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Abstract

Multiple sulfatase deficiency (MSD) is an ultra-rare neurodegenerative disorder that results in 

defective sulfatase post-translational modification. Sulfatases in the body are activated by a unique 

protein, formylglycine-generating enzyme (FGE) that is encoded by SUMF1. When FGE is absent 

or insufficient, all 17 known human sulfatases are affected, including the enzymes associated with 

metachromatic leukodystrophy (MLD), several mucopolysaccharidoses (MPS II, IIIA, IIID, IVA, 
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VI), chondrodysplasia punctata, and X-linked ichthyosis. As such, individuals demonstrate a 

complex and severe clinical phenotype that has not been fully characterized to date. In this report, 

we describe two individuals with distinct clinical presentations of MSD. Also, we detail a 

comprehensive systems-based approach to the management of individuals with MSD, from the 

initial diagnostic evaluation to unique multisystem issues and potential management options. As 

there have been no natural history studies to date, the recommendations within this report are 

based on published studies and consensus opinion and underscore the need for future research on 

evidence-based outcomes to improve management of children with MSD.
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1.0 Introduction

Multiple Sulfatase Deficiency (MSD, MIM# 272200) is an ultra-rare neurometabolic 

disorder inherited in an autosomal recessive manner. Approximately 100 cases of MSD have 

been described in the literature to date, with 50 living individuals identified through patient-

advocacy group registries, although these numbers are likely an underestimation given 

under-recognition and under-reporting. MSD results from mutations in the SUMF1 gene that 

encodes the sulfatase-activating protein formylglycine-generating enzyme (FGE) (1, 2). FGE 

post-translationally activates newly synthesized sulfatases in the endoplasmic reticulum (3). 

Because all known 17 cellular sulfatases are affected by defective FGE, the clinical 

presentation and course of MSD results from the combination of symptoms of each sulfatase 

deficiency (4). Patients have overlapping features with eight clinically characterized single 

sulfatase deficiencies, including six different types of lysosomal storage diseases (LSDs), 

(i.e. metachromatic leukodystrophy (MLD) and five mucopolysaccharidoses (MPS) 

subtypes), X-linked ichthyosis and X-linked chondrodysplasia punctata (Table 1). The 

additional contribution from the nine sulfatases without known clinical phenotypes has not 

yet been characterized (5).

Like many inborn errors of metabolism, MSD represents a spectrum of disease. Based on the 

onset and severity of the disease, MSD has been traditionally divided into several forms: 

neonatal, severe late infantile, mild infantile, and juvenile (6–8). The severity of the disorder 

is thought to be dependent on the stability and degree of residual enzymatic activity of 

dysfunctional FGE resulting in variable levels of residual sulfatase activities. Nevertheless, 

the correlation between specific SUMF1 mutations, residual activities of individual 

sulfatases, and clinical symptoms remains poorly understood (8).

Individuals with MSD and their families encounter a complex range of health problems and 

challenges that are unique even among LSDs. The primary issues arise from a combination 

of neurologic disease, including developmental delay and regression, and extraneurologic 

manifestations such as cardiopulmonary complications and skeletal anomalies. 

Unfortunately, as is true for most lysosomal storage disorders, there are currently no curative 
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options for individuals with MSD. To date, no comprehensive care plan that focuses on 

preventative care and quality of life has been established (9–11).

In this report, we will discuss two individuals affected by MSD to illustrate the clinical 

spectrum of disease and present a clinical standard of care consensus statement that arose 

from the first International Conference on MSD (Dublin, July 2017). The aim of this work is 

to provide suggested diagnostic and screening tools and outline management options to 

subspecialty providers and families caring for MSD patients. In conclusion, this report 

underscores the importance of future natural history studies and investigations to understand 

the specific needs of individuals with MSD.

2.0 Case Reports

2.1 Clinical History

Individual 1 is a now 4-year-old Caucasian girl who was noted since birth to have poor 

growth and delayed development. She has had a relatively stable clinical course and was 

able to attain walking and babbling (Figure 1 and supplementary data). Individual 2 was a 

Caucasian boy, who had severe medical complications from birth (Figure 1 and 

supplementary data), including respiratory distress, recurrent ear and respiratory infections, 

dysostosis multiplex, gall bladder sludging, and severe hydrocephalus requiring 

ventriculoperitoneal (VP) placement. During Individual 2’s life, he required extensive 

medical care, totally more than 150 days of inpatient or outpatient clinical treatment.

2.2 Neuroimaging

Individual 1 demonstrated progressive central demyelination with corpus callosal 

involvement (Figure 2B). Her brain magnetic resonance imaging (MRI) demonstrates 

symmetric confluent T2 hyperintensities in the periventricular and deep white matter with U 

fiber sparing. Imaging also reveals mild diffuse volume loss, including of the cerebellar 

vermis, with mild occipital ventriculomegaly. Additional findings include slightly prominent 

perivascular spaces, which is more characteristic of the imaging found in individuals with 

MPS. Additional imaging from an individual with MSD reveals (Figure 2A) reveals the 

findings typical of MLD (Figure 2D), with symmetric T2 hyperintense signal in the bilateral 

periventricular white matter with corpus callosum involvement (16).

