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Summary

The intestinal epithelium forms a barrier between the microbiota and the

rest of the body. In addition, beyond acting as a physical barrier, the

function of intestinal epithelial cells (IECs) in sensing and responding to

microbial signals is increasingly appreciated and likely has numerous

implications for the vast network of immune cells within and below the

intestinal epithelium. IECs also respond to factors produced by immune

cells, and these can regulate IEC barrier function, proliferation and differ-

entiation, as well as influence the composition of the microbiota. The

mechanisms involved in IEC–microbe–immune interactions, however, are

not fully characterized. In this review, we explore the ability of IECs to

direct intestinal homeostasis by orchestrating communication between

intestinal microbes and mucosal innate and adaptive immune cells during

physiological and inflammatory conditions. We focus primarily on the

most recent findings and call attention to the numerous remaining

unknowns regarding the complex crosstalk between IECs, the microbiota

and intestinal immune cells.
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Introduction

The mucosal surface of the gastrointestinal tract consists

of a single layer of intestinal epithelial cells (IECs) that

provide an interface for immune cells to detect and

respond to environmental substances. These include food

components and pathogenic or commensal microbial spe-

cies of Archaea, bacteria, fungi, viruses and parasites, with

around 1011 bacteria colonizing the human gastrointesti-

nal tract.1 This creates an enormous source of potential

immune stimuli; however, under homeostatic conditions

the immune cells in and underlying the mucosa develop

and function in a controlled manner, balancing inflam-

matory and regulatory responses to prevent overreaction

to innocuous luminal antigens. During pathogenic infec-

tion, immune cells are mobilized to fight and clear invad-

ing microbes. Although the mechanisms that regulate

intestinal immune responses during health and disease

are still being elucidated, dialogue between intestinal

microbes, IECs and innate and adaptive immune cells is

increasingly appreciated to play a major role.

The IEC monolayer is composed of a number of cell

types that differentiate from epithelial stem cells residing

in the crypts. IEC types include goblet cells that produce

mucin glycoproteins and form mucus, absorptive entero-

cytes, enteroendocrine cells, Paneth cells at the bottom of

intestinal crypts that secrete antimicrobial peptides

(AMPs), microfold (M) cells involved in antigen capture

and presentation to immune cells, and tuft cells that pro-

mote type 2 immunity to intestinal parasites.2,3 Single-cell

RNA sequencing has further defined the behaviour and

characteristics of each IEC cell type,4 and a recent study

identified two subtypes of tuft cells that change in fre-

quency during helminth infection.5 Together, IECs form

the boundary between the internal body and the outside

environment, and studies in germ-free mice have demon-

strated that microbial colonization of the intestinal lumen

influences IEC metabolism, proliferation, survival, barrier

function and communication with immune cells.6 IECs

are the main cell type in direct contact with stimuli from

the luminal microbiota and are critical players in

microbe–host interactions. As such, in addition to epithe-

lial cell-mediated defence mechanisms, IECs also coordi-

nate the development and maturation of downstream

immune responses from immune cells residing in the

lamina propria and underlying lymphoid tissues. These

immune cells help to contain microbes at the mucosa

and maintain intestinal homeostasis.
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Although much is known about the immune cell popu-

lations in the gut, less is known about the mechanisms by

which IECs regulate the development and maturation of

immune cells during homeostasis and how this is dis-

rupted during different disease states. In addition, the

stimuli from commensal bacterial species recognized by

IECs and the receptors and signalling pathways involved

are not thoroughly understood. In this review, we

describe the role of IECs as important communication

hubs and modulators that shape and coordinate the activ-

ity of both microbes and immune cells. We place special

emphasis on the most recent findings and highlight the

many open questions regarding the complex network of

interactions between IECs, the microbiota and intestinal

immune cells.

Microbiota–IEC crosstalk

The intestinal epithelium is a highly dynamic tissue that

provides both physical and chemical barriers to protect the

intestinal mucosa and peripheral organs from commensal

microbes or invading pathogenic microorganisms. In addi-

tion to forming a barrier, IECs also detect a myriad of sig-

nals from intestinal microbes, allowing fine tuning of IEC

proliferation and homeostatic functions (Fig. 1). Likewise,

IEC programmes can influence the composition of the

intestinal microbiota in a number of ways.

Microbial regulation of IEC growth and function

Intestinal epithelial cells possess a number of mechanisms

to sense and respond to the presence and activity of

intestinal microbes. IECs express pattern recognition

receptors (PRRs) to specifically detect molecular patterns

from commensal and pathogenic gut microbes, and these

have been extensively described in previous reviews.7–9

Following the detection of intestinal microbes, IECs

enhance various components of the intestinal barrier to

protect underlying host tissues from bacterial infiltration.

