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Summary

Despite sharing interleukin-4 receptor a (IL-4Ra) in their signaling cas-

cades, IL-4 and IL-13 have different functions in atopic inflammation. IL-

13 preferentially participates in the peripheral tissues because tissue-resi-

dent group 2 innate lymphoid cells produce IL-13 but not IL-4. In con-

trast, lymph node T follicular helper cells express IL-4 but not IL-13 to

regulate B-cell immunity. The dominant microenvironment of IL-13 is

evident in the lesional skin of atopic dermatitis (AD). The IL-13-rich local

milieu causes barrier dysfunction by down-regulating the OVOL1–filag-
grin (FLG) axis and up-regulating the periostin–IL-24 axis. Genome-wide

association studies also point to the crucial involvement of the IL-13,

OVOL1 and FLG genes in the pathogenesis of AD. Biologics targeting IL-

13, such as the anti-IL-4Ra antibody dupilumab and the anti-IL-13 anti-

body tralokinumab, successfully improve AD lesions and further highlight

the importance of IL-13 in the pathogenesis of AD.
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Introduction

Atopic dermatitis (AD) is a common eczematous skin disor-

der characterized by skin inflammation, barrier disruption

and chronic pruritus.1 Its course involves chronic relapse

with intense pruritus, which reduces quality of life and

decreases treatment satisfaction of the afflicted patients.2–4

The lifetime incidence of AD is as high as 20% in the general

population.5 Skin barrier dysfunction is associated with the

reduced production of terminal differentiation molecules,

such as filaggrin (FLG).6,7 Abnormal skin barrier integrity

also causes the increased colonization of microbes, such as

Staphylococcus aureus, which further exacerbates skin

inflammation.8 In addition, some autoimmune diseases are

co-morbid with AD.9,10

The definition of ‘atopy’ is a diathesis for the overpro-

duction of immunoglobulin E (IgE) antibodies or a per-

sonal and/or family history of asthma, allergic rhinitis,

allergic conjunctivitis and AD.11 With the help of inter-

leukin-4 (IL-4) and/or IL-13 produced from type 2 helper

T (Th2) cells, activated B cells produce IgE.12 The diverse

activation and differentiation of multiple B-cell subsets

with significant correlation with circulating IgE levels

have been reported in AD but not in psoriasis or normal

controls.13 Consistent with preponderant Th2 deviation

in early childhood AD,14,15 elevated levels of total or

allergen-specific IgE have been noted in infantile and

early childhood AD.16,17 Skin barrier dysfunction with

loss of function mutations of the filaggrin (FLG) gene

contribute to disease progression and aberrant IgE pro-

duction in AD.18

T helper type 2 cells were first reported by Mosmann

et al. in 198819 and are related to allergic inflammation

in AD.15,20,21 The gene expression of IL-4 and IL-13 is

up-regulated in the lesional skin of pediatric and adult

AD patients compared with that in the normal skin of

healthy controls.15 Type 2 predominance is likely to pro-

gress from non-lesional to lesional skin and from acute

to chronic lesions in AD.21 Type 2 predominance has

been confirmed in peripheral blood T helper cells.14 The

number of IL-13-producing Th2 cells is significantly

greater in the skin-homing cutaneous lymphocyte anti-

gen (CLA)+ T helper cell population in both pediatric

and adult AD patients than in healthy controls.14 The

pathogenic importance of IL-4 and IL-13 has recently

been reinforced by the excellent treatment response of
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patients with AD to the anti-IL-4 receptor a (IL-4Ra,
IL4R) antibody dupilumab, which inhibits both IL-4 and

IL-13 signals.22

Notably, more recent, large-scale transcriptomic analy-

sis revealed the specific and dominant role of IL-13 in the

lesional skin of AD, because IL-4 expression was almost

undetectable.23 Consistent with this notion, the anti-IL-13

antibody tralokinumab successfully improved AD.24 In

this review, we focus on IL-13 as the major driving force

of AD development.

