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Introduction

High-throughput screening (HTS)[1, 2] is a widely used approach
in lead discovery. This method implies that activity data for

hundreds of thousands of compounds can be generated in
very little time. An important process in HTS is HTS triaging[3, 4]

in which hits are tested for their validity experimentally or stat-

istically and are eliminated when exhibiting an undesirable be-
havior in one or multiple assays. Detection and removal of un-

desirable compounds serves to make follow-up of hits more ef-
ficient, by not wasting resources on false hits. Compounds

with undesirable behaviors can be of different categories.[5]

First, these include truly active but nonselective compounds

that modulate multiple targets through the desired mecha-

nism of action (MoA) (e.g. , nonselective kinase ATP site bind-
ers) or compounds that engage the target through an undesir-

able MoA. Second, it includes compounds for which the assay
measurement gives a false indication about the engagement

of the target by the compound. In such occurrences, com-
pounds can be described as false positive or false negative

and their false readouts can be due to impurities, chemical re-

activity or interference mechanisms with the assay technology.
Herein, we introduce the term ’CIAT’ to refer to a Compound

that Interferes with an Assay Technology. Such interference
compounds are the focus of our study. Mechanisms of such in-

terference vary[6, 7] but include inhibition of secondary enzymes
in coupled assays containing multiple enzymes, fluorescence

quenching and compounds that interfere with an assay’s
mechanism (e.g. , biotin mimetics in bead-based assays can
compete for binding to the bead).

Several computational methods have been developed for
the HTS triage process. Pearce et al.[8] analyzed the promiscuity

correlation of primary HTS data to a set of compound func-
tional group and property filters. They observed a stronger cor-

relation with functional group filters which decreased the

number of compounds considered for triage by 12 %. A study
from Baell et al.[9] identified substructural motifs responsible for

the promiscuous behavior of compounds by testing and ana-
lyzing a library of compounds at high concentration (25 and

50 mm) in a panel of assays using the AlphaScreen technology-
platform. This study led to the development of 480 substruc-

A significant challenge in high-throughput screening (HTS)
campaigns is the identification of assay technology interfer-

ence compounds. A Compound Interfering with an Assay
Technology (CIAT) gives false readouts in many assays. CIATs
are often considered viable hits and investigated in follow-up
studies, thus impeding research and wasting resources. In this
study, we developed a machine-learning (ML) model to predict
CIATs for three assay technologies. The model was trained on

known CIATs and non-CIATs (NCIATs) identified in artefact
assays and described by their 2D structural descriptors. Usual

methods identifying CIATs are based on statistical analysis of

historical primary screening data and do not consider experi-

mental assays identifying CIATs. Our results show successful
prediction of CIATs for existing and novel compounds and pro-
vide a complementary and wider set of predicted CIATs com-
pared to BSF, a published structure-independent model, and to
the PAINS substructural filters. Our analysis is an example of
how well-curated datasets can provide powerful predictive

models despite their relatively small size.
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ture filters that are linked to assay interference and referred to
as Pan-Assay Interference Compounds (PAINS). PAINS filters

have become popular for compounds triaging and are
straightforward and easy to use. Over the years, the applicabili-

ty of PAINS filters has been discussed and criticized.[5, 10, 11] It has
been reported that the presence of PAINS substructure does

not necessarily imply an undesirable mechanism and the ap-
plicability domain of the PAINS is limited by the chemical
space and the unique assay technology used in building the

filters.
The BadApple[12] service assigns a promiscuity score to com-

pound structures based on their promiscuity, calculated from
screening results and associated with their molecular scaffolds.

While chemical scaffolds can be inherently promiscuous,[13, 14]

any specific pharmacophore or substructure can have a high

impact on a compound’s promiscuity.[15, 16] The Hit Dexter plat-

form[17, 18] predicts various types of frequent-hitters, which are
compounds that are active in many assays, based on a set of

highly tested PubChem compounds represented as molecular
fingerprints. Hit Dexter 2.0 covers both primary and confirma-

tory dose–response assays and classifies compounds as pro-
miscuous or not with an MCC of 0.64 and a ROC AUC of 0.96.