These include AMP production, mucus secretion, tight

junction integrity, and IEC growth and differentiation.

IECs secrete a range of AMPs, many through PRR/

MyD88-dependent mechanisms, that accumulate in the

mucus layer and possess broad antimicrobial activi-

ties.10,11 Indeed, during Citrobacter rodentium infection,

MyD88 signalling solely in IECs was recently shown to be

sufficient to enhance IEC barrier integrity and increase

production of RegIIIc and immunomodulatory acute-

phase protein serum amyloid A1 (SAA1).12 Goblet cells

secrete mucin glycoproteins to create the viscous mucus

layer, and the importance of mucus in protection against

invading microbes was recently highlighted in a study

showing that the discontinuous mucus layer in the mouse

caecum and corresponding uncovered areas of the epithe-

lium form hotspots for Salmonella infection.13 A number

of bacterial species have been shown to modulate mucin

secretion by goblet cells. For example, commensal

Ruminococcus gnavus14 and Lactobacillus rhamnosus15

stimulate the production of mucins, while pathogenic

microbes including adherent and invasive Escherichia coli

promote a less effective mucus barrier.16 In a recent

study, Amuc_1100, a membrane protein from commensal

Akkermansia muciniphila, was shown to interact with the

PRR Toll-like receptor 2 (TLR2) to increase intestinal

barrier function, namely mucus thickness and tight junc-

tion protein (TJP) expression.17

Although PRR-mediated mechanisms of sensing micro-

bial products are the most extensively studied, IECs also

use a number of other pathways. For example, inflamma-

somes have been shown to play an important role in

IEC-sensing of microbial stimuli and damage-associated

molecular patterns and in triggering protective barrier

responses.18–21 The NAIP-NLRC4 inflammasome has

recently been implicated in the IEC response to Sal-

monella infection in vivo, enabling pro-inflammatory pro-

grammes that result in production of cytokines and the

hormone-like eicosanoid prostaglandin E2, as well as lytic

cell death and the expulsion of infected IECs.22 The

autophagy pathway has also been shown to be critical for

maintaining intestinal epithelial integrity in response to

microbes, and a recent study demonstrated that release of

lysozyme by Paneth cells during bacterial infection is

mediated through an autophagy-based alternative secre-

tion pathway.23 Although mechanisms of microbial mod-

ulation of and sensing by IECs continue to be uncovered,

many pathways remain incompletely characterized.

Microbial metabolites produced by bacterial fermenta-

tion of dietary components are also important signals

detected by IECs. For example, tryptophan catabolites,

detected by pregnane X receptor (PXR)24 and the aryl

hydrocarbon receptor (AhR),25,26 drive a multitude of

anti-inflammatory and protective barrier functions. IEC

AhR sensing of dietary components and tryptophan

catabolites contributes to the maintenance of intestinal

barrier integrity by inducing IEC differentiation from

crypt stem cells26 and mitigating inflammatory

responses.27 PXR was recently shown to respond to indole

3-propionic acid, a tryptophan metabolite produced by

commensal Clostridium sporogenes, and mice deficient for

PXR exhibited increased epithelial inflammatory injury

and decreased tight junction protein expression. In con-

trast, germ-free mice colonized with C. sporogenes and

dosed with L-tryptophan exhibited decreased intestinal

permeability and increased expression of detoxifying PXR

target genes.24 In addition to serving as a major energy

source for enterocytes, microbiota-derived short-chain

fatty acids (SCFAs) have also been implicated in the regu-

lation of most IEC functions including cell turnover,28

tight junction protein expression,29 and inflammasome-

or hypoxia-inducible factor (HIF)-mediated epithelial
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integrity.30,31 SCFAs can directly influence gene transcrip-

tion by binding to and inhibiting histone deacetylases

(HDAC) or through binding to the metabolite-sensing

receptors GPR41, GPR43 and GPR109A.32 Indeed, a

recent study showed that optimal expression of AMPs

requires IEC-sensing of SCFAs via GPR43. Using Gpr43�/

� mice and enteroids, investigators observed that the

AMPs RegIIIc and b-defensins 1, 3 and 4 were reduced in

the absence of GPR43 or downstream mammalian target

of rapamycin (mTOR) and signal transducer and activa-

tor of transcription 3 (STAT3) activation.33

Microbes also induce a number of non-barrier func-

tions in IECs, including changes in metabolism and the

biosynthesis of signalling molecules. For example, early

during Citrobacter rodentium infection, IECs have been

shown to exhibit changes in cholesterol and carbon meta-

bolic pathways, suggesting that IEC metabolism is repro-

grammed to meet increased cellular energetic demands

during tissue repair.34 Some enterochromaffin cells, a

subtype of enteroendocrine cell, have been shown to

secrete serotonin (5-hydroxytryptamine, 5-HT) in

response to mechanosensing via the mechanotransducer

Piezo2,35 and 5-HT is an important regulator of enteric

nervous system development, and gastrointestinal tract

motility and inflammation.36 In addition to

mechanosensing, a recent study demonstrated that several
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Figure 1. Intestinal epithelial cells (IECs) sense microbial stimuli through a number of different mechanisms that regulate IEC gene transcription