IL-13 signaling

Interleukin-4 and IL-13 are encoded by adjacent genes

and share a common receptor and signaling pathway.25

However, IL-4 and IL-13 are differentially expressed

in vivo by a number of different cells that regulate

innate and adaptive immunity. For example, lymph

node T follicular helper cells, which regulate B-cell

immunity, express IL-4 but not IL-13.25 Basophils and

invariant natural killer T2 cells also express IL-4,

whereas mucosal group 2 innate lymphoid cell (ILC2s)

express mostly IL-13 and little IL-4.25 Their differential

cellular expression suggests that IL-4 and IL-13 have

distinct and non-redundant functions in Th2 immunity;

IL-4 plays an important role in humoral responses,

whereas IL-13 mediates tissue responses, including the

recruitment of eosinophils and parasite expulsion.25 In

addition to its production in Th2 cells, IL-13 is pro-

duced in ILC2s.26 Mouse and human ILC2s are pheno-

typically comparable, lineage-negative, non-T and non-B

lymphocytes that produce high levels of IL-13 and IL-

5.26–28 Unlike IL-13, no or only negligible IL-4 is pro-

duced by ILC2s.26–29 The ILC2s reside in the skin and

are increased in number in AD lesions.27,28

Interleukin-13 signaling is regulated through a com-

plex receptor system. In non-hematopoietic cells, IL-13

engages a heterodimeric receptor composed of IL-4Ra
and IL-13Ra1 (IL13RA1).25 IL-13Ra1 binds IL-13 with

low affinity, yet when it forms a complex with IL-4Ra,
it binds with a much higher affinity, inducing the effec-

tor functions of IL-13.25 A second receptor, IL-13Ra2
(IL13RA2), is closely related to IL-13Ra1; IL-13Ra2
binds IL-13 with high affinity but lacks any significant

cytoplasmic domain and does not function as a signal

mediator.25 Cells with high IL-13Ra2 expression rapidly

and efficiently deplete extracellular IL-13.30 In parallel,

IL-13 responses were enhanced in mice lacking

Il13ra2.31 These studies highlighted that IL-13Ra2 acts

as a scavenger or decoy receptor of IL-13 that elicits

antagonistic activity against IL-13.25 Keratinocytes and

fibroblasts express functional IL-4Ra, IL-13Ra1 and IL-

13Ra2.32–36

The ligation of functional heterodimeric IL-4Ra and

IL-13Ra1 by IL-13 induces the activation of downstream

Janus kinase 2 (JAK2) and tyrosine kinase 2 (TYK2).37

JAK2 activates signal transducer and activator of tran-

scription 3 (STAT3), and TYK2 activates STAT6 and

STAT1.37 In contrast, IL-4 signaling proceeds via the IL-

4Ra and IL-2Rc heterodimer.37 The ligation of IL-4Ra
and IL-2Rc by IL-4 induces JAK1/JAK3 and subsequent

STAT3 and STAT6 activation.37 Hence, different types of

oral and topical JAK inhibitors are significantly therapeu-

tic against AD.38,39 As IL-4Ra is expressed on sensory

nerves, and its activation is involved in the itch sensation,

the administration of a JAK inhibitor reduces itch inten-

sity.40

IL-13 and periostin

Periostin (POSTN) is a matricellular, non-structural

extracellular matrix protein that is highly expressed at

sites of injury or inflammation.41,42 The main source of

periostin is fibroblasts. Keratinocytes produce periostin

but to a much lesser extent than fibroblasts.42–44 Peri-

ostin expression is enhanced by mechanical stress or

skin injury; this is indicative of the physiologically pro-

tective function of periostin, which promotes wound

repair by acting on keratinocytes and fibroblasts. Along

with its physiological functions, periostin plays patho-

genic roles in skin fibrosis and chronic allergic inflam-

mation.42 In normal skin, periostin is mainly

distributed in the subepidermal and perifollicular com-

partments.42

The expression of periostin is induced by IL-4 and IL-13 in

a STAT6-dependent manner.41,42 In parallel, the dermal

expression of periostin is significantly up-regulated and cor-

related with disease severity in AD.44 Periostin is also related

to subepithelial remodeling in asthma and allergic rhinitis.41

In a mite-induced AD mouse model, epidermal thickening

anddermal fibrosiswere evidentwith Il13 geneup-regulation

and a marked increase in periostin expression.44 All of these

allergic manifestations were significantly attenuated in mice

that were deficient in either Stat6 or Postn.44 Periostin stimu-

lates the proliferation of keratinocytes and enhances their

production of thymic stromal lymphopoietin (TSLP), a car-

dinal keratinocyte-derived cytokine that promotes the Th2

immune response.44 Periostin signaling proceeds through

integrin av; therefore, anti-integrin av antibodies successfully
improvedmite-inducedAD.44