A study from Ghosh et al.[19] applied machine-learning, pharma-

cophore analysis and molecular docking to flag false positive
hits in Luciferase HTS assays. These three approaches yielded a

balanced accuracy of 89.7, 74.2, and 67.2 % respectively.
In contrast to the above-mentioned methods that make pre-

dictions based on chemical structure, the Binomial Survivor
Function (BSF)[20, 21] assesses the statistical probability that a pri-

mary screening result is not based on experimentally observed

anomalous compound behavior (such as technology interfer-
ence, aggregation or reactivity), given a combination of its

screening results and the overall hit rates in historical screens.
BSF is calculated by assuming that a screening is a binomial

experiment. In HTS, compounds are tested in hundreds of
assays and the likelihood that any compound will be a true

active in an unbiased assay is small. Based on historical data, it

is possible to estimate the likelihood of a compound to be
active and to classify it as a frequent-hitter or not. Thus, the

BSF score is independent of chemical structure but is depen-
dent on adequate annotation of the screening results. A down-
side of BSF is that it cannot be applied to predict the promis-
cuity of previously untested, or novel, compounds.

Herein, we present a novel random forest classification (RFC)
model that predicts assay technology interference from molec-
ular structures. We compare this model with the BSF score and
the results from applying PAINS filters. The latter comparison is
done to investigate the ability of the PAINS filters to identify

CIATs. In contrast to methods which use HTS primary screening
results as input data, the datasets used for the RFC models

contain results from historical counter-screen assays, which are
used to experimentally rule out assay technology interference
mechanisms from primary HTS datasets. To our knowledge,

this is the first example of counter-screen data being used to
model assay technology interference in a systematic manner.

Three extensively applied HTS assay technologies, Al-
phaScreen,[22] FRET,[23] (Fçrster resonance energy transfer) and

TR-FRET[24] (time-resolved fluorescence resonance energy trans-
fer) are investigated.

Results and Discussion

Data collection

Data from primary single-concentration HTS of three technolo-

gies (AlphaScreen, FRET, TR-FRET) was collected from the HTS

database at AstraZeneca. For compounds active in the primary
assays, results from their corresponding down-stream artefact

assays were collected. An artefact assay (also called counter-
screen assay) contains all assay components except the target

protein and is used for experimental triage. Compounds were
classified into CIATs (compounds active in the artefact assay,

thus assumed to be interfering with the assay technology) and

NCIATs (compounds inactive in the artefact assay).
Most published computational promiscuity analysis methods

rely on statistical analysis of historical activity data extracted
from primary screens[17, 20, 25] and, less frequently, from confirma-

tory concentration–response screens.[18, 26] An unusually high
hit rate for a compound across many screens for an HTS tech-

nology can be an indication that the compound is causing in-

terference. Similarly, if a compound is active against a wide
range of targets or target families, it must be treated carefully

as it is likely unselective or perhaps prone to false readouts. An
activity cutoff value of the promiscuity degree can be applied

to flag a compound as abnormally promiscuous. A high
degree of promiscuity can result from target interference by

undesired MoA, assay technology interference (in which case

the assay measurement would not reflect the true value) or a
general problematic mechanism (reactivity, aggregation, solu-

bility issues, impurities).
Herein, we focus on the use of artefact assays to detect and

confirm promiscuity in compounds. The number of primary
assays within each technology in the in-house database as well

as the number of primary assays associated with an artefact

assay are shown in Table 1. In this study, we propose a predic-
tive-model that is built using artefact assay data and compare

this model to a second one based on primary assay data only.
To ensure consistency among the datasets for both models

and to make a fair comparison of their performance, we only
considered datapoints of primary assays for which artefact

data was available, unless stated otherwise.

Application of PAINS filters

For each technology, PAINS filters were applied on defined
CIATs and NCIATs. PAINs have been derived from a specific set

Table 1. Data collection.