Individual 2’s imaging revealed globally delayed myelination and severe hydrocephalus 

(Figure 2C) that has been observed in individuals with MPS (Figure 2C–E). Individual 2’s 

first brain MRI was performed at the age of 7 months and showed communicating 

hydrocephalus, mega cisterna magna, delayed myelination, and a thin corpus callosum. His 

serial imaging showed a slight progression of his myelination and the development of 

abnormal periventricular and deep white matter T2 and T1 signals without restricted 

diffusion. His imaging was notable for progressive global atrophy, which vermian volume 

loss and thin middle and superior cerebellar peduncles. The imaging findings of MPS are 

classically characterized by enlarged perivascular spaces, demyelination, hydrocephalus, and 

cortical atrophy (17).
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2.3 Diagnostics

Biochemical diagnosis of MSD requires reduced activities of at least two sulfatases in 

leukocytes or fibroblasts (Table 1), typically arylsulfatase A and iduronate-2-sulfatase. 

Individuals may also demonstrate elevated excretion of urinary sulfatides and 

glycosaminoglycans (GAGs) with a pattern indicative for MSD on urine electrophoresis. 

Negative excretion of GAGs and sulfatides does not exclude MSD, nor does the presence of 

high activity levels of a single sulfatase (18). All individuals with a clinical suspicion for 

MSD and decreased sulfatase activity should have confirmatory genetic testing of SUMF1. 

If sequencing does not reveal bi-allelic mutations, deletion/duplication analysis should be 

considered as pathogenic deletions have been reported (as seen in Individual 1) (6).

For Individual 1, a SNP microarray was performed, which revealed a 28kb deletion on 

3p26.1 (arr [hg19] 3p26.1(4,400,903–4,429,402)x1) that includes exons 8–9 of the SUMF1 
gene. SUMF1 sequencing revealed a second, known pathogenic variant, c.836C>T 

(p.A279V). Individual 2’s sequencing of the SUMF1 gene detected the homozygous 

mutation c.739G>C (p.G247R). Biochemical enzyme assays for both individuals confirmed 

reduced activity of multiple sulfatases, consistent with the diagnosis of MSD (supplemental 

table 1).

3.0 Comprehensive care for children with MSD

As these two clinical cases illustrate, MSD has a broad spectrum of clinical manifestations 

partly overlapping with the mucopolysaccharidoses and MLD. This underlies the importance 

of a comprehensive approach to this rare and devastating disease. Although there have not 

been prospective studies related to the clinical care of individuals with MSD, we can 

extrapolate from our collective experience with MSD and related disorders to create general 

recommendations, which should be personalized for each individual (Table 2). Given the 

great variation amongst individuals with MSD, not all affected people will experience 

symptoms in all organ systems (Figure 1 and supplemental table 1). Further studies are 

needed to better anticipate how SUMF1 mutations and activity predict organ-specific 

manifestations and clinical phenotype.

3.1 Muscular Issues

Abnormalities of the musculoskeletal systems are among the most pervasive and 

problematic in children with MSD and have been noted in most published clinical reports (6, 

7, 18–22). It is important to support quality of life and mobility with physical therapy, 

adaptive equipment, and tone management. Changes in muscle tone may include spasticity 

(as demonstrated in Individual 2), hypotonicity (as demonstrated in Individual 1), and 

hypertonicity. Spasticity is a velocity-dependent increased tone with hyperreflexia often 

accompanied by muscle weakness (23).

The examination of children with multiple sulfatase deficiency often reveals mixed tone, 

which may evolve over time (8). A sudden change in tone from baseline, however, should 

prompt a full medical assessment, as this may be triggered by infection and pain. Tone 

issues can result in secondary problems, including mobility issues, respiratory insufficiency, 
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swallowing dysfunction, and bony dislocation. A result of injury to the primary motor 

pathways, spasticity is a common issue in children with MSD. The Gross Motor Functional 

Classification System (GMFCS) is a standardized assessment of motor function, although it 

needs to be validated in the MSD population (24, 25).

In addition to tone changes, individuals with MSD are at risk of contractures due to 

deposition of storage material, including GAGs, in joints. Several affected joints have been 

reported including fingers, elbows, and hips (26, 27). Contractures may be progressive and 

very similar to those seen in individuals with other MPS disorders, as demonstrated by 

Individual 2. Because of the risk of peripheral neuropathy from ARSA deficiency as is found 

in individuals with MLD, individuals with MSD may also exhibit profound weakness from 

neurodegeneration and demyelinating peripheral neuropathy. Individual 2 demonstrated a 

progressive peripheral demyelination as demonstrated by serial nerve conduction studies, 

similar to previous reports (20).

