainly explained by frying. About half of the SOA forma‐
tion probability is explained by CSOA and the other half by TerpSOA. 
The peak of the 12‐hour average acrolein probability density func‐
tion lies around 1‐10 μg m−3. This compares well with measurements 
from residential homes in Canada 111 or California 97 reporting ac‐
rolein concentrations of 1 and 6 μg m−3, respectively. Huang et al. 
(2011)112 report 17  μg  m−3 of acrolein in a kitchen after cooking 
which compares well with our range when the concentration is nor‐
malized to the overall house. This indicates that cooking processes 
are the main source of acrolein in indoor environments generating 

high enough concentrations to possibly induce negative effects on 
human health.113 The C1 distribution peak lies around concentra‐
tions of 15 μg m−3; thus, cooking can only explain about one‐third to 
half of the concentrations of small carbonyls measured in residential 
houses in Europe 114 (45 μg m−3) and the United States 115 (28 μg m−3). 
Furthermore, cooking can explain with concentrations of 1‐10 μg m−3 
more than half of the average measured concentration of larger sat‐
urated aldehydes in Finnish 114 or German 116 homes (9 μg m−3 and 
16.8 μg m−3). The indoor terpene concentrations of 0.1‐1 μg m−3 gen‐
erated from cooking processes are negligible compared to average 
concentrations measured in indoor environments in Finland 117 and 
Germany 116 (23 μg m−3 and 25.7 μg m−3).

On the other hand, maximum concentrations of terpenes in 
a kitchen (estimated to be 20% of the total house volume) with‐
out much air exchange with the rest of the house can reach up to 
50 μg m−3. This compares well with the value reported in our previ‐
ous study about indoor terpene emissions from cooking processes.19 
Overall, our study shows that cooking is the most important source 
of gas‐phase and particle species indoor having potential delete‐
rious effects on human health highlighting the need for efficient 
mechanical ventilation in kitchens. The model can be used on the 
one hand to predict the effect of changes in household settings (eg, 
hood installation), cooking habits (eg, decrease in frying), and envi‐
ronmental factors (eg, change in the outdoor oxidant levels) on the 
impact of cooking emissions on indoor air quality. On the other hand, 
the methodology developed here can be extended to other studies 

F I G U R E  5   Probability density 
functions of 12‐h average and maximum 
indoor pollutant concentrations in 
European homes originating from frying 
processes, the use of seasoning, and the 
total of all cooking processes. The frying 
is color coded by the average cooking 
temperature if relevant for the compound 
emissions. The left‐hand panels show 
the 12‐h averages, and the right‐hand 
panels show the maximum concentration 
of acrolein (Acr), saturated carbonyls 
with less than six carbons (C1), saturated 
carbonyls with more than five carbons 
(C2), unsaturated carbonyls with more 
than five carbons (C3), terpenes (Terp), 
primary organic aerosol (POA), SOA 
formed from carbonyl oxidation (CSOA), 
SOA formed from terpene oxidation 
(TerpSOA), and total SOA formed 
(TotSOA)
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focused, for example, on assessing the impact of cooking (or other 
emissions) on indoor air quality in developing countries, where cook‐
ing habits and household settings are significantly different.
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