Technology Primary assay Primary assay with artefact screen

AlphaScreen 69 8
FRET 249 21
TR-FRET 114 7

ChemMedChem 2019, 14, 1795 – 1802 www.chemmedchem.org T 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim1796

Full Papers

http://www.chemmedchem.org


of AlphaScreen data[9] and their scope is therefore expected to
be somewhat limited, especially when applied on other HTS

technologies. We wanted to compare the PAINS filters per-
formance across different technologies to analyze their applica-

bly domain and because they are often applied as general
compound filters irrespective of HTS technology, an approach

that may remove good compounds from HTS datasets inadver-
tently. In general, PAINS filters had a very low accuracy when

used to identify CIATs. The filters performed slightly better for

the AlphaScreen dataset (9 % of CIATS correctly predicted)
than for FRET and TR-FRET (1.5 % of CIATs correctly predicted).

The higher performance for AlphaScreen predictions can be
explained by the fact that PAINS substructures were derived

from an AlphaScreen-based dataset. A higher correlation be-
tween CIATs and PAINs for AlphaScreen compared to other
technologies was observed as well at Lilly Research Laborato-

ries.[27] However, even for AlphaScreen, the accuracy is quite
low when the filters are applied to our data. A similar observa-

tion was made in a study by Capuzzi et al.[11]

One hypothesis may be that the relatively low accuracy is

due to differences between our dataset and the one on which
the filters were built, in terms of compound structures as well

as screening conditions, such as compound concentration.

These hypotheses could not be verified as the PAINS dataset
was never publicly disclosed. It is also possible that specific

PAINS substructures were classified as undesirable internally
and were thus not part of the screening deck.[28] PAINS filters

are applicable to AlphaScreen data but their reassessment
using greater structural diversity and screening conditions

more similar to those commonly used would be beneficial.[10]

Ideally, PAINS-like substructure filters should be derived sep-
arately for each HTS technology, in order to be as predictive as

possible, and automatically updated when new data is upload-
ed into a screening database. It may be important to consider

details such as the signal direction and emission wavelength of
the readout. For instance, if the aim of a model is to predict

compound interference by fluorescence quenching at a certain

wavelength, it will need to be trained on screening data gener-
ated with fluorescence read-out at the desired wavelength,

where the fluorescence signal decreases to generate an active
compound. Such a granular level of assay annotation is possi-
ble using, for example, the public BioAssay Ontology,[29, 30]

which could assist in creating promising datasets for modeling.

Machine-learning model development

A random forest classifier model (RFC) [31] was developed to
discriminate between CIATs and NCIATs. For each technology,

compounds experimentally validated as CIATs and NCIATs by
their technology artefact screening results and represented as

ECFP4 fingerprints constituted the training sets for RFC. Our
model relies on experimental data, from artefact assays, ena-

bling predictions based on compounds that were experimen-
tally validated as interfering with an assay technology or not.

Performance of the RFC model

An initial assessment of the RFC model performance was done
using 10-fold cross-validation on the training sets, producing

ROC AUC values across the assay technologies ranging from
0.72 to 0.83. To ensure that these performances were not due

to overfitting, compounds class labels (CIAT and NCIAT) were
randomly shuffled and cross-validation was repeated. In this

case, the best ROC AUC was 0.49, supporting the idea that the

correlation between structural features and compound inter-
ference with assay technology can be modeled using our

methodology, for all three assay technologies. The mean ROC
AUC values are shown in Table 2.