and inflammatory responses. For example, tryptophan catabolites and short-chain fatty acids (SCFAs) produced as a result of microbial metabo-

lism trigger the activation of AhR, PXR, ERK1/2 and p38 that directly regulate the expression of target genes. The inflammasome complexes in

IECs reported to respond to microbial stimuli include NLRP3, NAIP-NLRC4, NLRP6 and NLRP9b, which trigger cell death pathways and the

release of inflammatory cytokines and mediators.
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metabolites from a consortium of commensal spore-

forming bacteria (predominantly Clostridial species) pro-

mote 5-HT biosynthesis by colonic enterochromaffin cells

in colonized mice.37 In response to microbes, IECs also

secrete a number of cytokines and effector molecules

including interleukin-25 (IL-25) and SAA.38,39 These

effectors regulate the development and function of intesti-

nal immune cells, as described in the next section of this

review. Collectively, these recent findings indicate that a

broad range of IEC functions are affected by sensing of

intestinal microbes (Table 1); however, it is worth noting

that many of these studies were performed in the context

of pathogenic microbial infection. Further studies are

required to identify additional stimuli from commensal

microbes and characterize commensurate IEC responses

at steady state.

Influence of IECs on diversity and function of the
intestinal microbiota

Although the effects of IEC–microbe crosstalk on IECs are

beginning to be elucidated, the effects of this interaction on

the gut microbiota are substantially less characterized. Still,

numerous recent studies have indicated that IECs also have

an impact on the microbial populations residing in the gut.

Autophagy is particularly well studied in maintaining the

function of Paneth cells and protecting against pathogenic

bacteria.40–44 Recently, disruption of IEC autophagy has

also been shown to dramatically alter the composition of

the gut microbiota and reduce intestinal microbial alpha-

diversity in mice.45 Another recent study showed that sero-

tonin production by enterochromaffin cells modulates gut

microbial composition,46 and AMPs secreted by IECs have

been broadly reported to influence the composition of

intestinal gut microbes.47–49 The NLRP6-inflammasome is

also highly expressed by IECs, and previous studies have

shown that NLRP6 helps to maintain eubiosis of the

intestinal microbiota.50,51 However, recent studies of Nlr-

p6�/� and Asc�/� mice co-housed with wild-type litter-

mates report that the NLRP6 inflammasome does not

affect gut microbial diversity,52,53 highlighting that non-ge-

netic confounding factors may impact in vivo studies inves-

tigating causal relationships between host gene deficiencies

and alterations in the microbiota.54 Indeed, whereas previ-

ous studies eliminated a role for nucleotide-binding

oligomerization domain-containing protein 1 (NOD1) and

NOD2 in shaping microbiota composition based on poly-

merase chain reaction for 10 targeted bacterial groups in

co-housed littermates of different genotypes,55 NOD2 sig-

nalling in IECs was recently strongly implicated in specifi-

cally controlling the colonization and growth of

commensal Bacteroides vulgatus.56 In this recent study,

although wild-type animals co-housed with Nod2�/� mice

acquired the overabundance of B. vulgatus characteristic of

knockout mice, this was diminished upon re-separation.

Given these conflicting observations, a strong case has been

made for using crosses and littermate controls as a superior

alternative (or addition) to co-housing.57 Still, the effects of

IEC PRRs on the composition of the intestinal microbiota

remain contentious and, importantly, the mechanisms

behind many of the microbiota alterations observed have

not been fully uncovered.