The primary medical assessment can be augmented by evaluations by physical therapy and 

physiatry. Although none have been validated in MSD or other leukodystrophies, there are 

standardized scales for measuring and tracking issues with tone. The Hypertonia Assessment 

Tool (HAT) can differentiate between types of tone abnormalties, including dystonia, 

spasticity, and rigidity (28). The Modified Ashworth Scale (MAS) is a tool to measure 

passive resistance at the joint (29). Dystonia, a hyperkinetic movement disorder that results 

in involuntary muscle contraction, is common among children with leukodystrophies and 

can be measured using the Global Dystonia Rating Scale (GDS) (23, 28, 30). A more 

generalizable measure of function, the Vineland Scales of Adaptive Behavior, can be used to 

screen young children or those with significant impairments (31). The formal study of 

muscular-skeletal dysfunction in MSD is of critical need and the use of these scales should 

be validated in this unique population prior to their application in clinical therapeutic trials.

Hypertonicity and spasticity can be managed through stretching, physical therapy, and 

pharmacologic options, including baclofen and diazepam, although the use of these 

medications is non-Federal Drug Administration approved (29, 32–34). Trihexyphenidyl 

(Artane) can be used to help with more generalized dystonias (3, 17–22), as can 

dopaminergic drugs (e.g. L-dopa) and the dopamine-depleting drug tetrabenazine (29, 35–

37).

3.2 Skeletal and Growth issues

Unique skeletal concerns found in the MSD population include dysostosis multiplex, as is 

associated with MPS, and the skeletal abnormalities of X-linked chondrodysplasia punctata 

(6, 8, 18, 26). The MPS-associated skeletal features in individuals with MSD include short 

stature, thickened, short metacarpal bones, irregular clavicles and ribs, irregular carpal and 

tarsal bones, vertebral and cranial abnormalities (8, 26). Dysplastic femoral heads can result 

in secondary hip dysplasia, compounding the baseline risk associated with most 

leukodystrophies. Individual 2 demonstrated dysostosis multiplex, and Individual 1 had 

short stature.
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Spinal cord compression due to cervical spine instability and stenosis in both the cervical 

and thoracolumbar regions is common in several MPS subtypes (38, 39). In a recent study of 

individuals with MPS VI, 101/134 (75%) who underwent cervical spine imaging had 

documented cord compression (40). While cord compression has not been systematically 

evaluated in individuals with MSD, regular neurologic examination and serial spine imaging 

could be considered to monitor for spinal stenosis and instability. Neck hyperextension, 

often used to maintain airway patency during anesthesia, should be avoided if possible in 

children identified to be at risk for spinal cord compression.

Individuals with MSD may also demonstrate the skeletal features seen in X-linked 

chondrodysplasia punctata 1 (CDPX), a result of arylsulfatase E deficiency (41, 42). 

Although not fully characterized in MSD, children with CDPX can demonstrate maxillary 

hypoplasia and retrognathia, requiring reconstructive surgery. These children are also at risk 

for cervical spine instability (41). Again, children with a CDPX phenotype may be at 

increased risk with neck hyperextension, thus should have particular care with any elective 

intubations, sedation, or general anesthesia. We recommend visualization of the spine and 

airway prior to any procedures by neck CT or plain C-spine radiographs, and consideration 

for evaluation by otolaryngologists (43).

Common skeletal issues in individuals with neurodegenerative disorders include scoliosis, 

hip dislocation, and osteopenia, which may also affect children with MSD, as demonstrated 

in individual 2 and in the literature (18, 44). The scoliosis and hip dislocation can be 

secondary to increased tone and skeletal anomalies. Children are also at increased risk for 

bony fractures due to decreased mobility, decreased sun exposure (and thus low Vitamin D 

levels), and nutritional insufficiency (45). As such, bone health, mobility, and vitamin D (25-

OH-D) status should be regularly monitored. Special attention should be paid to individuals 

who are non-ambulatory or who are on medications those compromise bone health, 

including proton-pump inhibitors, steroids and select anti-epileptic medications (46–48).

In addition to laboratory testing, basal bone density scans, such as dual-energy X-ray 

absorptiometry (DEXA or DXA, L–spine and Whole Body Less Head), can be used to 

screen for bone demineralization in at-risk individuals (46, 47, 49). Bone specialists, 

endocrinologists, and orthopedic surgeons can be helpful in the management of bone issues 

in complicated individuals with MSD. Physical therapists can help to select and fit adaptive 

equipment to help maximize mobility. As is common to the clinical considerations relevant 

to MSD, the incidence, impact, and management of skeletal abnormalities warrants future 

study.