For each assay of a technology, interference behavior of
compounds was predicted based on the CIATs and NCIATs

available in the other assays of the same technology. This was

done to simulate the scenario of a prospective analysis in
which all the assays available for a given technology would

form the training set and be used to derive predictions for an
external assay test set. The performance of the model was

evaluated for each assay using multiple metrics. It should be
noted that this study differs from many other machine-learning

studies in the sense that a compound can be present in both

the training and the assay test set. This occurred for com-
pounds tested in more than one primary screen. To distinguish

between compounds tested more than once in a primary
screen for a specific technology, the set was divided into two

parts. Compounds tested more than once are referred to as
Set A, and compounds found only in one assay as Set B. In

such a situation, compounds in Set B correspond to novel

compounds that have not been tested before in any of the
used screens for the assay technology. For some assays, no

set-B compounds were available. These assays were therefore
discarded for the analysis (unless stated otherwise), we consid-

ered 7, 10, and 6 primary assays for AlphaScreen, FRET, and TR-
FRET, respectively.

For all the assay technologies, compounds in Set A were, as

expected, well predicted by RFC with a recall, precision and
ROC AUC ranging from 0.90 to 1.0, 0.73 to 1.0 and 0.94 to 1.0. ,

respectively. For AlphaScreen, while the performance was close
to perfect for Set A, it still made some erroneous predictions.

Table 2. Performance of RFC in cross-validation and label randomization.

Technology Cross-validation ROC AUC Label randomization ROC AUC
Mean ROC range Overall mean Mean ROC range Overall mean

AlphaScreen 0.79–0.81 0.80:0.033 0.48–0.49 0.49:0.017
FRET 0.73–0.75 0.74:0.056 0.48–0.49 0.48:0.021
TR-FRET 0.72–0.78 0.76:0.05 0.48–0.49 0.49:0.012
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An explanation may be that the structural differences between
CIATs and NCIATs are not well captured by ECFP4, or com-

pounds could be lacking some specific feature that may be im-
portant for the classification model. In Set B, CIATs were pre-

dicted by RFC with an average recall, precision and ROC AUC
of 0.36, 0.46 and 0.63, respectively. The distribution of the met-

rics for both Sets A and B are reported in Figure 1.

Comparison of performance between RFC, BSF, and PAINS

Because most existing tools used to identify CIATs are based
on statistical analysis of compound activity across primary mul-

tiple assays, we compared the performance of our RFC model
to BSF, which is an example of the former. The RFC model per-

formance was also compared with the PAINS filters.

As the BSF score is based on historical HTS data, its per-
formance in identifying anomalous compounds increases with

the amount of data available. However, one major drawback of
BSF is that it is unable to do any prediction for compounds

that have not been previously tested, which is something that
RFC can do. To compare the performance of RFC to BSF, BSF

score was calculated based on the primary assays that have

been followed-up by an artefact assay. BSF requires a com-
pound to be tested at least once and preferably a high

number of times to be correctly predicted. Figure 2 shows the
percentage of compounds that could be predicted only by

RFC, as BSF could not predict them, these compounds having
been tested in only one assay. RFC is therefore more useful in

the long run and especially on new technologies with very
little data from primary assays.

Figure 3 reports performance metrics for each of the assays
of Sets A and B. RFC could predict the behavior of more com-

pounds than BSF, therefore only compounds that could be pre-
dicted by both models were considered.

For Set A, compounds were predicted more accurately by
RFC than BSF and PAINS, presenting a ROC AUC of 0.99 in
average (0.63 for BSF and 0.50 for PAINS). This was expected
as the compounds were present in both the RFC training and
assay test sets. BSF performed better than PAINS in all three

technologies. For the PAINS filters, the precisions were slightly
better in the AlphaScreen technology (0.51 compared with

0.18 and 0.46 in FRET and TR-FRET, respectively).

For Set B, RFC outperformed the other two models with a
ROC AUC of 0.64 in average (0.57 for BSF and 0.51 for PAINS).

RFC’s recalls were especially high (average of 0.35, 0.0001 and
0.04 for RFC, BSF and PAINS). It was observed that the preci-

sion of RFC and PAINS was similar in AlphaScreen, while it was
higher for RFC in the other technologies. The detailed metrics

for Set B are available as Supporting Information (Tables S1

and S2).
As mentioned above, BSF performs better at identifying fre-

quent-hitters with large amounts of data. To have a full per-
spective on the RFC and BSF performances, we analyzed BSF’s
performance while considering an increasing number of assays
among all available primary screening results of a technology.