In addition to the mite-induced AD model, periostin

deficiency inhibited epidermal hyperplasia in an imiqui-

mod-induced psoriasis model without affecting the

recruitment of inflammatory cells expressing IL-17, IL-22

and IL-23.45 These results stress the cardinal role of the

periostin–integrin av axis in the proliferative capacity of

keratinocytes and are coincident with previous findings

that the integrin av signaling axis is necessary for epider-

mal proliferation during cutaneous wound healing.46 As

epidermal thickening (acanthosis) is a striking feature in
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the chronically lichenified lesional skin of AD, the

increased expression of periostin may be a therapeutically

important target for drug development.

AD and barrier dysfunction

Skin barrier function is disrupted in AD compared with

that in normal controls.47–49 The epidermal barrier is

formed by the coordinated and sequential cross-linking of

epidermal differentiation molecules such as FLG and

intercellular lipids and corneocyte adhesion.47–49 The

expression of FLG and the other differentiation molecules

loricrin and involucrin is down-regulated or expressed

prematurely in the lesional and non-lesional skin of AD

compared with their expression in the normal skin of

healthy individuals.7,50,51 As the daily application of mois-

turizer during the first 32 weeks of life reduces the risk of

AD in infants,52 skin barrier dysfunction is essential to

the development of AD.

Although the strongest genetic risk factors for AD are

loss of function mutations in the FLG gene,53 FLG muta-

tions were not found in all AD patients; they were less

common in southern Europeans with AD54 and were

even absent in patients with AD from some African coun-

tries,55 suggesting that FLG mutations only partly explain

FLG protein down-regulation in AD. The FLG mutation

was also not related to the development of AD in patients

from a subtropical island in Japan.56

IL-13 and OVOL1–FLG axis

The coordinated expression of FLG and other epidermal

differentiation proteins is crucial for skin barrier protec-

tion.1,7 OVOL1 is an upstream transcription factor that

regulates FLG expression.6 It is intriguing that FLG,

OVOL1 and IL13 were the three genes most significantly

associated with AD among 31 susceptible gene loci

reported in a meta-analysis of genome-wide association

studies.52 IL-4Ra signaling by IL-14 and IL-13 signifi-

cantly reduced the expression of FLG, loricrin and

involucrin in keratinocytes.7,57–60 At least two mecha-

nisms mediate the IL-4/IL-13-induced FLG down-regula-

tion: OVOL1 inactivation and the periostin–IL-24 axis

(Fig. 1).43,60 The activation of OVOL1 induces its cyto-

plasmic-to-nuclear translocation and up-regulates FLG

and loricrin expression.6,61 Notably, IL-4 and IL-13 con-

sistently inhibit FLG expression by interfering with

OVOL1 signaling.6 Interleukin-13 also inhibits the

involucrin expression but in an OVOL1-independent

manner61 and exacerbates barrier dysfunction. Epidermal

keratinocytes in barrier-disrupted skin produce large

amounts of TSLP, IL-25 and IL-33, which promote the

differentiation of Th2 cells and ILC2s and stimulate the

production of IL-13.29,62 Hence, a vicious cycle is formed

to develop atopic dry skin. These results suggest the

crucial involvement of the IL-13–OVOL1–FLG axis in

the pathogenesis of AD.