3.3 Skin Issues

Children with MSD have unique skin challenges due to decreased activation of steroid 

sulfatase (arylsulfatase C), which is associated with X-linked ichthyosis, as demonstrated by 

Individual 2. The deficient enzyme, steroid sulfatase, helps to release keratinocytes from the 

substratum corneum, leading to overcornification (50). The ichthyosis of MSD typically 

manifests initially as dry skin and later on as thickened, dark leaf-like scales (6, 7, 18, 19, 

22). Medications to soften the skin, including keratolytics or topical vitamin D, may be 

helpful (50). Children with MSD may also be hirsute, as found in Individual 2 and in prior 
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clinical reports (8, 18, 19, 22). Common challenges to skin integrity in the leukodystrophy 

population arise from a variety of issues, including peripheral neuropathies, limited mobility, 

adaptive equipment, and abnormalities in tone. Individuals should be monitored carefully for 

skin breakdown, especially in dependent areas and regions that are in contact with 

equipment.

3.4 Gastrointestinal and urinary issues

Children with MSD may encounter a range of gastrointestinal complications, including 

hepatosplenomegaly and gall bladder issues in addition to the typical concerns for the 

leukodystrophies (6, 18, 19, 22, 26, 51–56). Among the leukodystrophies, sialorrhea or 

excessive drooling, swallowing difficulty, poor intestinal motility, and reflux are common 

complaints (10, 57, 58). There are several important components to the comprehensive 

evaluation of upper gastrointestinal issues, including speech and physical therapy, 

gastroenterology, and pulmonology.

Although rarely a cause of medical morbidity, sialorrhea can be managed with positioning 

and medical interventions, including hyoscine (oral or transdermal Scopolamine), 

trihexyphenidyl (Artane) (37), and glycopyrrolate (59). More permanent interventions 

include serial botulinum toxin A (Botox) injections and salivary gland ligation surgery (58, 

60, 61).

In children with MSD, safety with feeding and dietary sufficiency should be carefully 

followed as these issues can lead to secondary respiratory complications like aspiration 

pneumonia and malnutrition, as demonstrated by both of the individuals discussed above. 

Malnutrition compromises overall health and is influenced by intake, dysphagia, and 

metabolic demands (62–64). Preliminary screening questions regarding coughing with feeds 

or ease and duration of feeding can guide the needs for further evaluation by dieticians, 

occupational therapists, and speech pathologists (40, 42, 43, 54, 55). Possible studies could 

include a videofluoroscopic swallow study (VFSS) or modified barium swallow study 

(MBS). Following an evaluation and a discussion regarding goals of care, gastrostomy (G-

tube) or jejunostomy (J-tube) tube placement may be considered. The diagnosis of 

gastroesophageal reflux (GER) can be made clinically. Initial management of GER should 

consist of positioning during meals and optimization of food consistencies (65, 66). 

Additional considerations include pharmacologic options (acid buffering, antisecretory, and 

prokinetic agents), and surgical options such as Nissen fundoplication with or without 

gastrostomy tube placement (10, 65, 67).

Constipation and slowed GI motility are common problems in children with neurologic 

disorders (10, 68). The first step in the evaluation of constipation is to ensure the child is 

receiving adequate hydration, followed by medication options, including fiber 

supplementation, stool softeners and stimulants, and enemas (69) (68).

As can be found in other MPS subtypes, children with MSD often have hepatosplenomegaly 

(Individual 2) due to accumulation of GAGs (7, 18–20, 22, 55, 56). While the clinical 

significance of this organomegaly has not been studied in MSD, in MPSII this organ 

enlargement is not typically associated with hepatic or splenic dysfunction (38).
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Although its incidence has not been characterized in the MSD population, children with 

metachromatic leukodystrophy (MLD) are at increased risk for gallbladder complications. It 

is recommended that children with MLD have regular screening abdominal ultrasounds or 

abdominal computed tomography (CT) (51, 52). Typically, individuals with MLD have gall 

bladder wall thickening or polyps, although more serious complications such as cancer and 

obstruction have been reported (53). Individual 2 demonstrated gall bladder sludging. 

Because of pathologic kidney depositions, MLD also predisposes to metabolic acidosis that 

can worsen when under physiological stress (70). One of the concerning secondary effects of 

severe constipation is the risk for urinary retention and infection. Other potential urinary 

concerns include dysautonomia and neurogenic bladder. The true incidence of gall bladder 

and renal pathology in individuals with MSD should be characterized so that more formal 

recommendations can be made.

3.5 Respiratory and airway complications

Potential pulmonary clinical concerns in individuals with MSD include upper and lower 

airway obstruction, restrictive lung disease, and central and peripheral apnea, although the 

true incidence is unknown (26, 71). Studies have demonstrated obstructive sleep apnea 

(OSA) rates of 70– 85% in individuals with a variety of MPS disorders (72, 73). This is 

likely polyfactorial, from both central degeneration and peripheral airway obstruction. OSA 

has been noted in individuals affected by MSD as well, as seen in Individual 1 (18). Our 

individual 2 was noted to have choanal stenosis at birth, which has been reported for one 

additional individual (18).