For BSF to outperform RFC, compounds needed to be tested

on average 10 times for AlphaScreen and TR-FRET and 30
times for FRET as shown on Figure 4. RFC required fewer ex-

periments to be done as a compound only needs to be tested
once in an artefact assay to be validated as CIAT. RFC will be

especially useful for new technologies for which very few pri-
mary assays are available.

Figure 1. Performance of RFC for Set A (plain blue) and Set B (hashed) for
AlphaScreen (A), FRET (B), and TR-FRET (C).

Figure 2. Percentage of CIATs and NCIATs tested in one or multiple assays
(A1: assay 1, A2: assay 2, etc.) in AlphaScreen (A), FRET (B) and TR-FRET (C).
In a prospective scenario, compounds tested in multiple assays would be
predicted by RFC and BSF, and compounds tested only in one assay would
be predicted by RFC only.

Figure 3. Performance of RFC (green), BSF (blue) and PAINS (violet) for
AlphaScreen (A & B), FRET (C & D), and TR-FRET (E & F). Here the per-
formance is evaluated considering Set A (A, C, E) and Set B (B, D, F).
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Behavior analysis of RFC

Among CIATs, true positives (CIATs correctly predicted as CIATs)

and false negatives (CIATs wrongly predicted as NCIATs) were
investigated for RFC to better understand the model’s behav-

ior.
We investigated why CIATs are correctly or wrongly predict-

ed by RFC. Tanimoto similarity coefficients (Tc) were computed

between: 1) true positives and their five nearest neighbors
(NN) among CIATs and NCIATs in the training set, in an all-by-

all comparison, and 2) false negatives and their five NN among
CIATs and NCIATs in the training set, in an all-by-all comparison.

The average Tc was considered for each CIATs. Figure 5 shows
the distribution of these average Tc values. For AlphaScreen, it

was observed that true positives had a slightly higher similarity

to training set CIATs in comparison with the false negatives.
This pattern is even more pronounced in FRET, the distribution

of Tc values being more shifted to the right for true positive,
indicating a higher similarity of these compounds toward CIATs

in the training set. In TR-FRET technology, true positives and
false negatives shared the same Tc distribution while com-

pared to CIATs and NCIATs. However, RFC predictions were still
sufficiently accurate, leading to the hypothesis that CIATs

cannot be recognized by a simple similarity comparison. RFC
can capture combinations of features inferring better predic-

tions than similarity comparison.

Application of CIATs filters or predictive models

We remind readers that CIATs are not necessarily compounds

with no interest in drug discovery. They are simply compounds
interfering with a specific HTS technology. CIATs filters or

models can be applied prior to any experimental testing to
guide the choice of HTS technology. PAIN-compounds, which

technically are CIATs according to the AlphaScreen dataset
they were extracted from, are often removed prior to an analy-

sis when they might have been valid hits had another technol-

ogy been used. As an example we show four compounds
which were CIATs in one of the technology we investigated

and NCIAT in another in Figure 6. These compounds are
common to our in-house database and PubChem.

To explore the applicability of our RFC model, we applied it

on compounds extracted from PubChem artefact assays. RFC
identified 35 % of CIATs in average, with a mean ROC AUC and

precision of 0.67 and 0.63 respectively. Details of the metrics
and confusion matrixes are available in the Supporting Infor-

mation (Tables S5–S11). Examples of CIATs that were recog-
nized or misclassified by RFC are shown in Figure 7.

Conclusions

Assay interference represents a major conundrum in drug dis-
covery. Compounds that interfere with assay technologies, for

example fluorescence quenchers or emitters, and reactive com-
pounds, can obstruct the efficient identification of the most

Figure 4. BSF performance for an increasing number of assays. BSF was cal-
culated while considering primary assays with an artefact and then 20 %,
40 %, 60 %, 80 %, and 100 % of the assays. Curves show the performance of
BSF, and the dashed lines represent the performance of RFC for the same
dataset as BSF, for each technology. The performance metrics for BSF when
considering 100 % of the assays are available as Supporting Information
(Table S3).