IL-13 and periostin–IL-24 axis

In addition to the IL-13–OVOL1–FLG axis, IL-13-in-

duced FLG down-regulation is partly mediated by the IL-

13–periostin–IL-24 axis.43 Interleukin-24 belongs to an

IL-20 subfamily that includes IL-19, IL-20, IL-22 and IL-

26.63 Although gene and protein expression of IL-24 is

up-regulated in the lesional skin of AD,23,43 its implica-

tion remains elusive. Interleukin-13 up-regulates the

expression of periostin in keratinocytes through STAT6

activation.43 Periostin stimulates keratinocyte to produce

IL-24 and IL-24 down-regulates the FLG expression via

STAT3 activation.43 In a mite antigen-induced AD model,

the Flg expression was decreased in the lesional murine

skin. However, the decrease of Flg expression was not

observed in mice deficient for Stat6 or Postn.43 Moreover,

the phosphorylated forms of both STAT6 and STAT3

were abundantly expressed in the lesional epidermal ker-

atinocytes of individuals with AD.43 Like IL-13, IL-31 is a

pruritogenic cytokine produced from Th2 cells.64 Inter-

leukin-31 stimulates keratinocytes to produce IL-24.

Then, IL-24 contributes to down-regulate the expression

of FLG.65

Anti-IL-13 biologics for the treatment of AD

Standard therapeutics for AD include topical emollients

for barrier dysfunction and topical steroids and cal-

cineurin inhibitors for skin inflammation.11,66 These con-

ventional treatments are more or less effective in reducing

atopic inflammation and itch; however, patient satisfac-

tion and adherence to conventional treatments are gener-

ally low, as reported in daily clinics.67–70

The anti-IL-4Ra antibody dupilumab inhibits the bind-

ing of IL-4 and IL-13 to IL-4Ra and blocks IL-4Ra signal-

ing.22 Dupilumab significantly improved skin lesions and

pruritus in patients with moderate to severe AD in two

randomized, placebo-controlled phase 3 clinical trials.22

The severity of AD was authentically evaluated using the

Eczema Area and Severity Index (EASI). A reduction in

the EASI score of at least 75% (EASI75) was observed in

51% and 44% of patients in dupilumab monotherapy

groups and only 15% and 12% of the patients in placebo

groups, respectively, at 16 weeks post-treatment.22 Dupi-

lumab also provided a clinically meaningful improvement

in patient-reported outcome measures.71

Dupilumab therapy significantly reduced the lesional

expression of IL-13 and IL-13-regulated Th2 signature

genes, such as CCL17, CCL18 and CCL26, in AD

patients.72 It also restored the down-regulation of FLG

and loricrin and reduced epidermal acanthosis in the

lesional skin of AD patients.72 In addition, dupilumab
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normalized the type 2 serum biomarkers CCL17, CCL18

and periostin.72

Tralokinumab is a fully human monoclonal antibody

that potently and specifically neutralizes IL-13.24 In a

phase 2b study, 42�5% of patients injected with 300 mg

tralokinumab every 2 weeks for 12 weeks achieved

EASI75, which was significantly higher than that in the

placebo control group (15�5%).24 Tralokinumab inhibits

serum type 2 signature biomarkers such as periostin,

CCL17 and IgE, but only the periostin level is a predictive

biomarker for a good treatment response to tralokinumab

in AD.24 Dipeptidyl peptidase-4 (DPP-4), a regulator of

glucose metabolism, is also a type 2 signature biomar-

ker.24,73 Similar to the results of periostin treatment,

patients with AD with high serum levels of DPP-4

showed a greater treatment response to tralokinumab.24

In a phase 2b clinical trial of tralokinumab for severe

asthma, high serum periostin and DPP-4 levels were also

significant biomarkers to predict a good treatment

response to tralokinumab.73

Conclusion

Interleukin-4 and IL-13 share IL-4Ra in their signaling

cascades and induce similar biological responses. How-

ever, IL-13 likely preferentially participates in peripheral

tissues, including the skin, because tissue-residing ILC2s

produce IL-13 but not IL-4.26–28 An IL-13-dominant

microenvironment is evident in the lesional skin of AD,23

and the IL-13-rich local milieu causes barrier dysfunction

by the down-regulation of the OVOL1–FLG axis.6,7 The

linkages among IL-13–OVOL1–FLG may be particularly

crucial for the development of AD, because genes encod-

ing these three molecules are the three most susceptible

genes for the development of AD.53 The successful

improvement of AD by treatment with the anti-IL-4Ra
antibody dupilumab and the anti-IL-13 antibody tralok-

inumab further highlights the importance of IL-13 in the

pathogenesis of AD.
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