For a variety of reasons, children with MSD are at high risk for recurrent pneumonia as well, 

as affected both of our individuals. As guided by a pulmonologist, evaluation of respiratory 

function could include spirometry, pulmonary function tests, and end tidal CO2. Fiber-optic 

bronchoscopy to assess for airway obstruction and/or tracheomalacia may be helpful as well.

Due to issues with brainstem involvement, muscle tone, scoliosis, and strength, many 

children with leukodystrophies develop a progressive respiratory insufficiency. Children 

with neurologic disease are also at risk for complications such as pneumonia and aspiration 

(74). Like in MLD, the peripheral neuropathy can directly result in a primary respiratory 

failure as well. Potential screening questions for respiratory complications would include 

interrogations about coughing, stridor, or noisy breathing. Both individuals in this case study 

demonstrated noisy daytime breathing, and stridor has been a previously noted finding (7, 

56).

After careful evaluation by specialists (pulmonology and/or otolaryngologists) and possible 

sleep studies, it may be determined that the child would benefit from supportive 

interventions such as mechanical ventilation or continuous positive airway pressure (CPAP). 

Less invasive options include home suction, physical therapy, and supplemental oxygen.

Common issues including obstructive sleep apnea and dysautonomia causing sleep and 

temperature regulation problems can compromise quality of life and daytime performance 

(75, 76). After optimizing sleep hygiene and evaluating for obstruction, medications to 
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facilitate sleep can be considered, such as off-label use of melatonin, antidepressants, 

clonidine, and benzodiazepines (75, 76).

3.6 Neurologic Issues

In children with MSD, the neurologic delay and regression are believed to be universal, 

although the onset and rate of progression appear to be highly variable (6, 7, 18–22, 55, 56, 

77). It is important to provide adaptive communication devices to maximize the ability to 

communicate. Speech-language pathologists can help with this evaluation. Additional 

neurologic issues in children with MSD include peripheral neuropathy, pain, and seizures (6, 

18, 20, 26). If a child is identified as being in pain, it is important to identify if the 

discomfort is secondary to medical cause, such as constipation, fractures or hip dysplasia, or 

a urinary tract infection as these triggers should be treated appropriately (78). Because MLD 

is associated with neuropathic discomfort from peripheral neuropathy, this is a potentially 

important consideration in children with MSD as well (20, 79). This can be extrapolated 

from the loss of reflexes in the later stages of disease in MSD. Although not FDA-approved, 

gabapentin (Neurontin) may be helpful with neuropathic pain (10, 78).

Although children with neurodegeneration, particularly in the later stages, are at risk for 

seizures, there are many prevalent mimics for seizures, including reflux, breath holding 

spells, movement disorders, and stereotypies (80). As guided by a neurologist, an 

electroencephalogram (EEG) may be helpful, although clinical history alone may be 

sufficient for the diagnosis of seizures or epilepsy (78). If determined necessary by the 

neurologist, children with recurrent seizures may benefit from a preventative medication 

(81). With a first-time seizure in particular, children should have an evaluation for any 

provoking factors, including infections or electrolyte abnormalities (11).

MPSIII and the adult-onset forms of several leukodystrophies, including MLD, can present 

with prominent neuropsychiatric symptoms as well, which may benefit from directed 

pharmacologic and behavioral management strategies. Individuals affected by prominent 

behavior issues have been described previously (18). Additionally, our individual 1 was 

noted to have a fine tremulousness of low amplitude and velocity that has been previously 

noted in two prior affected individuals, although the etiology of these involuntary 

movements remains to be characterized (18).

While some affected individuals are microcephalic (18, 21), MSD may be also associated 

with macrocephaly and acquired hydrocephalus (individual 2) (18, 55, 56), thus with any 

concerns for impaired mental status or an acute change in neurologic status, urgent brain 

imaging should be considered (82). Acute changes in neurologic examination should be 

considered an emergency given the possibility of hydrocephalus or acute cord compression 

as discussed above. As such, head circumference should be measured with every clinical 

encounter. The youngest reported case of hydrocephalus in a child with MSD was 2 months 

old (56). Hydrocephalus has been previously reported for MPS I, MPS II, and MPS III (82). 

The necessary frequency of screening has not been determined in the MSD population and 

should be evaluated in future formal research studies.
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3.7 Cardiac Issues

Because of MPS-related symptomatology, children with MSD are at risk for cardiac 

problems, including cardiac hypertrophy, valvular depositions, arrhythmias, coronary artery 

disease and hypertension, in addition to the secondary cardiac problems associated with 

obstructive sleep apnea (6, 18, 83). Of note, the cardiac issues in MPS can worsen 

disproportionate to clinical progression (26). Individuals with MSD may also have valvular 

issues, including stenosis or insufficiency of mitral, tricuspid and aortic valves. The 

incidence in MSD is unknown, but valvular problems affect almost all individuals with MPS 

VI (84). With any clinical concerns, individuals may benefit from cardiology referral and 

regular electrocardiograms (ECG) and ECHOs, although the frequency of these tests has not 

been studied in this population.