Figure 5. Density plots of the average distribution of Tc of true positive
CIATs (blue) and false negative CIATs (green) in relation to their five nearest
neighbors among CIATs (plots A, C, E) and NCIATs (plots B, D, F) in their cor-
responding training sets in RFC. Plots A and B, C and D, E and F correspond,
respectively, to AlphaScreen, FRET, and TR-FRET.

Figure 6. Example compounds with differential behavior with regard to
assay technologies. PAINS substructures are shown in red. 1. 415874 is an
AlphaScreen-CIAT, a FRET-NCIAT, and a TR-FRET-NCIAT; it contains a PAIN sub-
structure (quinone_A(370)). 2. 704433 is an AlphaScreen-CIAT and a FRET-
NCIAT. 3. 3207679 is a TR-FRET-CIAT and an AlphaScreen-NCIAT. 4. 74165 is
an AlphaScreen-NCIAT, a FRET-CIAT, and a TR-FRET-CIAT; it contains a PAIN
substructure (anil_di_alk_B(251)).

ChemMedChem 2019, 14, 1795 – 1802 www.chemmedchem.org T 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim1799

Full Papers

http://www.chemmedchem.org


promising drug lead series of an HTS campaign. To identify

such compounds, we have built a machine-learning model,
RFC, based on artefact assays. RFC performed well at predict-

ing CIATs for three HTS technologies and required compounds
from the training set to be tested only once in an artefact

assay. When a large dataset is available (i.e. , with many com-

pounds tested in many assays), a statistical method such as
the BSF score is efficient, however compounds need to be

tested a significant number of times for the score to outper-
form RFC. Furthermore, contrary to BSF, RFC can predict the

behavior of new compounds using only their structures and is
therefore the only option for novel compounds. CIATs identi-

fied by the two methods are complementary and therefore

projects can benefit from using RFC and BSF in tandem. The
method applied in this study shows the importance, for com-

putational models, of well-annotated screening results related
to full screening cascades (primary, artefact, orthogonal assays,

etc.). The scarcity of well-curated and structured HTS datasets
in the public domain prevents efficient model building for sci-

entists that do not have access to large, proprietary databases.

We hope that this study will motivate the deposition of coun-
ter-screen assay data and the curation of public databases

based on HTS technologies to better annotate CIATs and de-
crease the amount of false hits that are investigated in follow-
up studies.

Experimental Section

Data collection and curation: AstraZeneca database : Primary
screening data associated to three different HTS technologies (Al-
phaScreen,[22] FRET[23] and TR-FRET[24]) were collected from the As-
traZeneca HTS database. These technologies are luminescent and
fluorescent methods widely used in HTS. It is important to mention
that each compound in our dataset was tested in primary assays
and their corresponding artefact assays (also called counter-screen,
control or clean assays). A primary assay aims to test the activity of
compounds on a target at a single concentration. An artefact
screen consists of testing the same compounds without any target
or with a significantly different target. All artefact screens consid-
ered in this study are concentration–response assays, which are
more reliable than primary assays, and aim to identify CIATs.

In an assay, a compound can have multiple data points and activity
flags. This can be due to the use of different assay plates, a follow-
up test at a different concentration or a solubility issue. As the
main predictive model used in our study was a classification one, it
was necessary for the compounds to have only one activity flag
(active or inactive) per assay as well as per technology. In the pri-
mary assay files, two types of activity flags were available, one as-
signed by a normal assay score and based on percent effect, and a
second assigned by a Z-score.[32] The first score considers the plate-
to-plate variability and normalize the compounds measurements in
relation to a control. The Z-score method assumes that most com-
pounds are inactive and uses them as control. Compounds meas-
urements are rescaled considering the variation within the plate.
The Z-score flag was always the one considered in our study,
except when it was not available. In the primary screening data-
sets, compounds that were found to be active and inactive at the
same conditions were classified as active in primary assays. Com-
pounds with inconclusive activity were discarded from further anal-
ysis.

Compound activities in artefact assays were determined based on
concentration–response data. For each assay, an activity cutoff was
assigned by screening experts considering a threshold concentra-
tion (based on IC50 or EC50) or a threshold percentage (based on
percent inhibition).

Training sets for classification models : Compounds found to be
active in a primary assay were classified as CIATs and NCIATs when
active and inactive, respectively, in an artefact assay. Compound
tested in multiple artefact assays, when considering one technolo-
gy, and found to have different activity flags, were classified as
active. CIATs and NCIATs constituted the training sets for the ma-
chine-learning model. The training sets composition is annotated
in Table 3.

Molecular representations : For every compound classified as CIAT
or NCIAT, ECFP4 fingerprints with 1024 bits and a fragment radius
of 2 were generated using the Morgan circular fingerprint imple-
mented in RDKit.[33] Structures that could not be parsed by RDKit
were discarded. Our in-house collection is curated; thus, our data-
sets did not contain duplicate structures.

Machine-learning model : A random forest classifier (RFC) is a clas-
sification algorithm combining ensemble tree-structured classifi-
ers.[31] A typical RFC model is made up of hundreds of decision
trees and the most important votes determine the final prediction.

The RFC model was implemented using SKLearn.[34] In a prospec-
tive analysis, the training set of the model would contain all the
CIATs and NCIATs previously identified in artefact assays. To mimic
the condition of a prospective analysis, the training sets for a tech-
nology were built excluding one assay, this assay containing the
compounds that we wish to predict. This process was repeated for
each assay of a technology, thus taking into account the diversity
of the datasets. Indeed, some assays can contain specific scaffolds

Figure 7. CIATs well identified (1, 2, 3) and misclassified (4, 5, 6) by RFC in
AlphaScreen (blue), FRET (magenta), and TR-FRET (green). The percent prob-
ability to be a CIAT according to RFC is annotated next to each molecule.
Both AlphaScreen-CIATs contain a PAIN substructure (quinone_A(370)), and a
TRF-CIAT (6) contains the PAIN substructure anil_alk_ene(51).

Table 3. Training sets composition.

Technology Training sets for RFC
Compounds CIATs NCIATs

AlphaScreen 68 540 15 330 (22.4 %) 53 210 (77.6 %)
FRET 32 966 7422 (22.5 %) 25 544 (77.5 %)
TR-FRET 41121 18 093 (44 %) 23 028 (56 %)
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or features that were not represented in other assays due to the
target under investigation. Such over- or under-representation of
structures may impact the performance of the model. The com-
pounds to be predicted are referred to as the assay test set. The
process resulted in the prediction of two types of compounds to
which we referred, respectively as Sets A and B: 1) Compounds
that are available in both the training set and the assay test set,
and 2) compounds that are available solely in the assay test set.

For each assay, the hyperparameters were optimized using a
random-search with a 3-fold cross-validation using two thirds of
the compounds with known behavior as training set and one third
as test set. Model performance was evaluated based on the aver-
age MCC obtained over all folds. The RFC hyperparameters that
were tested and chosen are available in the Supporting Informa-
tion (Table S4).

Some assays contained very few to none CIATs to be predicted. For
meaningful performance evaluation, the analysis was restricted to
assays with more than five CIATs, thus ensuring that the model
performance would not be underappreciated because of some par-
ticularly complex structures.

Performance measures : To ensure that the RFC model’s per-
formance is based on an accurate structural distinction between
CIATs and NCIATs, and not due to an overfitting issue, two methods
were applied. First, the labels pertaining to compounds in the
training set were randomly shuffled. If the model maintains a good
performance with incorrect label, then the observed performance
would be due to overfitting. Second, a tenfold cross-validation was
done on the test set, insuring that all the compounds are responsi-
ble of the predictions.