3.8 Ophthalmologic Issues

Children with MSD have several unique ophthalmologic considerations as extrapolated from 

case reports on individual enzyme deficiencies (6, 18, 21). Eye manifestations of MPS 

disorders can include corneal clouding, retinal degeneration, optic atrophy, papilledema, and 

glaucoma (85). Children with MSD should be regularly monitored by formal 

ophthalmologic evaluation, visual fields testing, and intraophthalmic pressure (IOP) 

measurement (18, 26). In individuals with MPS VI, the incidence of glaucoma (50%) and 

corneal clouding (95%) are increased, although the frequency in MSD specifically is 

unknown (18, 26). Retinitis pigmentosa has been reported in MSD individuals as well (18). 

Individuals with X-linked ichthyosis (steroid sulfatase deficiency) have opacities of the 

corneal stroma, which are typically asymptomatic (86).

3.9 Auditory and oral-maxillary issues

MSD is associated with a variety of unique issues with the ears and throat that would benefit 

from specialist evaluation. Potential clinical concerns include airway obstruction, hearing 

disorders, and recurrent otitis media (6, 7, 18, 26, 56). A significant cause of morbidity, 

individuals may demonstrate progressive oral, pharyngeal, and upper airway obstruction 

with airway narrowing (26). Overall, over half of individuals with MPS have abnormal 

tracheal morphology (43). Dependent on clinical indication and guided by specialists, we 

often consider sleep studies to evaluate for obstruction and airway visualization by flexible 

endoscopy. We recommend audiology evaluation as clinically indicated as hearing loss is 

believed to be common in this population and can compound language and communication 

issues (6, 18, 56).

Dental symptoms are also common in MPS disorders and should be monitored regularly in 

MSD individuals by a pediatric dentistry specialist if possible. Several MPS subtypes are 

also associated with gingival hyperplasia and micro and/or retrognathia (7). Hunter 

syndrome may result in focal lesions in the jaw and abnormalities in tooth enamel, the latter 

of which can result in increased risk of tooth decay (87). As mucopolysaccharides 

accumulate, children can experience a progressive difficulty in their bite, teeth, and enamel 

(87). Sanfilippo syndrome results in tooth root injury (87). One clinical report described the 

impact of MSD on tooth enamel and dentin, affecting tooth thickness and mineralization 

(87).
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4.0 Additional family supports

In addition to the primary medical team, all children and families affected by complicated 

neurodegenerative disorders often require additional multidisciplinary supports (54). Clinical 

social workers can help families navigate financial issues and provide social support 

resources. Early inclusion of pediatric palliative care specialists may be helpful to address 

issues of comfort, goals of care, and end of life issues.

5.0 Discussion

Multiple sulfatase deficiency is ultra-rare and represents a broad and diverse clinical 

spectrum. Given the pathophysiology, the phenotype can be incredibly complex and variably 

affect multiple organ systems. The two cases presented here illustrate that while disease 

progression is universal, the rate of deterioration, individual organ system involvement, and 

residual sulfatase activity can be highly variable between individuals (supplemental table 1). 

We can harness our knowledge of related disorders to help predict and anticipate MSD 

complications. For example, isolated loss of steroid sulfatase activity is associated with 

ichthyosis, while loss of arylsulfatase A activity leads to a MLD-like leukodystrophy. 

Adding to the complexity, the phenotype of MSD is more than a direct summation of 

individual sulfatase deficiencies. The combinatorial loss of several sulfatases simultaneously 

may result in novel pathophysiologic effects. Moreover, several of the sulfatases have 

uncharacterized clinical phenotypes, furthering the clinical uncertainty surrounding this rare 

disorder.

As is inherent to this disorder, individuals demonstrate a complicated and evolving 

phenotypes, as shown in Figure 1. We hypothesize that the clinical manifestations of 

individuals with MSD represent a spectrum from MLD-like to MPS-like, with each 

individual demonstrating an individual blend of findings. Individual 1 demonstrates the 

clinical course and radiographic findings most similar to MLD, but with features of MPS 

disorders (Figure 1 and 2, Table 1). Individual 2 demonstrated a clinical phenotype most 

similar to MPS, but with unique features of MLD (peripheral neuropathy and gall bladder 

sludging) (Table 1, Figure 1–2). Interestingly, the clinical symptoms found in each 

individual did not correlate with the measured residual enzyme activity of individual 

sulfatases (supplemental table 1). It is possible that the measured sulfatase activity, an 

indirect product of formylglycine-generating enzyme activity, varies between tissues and 

fluctuates over time. The clinical symptoms exhibited by an individual with MSD may be a 

result of other influences, such as epigenetic modifications and allelic variants. Clinical 

findings also may be the product of enzyme activity at key points in development. It should 

be noted that severe phenotypes have been described previously in individuals carrying the 

p.G247R mutation of individual 2 (8), while milder phenotypes have been reported in 

individuals harboring the p.A279V mutation, as found in individual 1 (88). Despite this 

consistency, the variability of enzyme activity and the correlation of the residual enzyme 

function to genotype and clinical phenotype remains an area of active interest for further 

investigation.
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Because of the extreme rarity of this disorder and the complexity in phenotype, many 

individuals experience a delay in diagnosis. Once an individual is diagnosed, providers may 

have difficulty navigating the clinical needs of the family. To our knowledge, this is the first 

systematic overview of the organ systems involved in MSD. This structured collection of 

symptoms and their diagnostic measures can aid in the diagnosis of an individual with 

complex symptoms consistent with a possible MSD diagnosis. Also, it can help guide the 

initial evaluations needed for a comprehensive work-up and design of an individualized care 

plan for individuals with MSD.

As of yet, no curative therapy for MSD exists. A multidisciplinary, expert-driven approach to 

control and alleviate symptoms in combination with a tailored palliative treatment can help 

to restore, maintain and improve the quality of life for MSD individuals. Because of the 

rarity of the disease, information on every individual patient greatly expands our knowledge 

of MSD, and a comprehensive and collaborative approach is needed. Future systematic 

studies of larger numbers of individuals are required to better understand MSD, expand upon 

clinical guidelines, and ultimately assess response to potential therapeutics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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AEP auditory evoked potential

BiPAP bilevel positive airway pressure

CPAP continuous positive airway pressure

CRIES Cry, Requires O2, Increased Vital Signs, Expression, 

Sleeplessness scale

CT computed tomography

DBS deep brain stimulation

DEXA or DXA dual-energy X-ray absorptiometry

EEG electroencephalogram

EKG Electrocardiogram

ECHO Echocardiogram

FEES fiberoptic endoscopic study

FGE formylglycine generating enzyme

FLACC Face, Legs, Activity, Cry, Consolability scale

G-tube gastrostomy tube

GAG glycosaminoglycan

GER gastroesophageal reflux

GJ-tube gastrojejunostomy tube

GMFCS Gross Motor Functional Classification System

HSM Hepatosplenomegaly

LSD lysosomal storage disorder

MBS modified barium swallow

MSD multiple sulfatase deficiency

MLD metachromatic leukodystrophy

MRI magnetic resonance imaging

ND not done

SEP sensory evoked potentials

SUMF1 Sulfatase Modifying Factor 1

OAE Otoacustic emissions
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OSA obstructive sleep apnea

PedsQL Pediatric Quality of Life Inventory

PFO persistent foramen ovale

QoL quality of life

SLP speech-language pathology

US Ultrasound

UTI urinary tract infections

VSD ventricular septal defect
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Highlights

• Multiple sulfatase deficiency is an ultra-rare neurodegenerative disorder

• All 17 known human sulfatases are affected, including 6 lysosomal storage 

diseases

• Clinical phenotype complex and variable
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Figure 1: Timeline of two individuals affected by MSD demonstrating clinical variability.
Individual 1 shows a later onset and slower acquisition of symptoms, while Individual 2 

presented earlier, with faster progression and multisystemic complications. (A) On physical 

examination of Individual 1, mildly dysmorphic features including midface hypoplasia, full 

cheeks, periorbital fullness, hypertelorism, and short, thick fingers were noted. Pertinent 

findings on neurologic exam included babbling, difficulties with motor planning, and 

tremulousness. (B) Individual 2 was noted to have coarse facial features, hypertelorism, 

choanal stenosis, global hypotonia, hirsutism, persistent inspiratory stridor, and ichthyosis. 

His psychomotor development slowly progressed over the following months with the highest 

achievement of babbling at the age of 16 months and partially rolling to one side at 22 

months of age. He did not attain speech, sitting, or crawling. By 3.5 years of age, he 

developed severe spasticity and epilepsy with generalized tonic clonic seizures. Ultimately, 

he lost the ability to react to tactile or auditory stimuli and purposefully move.
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Figure 2: Comparative brain imaging findings of individuals with MSD, MLD, and MPS.
A-C represents the radiographic spectrum findings from children with MSD. This 2 year old 

individual with MSD (not presented in text) demonstrates periventricular and frontal white 

matter involvement (A) similar to the findings in individuals with MLD (D) (16). The solid 

arrows indicate corpus callosum involvement. Individual 1 (B) demonstrates periventricular 

white matter involvement with preservation of the U-fibers. Enlarged ventricles are indicated 

by dotted arrows. Individual 2 (C) imaging reveals diffuse hypomyelination and severe 

hydrocephalus. E and F demonstrate the typical imaging findings found in individuals with 

MPS disorders with diffuse hypomyelination, atrophy, and hydrocephalus. All images shown 

are T2 weighted MR images.
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Table 1:

Multiple sulfatase deficiency affects 17 unique sulfatases, each with distinct subcellular localizations and 

pathogenic associations (4).