To assess model performances, four metrics were used, namely the
area under the receiver operating characteristic (ROC) curve
(AUC),[35] Matthew’s correlation coefficient (MCC), precision and
recall.

The principal measure of the models is the MCC. It is a balanced
measure of prediction quality which considers the true positive
(TP), false positive (FP), true negative (TN) and false negative (FN).
It covers a range from @1 to 1, with 1 indicating a perfect predic-
tion, @1 a perfect inverse prediction, and 0 a random prediction
[Equation (1)]:

MCC ¼ TP > TN@ FP > FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp ð1Þ

The AUC is a second measure of the performance of the mode. It
shows how well a model was able to rank the compounds accord-
ing to the probabilities given by the machine learning algorithm.

The recall, also called sensitivity, represents the proportion of real
positive cases that are correctly predicted as such (in our analysis,
it represents the proportion of CIAT correctly identified by a
model). The precision is the proportion of true positive predictions
that are correctly real positives [Equations (2) and (3)]:

Recall ¼ TP
TPþ FN

ð2Þ

Precision ¼ TP
TPþ FP

ð3Þ

In this study, scripts were written in Python 3.6.5. Machine-learning
models were built using SKLearn 0.19.1[34] as well as RDkit
2018.03.1.0.[33]

Binomial survivor function score : A score to characterize CIATs re-
ferred to as BSF[20] was applied and the results compared with
those obtained with RFC. This score is calculated for a compound
by considering the number of times it was tested in an assay to
the number of times it was active. The BSF score is a negative log-
arithm of a chance and represents the probability that the activity
of a compounds is the result of randomness while considering the
hit rate among the assays. If the activity is high (usually higher
than 2, corresponding to 1 % chance that the compound is not a
CIAT), it suggests that the observed activity is an outlier and is
higher than expected. The cutoff applied to classify a compound
as CIATs in this analysis is of pBSF+2. Equation (4) describes the Bi-
nomial Survivor Function, in which A represents the number of
screens in which a compound is active, N is the total number of
screens in which a compound was tested, and h is the hit rate.

pBSF ¼ @ 10logð
XN

a¼A

0ptNað Þha 1@ hð ÞN@að Þ ð4Þ

Unless stated otherwise, BSF was applied considering all the pri-
mary assays pertaining to a technology. Some technologies can be
used to identify compounds with a biological activity on specific
target families. For example, the ADP-Glo technology has often
been used to target kinases. In such cases, being based on histori-
cal activity data, BSF could classify a compound as being CIAT
when it is instead a promiscuous compound with a true multi-
target activity or polypharmacology. The technologies investigated
in this study targeted a wide range of proteins (39, 103 and 56 in
AlphaScreen, FRET and TR-FRET respectively pertaining to 2, 8, and
3 families, for example, enzyme, receptor, viral protein, etc.), and
therefore BSF should only detect true CIATs interfering with the
assay technology.

In a similar manner to RFC, BSF was applied to predict the com-
pounds behaviors in one assay using the information pertaining to
all the other assays. This was done for each assay of a technology.

Pan-assay interference compounds : All the compounds investi-
gated in this study were passed through PAINS filters,[9] which in-
cluded 480 substructures linked to assay interference encoded in
SMARTS format.[36]

Data collection and curation: PubChem : CR artefact assays for Al-
phaScreen, FRET and TR-FRET were collected from PubChem Bioas-
say.[37] Assay AIDs and compositions are shown in Table 4. Active
and inactive compounds were classified as CIATs and NCIATs, re-
spectively and compounds with inconclusive activities were not
considered further. Compounds which were CIATs and NCIATs de-
pending of the assay were also discarded.

Availability of data and materials : Our dataset could not be
made available due to its proprietary nature. The source code of
our predictive model (RFC) is available upon request.

Table 4. Data collection from PubChem.

Technology AID CIAT NCIAT

AlphaScreen 1730, 1159604, 720541 599 2025
FRET 435026 209 593
TR-FRET 1641, 504689 149 412
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