Subcellular Sulfatase Disease

localization

Lysosome Arylsulfatase A (Cerebroside-3-sulfatase) Metachromatic Leukodystrophy (MIM 250100)

Arylsulfatase B (N-Acetyl-Galactosamine-4-Sulfatase) MPS VI Maroteaux-Lamy (MIM 253200)

Iduronate-2-Sulfatase MPS II Hunter (MIM 309900)

Sulfamidase (N-Sulfoglucosamine-Sulfohydrolase) MPS IIIA Sanfilippo (MIM 252900)

N-Acetylglucosamine-6-Sulfatase MPS IIID Sanfilippo IIID (MIM 252940)

Galactosamine-6-Sulfatase MPS IVA Morquio A (MIM 253000)

Arylsulfatase G (N-Sulfoglucosamine-3-sulfatase) MPS IIIE characterized in murine models (12–14)

Arylsulfatase K (Glucuronate-2-sulfatase) (15) unknown

Endoplasmic Reticulum Arylsulfatase C (Steroid Sulfatase) X-linked Ichthyosis (MIM 308100)

Arylsulfatase D unknown

Arylsulfatase F unknown

Cell surface Sulfatase 1 unknown

Sulfatase 2 unknown

Golgi Arylsulfatase E Chondrodysplasia punctata Type I (MIM 302950)

Unknown Arylsulfatase H unknown

Arylsulfatase I unknown

Arylsulfatase J unknown
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Table 2:

Comprehensive systems-based approach to the clinical care of individuals with MSD.

System Potential clinical concerns Interventions to consider

Cardiac and 
vascular

• Cardiac hypertrophy
• Cardiac valve issues
• Arrhythmias
• Hypertension

• Cardiology referral with serial evaluations by EKG and ECHO

Dermatologic • Ichthyosis
• Hyperpigmented plaques
• Hirsutism

• Dermatology referral as clinically indicated, particularly for severe 
involvement or with any concerns for secondary infections

Metabolic • Metabolic acidosis • Serial blood and urinary acid–base balance monitoring, with 
particular attention to episodes of physiologic stress, including 
illnesses requiring medical attention

Musculoskeletal • Dysostosis multiplex
• Spine instability or stenosis leading to cord 
compression
• Poor bone health
• Abnormalities in tone
(hypotonia and/or spasticity)

• Spine imaging (radiographs and/or MRI) with referral to 
neurosurgery as indicated
• Referral to orthopedics as per clinical indication with consideration 
of radiographs or MRI (hip and/or spine)
• Physical therapy and physiatry referrals to maximize mobility and 
optimize tone
• Referral to bone health specialists with attention to vitamin D

Neurologic • Peripheral neuropathy
• Seizures
• Progressive hydrocephalus and increased 
intracranial pressure

• Head circumference measurements with all clinical encounters
• Urgent evaluation and head imaging with clinical concerns 
(including rapid clinical change such as a change in vision, new 
headaches, new vomiting)
• EEG with clinical concerns for seizures
• Neuropsychological testing as clinically indicated

Nutrition and 
gastroenterologic

• Poor GI motility (feeding intolerance, 
constipation)
• Hepatosplenomegaly
• Gallbladder issues
• Gastroesophageal reflux

• Weight and height measurements with all clinical assessments
• Referral to gastroenterologist as indicated, with special 
consideration for serial abdominal US with special attention to liver, 
gallbladder and spleen
• Surgery or interventional radiology referral for consideration of 
gastrostomy tube placement if needed
• Referral to nutritionist

Ophthalmic • Glaucoma
• Corneal clouding
• Retinopathy, including retinitis pigmentosa
• Strabismus
• Optic nerve abnormalities
• Cataracts

• Ophthalmology referral with special attention to intraophthalmic 
pressures

Oral • Feeding difficulties with poor oral-motor 
coordination
• Hyperplastic gums
• Dental complications,

• Speech therapy referral for evaluation of oral feeding and guidance 
on further testing
• Referral to a specialist in pediatric

including abnormalities in tooth enamel dentistry

Otolaryngologic • Airway obstruction
• Hearing disorders
• Recurrent otitis media
• Oral, pharyngeal, and upper airway 
obstruction with progressive airway narrowing

• Otolaryngology referral as indicated with consideration of direct 
airway visualization by flexible endoscopy
• Sleep medicine referral with sleep studies
• C-spine imaging, particularly prior to sedation or anesthesia as this 
may necessitate neck hyperextension
• Audiology evaluation

Respiratory • Obstructive lung disease
• Restrictive lung disease
• Central apnea
• Peripheral apnea
• Sleep issues
• Recurrent pneumonia

• Pulmonology referral with consideration of spirometry and 
pulmonary function tests, end tidal CO2, as well as fiber-optic 
bronchoscopy to assess for airway obstruction and/or tracheomalacia
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