Microbial gene expression is also influenced by IECs

through several mechanisms. For instance, a recent study

using IEC-specific TLR4 knockout (TLR4IEC-KO) mice

demonstrated that TLR4 influences the composition and

function of intestinal microbes, including the expression

of microbial genes involved in the metabolism of lipids,

amino acids and nucleotides.58 TLR4IEC-KO mice devel-

oped metabolic syndrome, and lysozyme and genes regu-

lated by peroxisome proliferator-activated receptors were

down-regulated, suggesting a mechanism by which

intestinal TLR4 may influence the microbiota. In another

study, attaching and effacing enterohaemorrhagic E. coli

was shown to require mechanosensing of IECs to express

the locus of enterocyte effacement that encodes its type 3

secretion system, and this was responsible for forming

lesions in the gastrointestinal tract.59 In addition, a recent

study reported that miRNA is released by IECs into the

intestinal lumen where it enters bacterial species such as

Fusobacterium nucleatum and E. coli and regulates their

gene expression and growth.60

The main nutrient source for gut microbes is typically

diet-derived components including polysaccharides or

glycans. However, some gut microbes can also use host

glycans on mucin proteins and the surface of IECs, pro-

viding an alternative energy source when dietary glycans

are reduced.61–63 For example, several commensal

Clostridiales members use the mucin-associated sugars

fucose and sialic acid as energy sources, promoting their

colonization of the gut.27 Glycans are also ligands for bac-

terial attachment, and some gut microbial species such as

Ruminococcus gnavus are hypothesized to target mucin

glycans to assist their spread and persistence in niches in

the intestinal lumen.64 Together, these studies demon-

strate the multitude of interactions between microbes and

IECs that can trigger various IEC programmes and shape

the microbial ecosystem in the gut.

IEC–immune cell crosstalk

Intestinal epithelial cells possess a number of independent

barrier functions to control and/or kill gut microbes, they

also mediate crosstalk between the microbiota and

intraepithelial and subepithelial immune cells by respond-

ing to microbial metabolites and coordinating immune

responses. This is achieved by a number of known and

unknown mechanisms including the secretion of

chemokines, cytokines and other immunomodulatory

molecules (Fig. 2), as well as the transport of microbial
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antigens and metabolites to underlying immune cells in

the lamina propria. Reciprocally, intestinal immune cells

support a number of important IEC functions (Fig. 3).

IEC secretion of immunomodulatory molecules

Among the immunomodulatory molecules that are pro-

duced by IECs, thymic stromal lymphopoietin, transform-

ing growth factor (TGF)-b, retinoic acid and IL-10 have

been shown to impact a broad range of immune cells and

have each earned their own detailed reviews.65–68 In addi-

tion to these well-described modulators of immune cell

function, IEC production of IL-15 has recently been shown

to be required for the homing of protective T-cell receptor-

cd-positive (TCR-cd+) intraepiethlial lymphocytes (IELs)

to the epithelium of the small intestine.69 The TCR-cd+ IEL
surveillance behaviour, antimicrobial responses and protec-

tion against pathogens such as Salmonella Typhimurium

and Toxoplasma gondii are dependent on MyD88 signalling

in IECs;70,71 however, the mechanisms of IEC–IEL commu-

nication required for these functions are still unknown. In

response to colonization by adherent microbes, IECs

secrete SAAs, which promotes the functional maturation of

retinoic acid-related orphan receptor ct-positive (RORct+)
T cells to IL-17-secreting T helper type 17 (Th17) cells.72,73

This has been hypothesized to occur via mechanosensing of

microbial contact, and a recent study has shown that in the

case of segmented filamentous bacteria (SFB), the transfer

of SFB antigens through IECs via microbial adhesion-trig-

gered endocytosis (MATE) plays a pivotal role.74 Another

recent study shows that epithelial sensing of dietary vitamin

A through retinoic acid receptor b is also required for IEC

expression of SAAs.75

Perhaps less appreciated, glucocorticoids (GCs) and neu-

rotransmitters are also abundantly produced by epithelial

cells in the gut. GCs are well-known for their general anti-

inflammatory effects, but beyond their production in adre-

nal glands, crypt IECs have been shown to release GCs in

response to anti-CD3-mediated T-cell activation, and IEC

synthesis of GCs has been shown to control local inflam-

mation and disease severity in a 2,4,6-trinitrobenzene sul-

phonic acid colitis model.76,77 As almost all vertebrate cells

express glucocorticoid receptors (GRs) the effects of GCs

are pleiotropic; however, T-cell-specific responses to GCs

have been shown to be involved in T-cell homeostasis, and

regulatory T (Treg) cell-specific GR deficiency was recently

shown to impair Treg cell capacity to prevent the induction

of disease in a mouse model of inflammatory bowel dis-

ease.78,79 In addition, a recent study of mice with dimin-

ished GR responses revealed an interferon-specific gene

signature in the gut that was abrogated by antibiotic treat-

ment, indicating a role for the microbiota.80 While infor-

mation regarding intestinal production of GCs continues

to emerge, the stimuli involved and immune cell effects

have yet to be fully elucidated.T
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Similarly, although a monoamine neurotransmitter,

serotonin is primarily produced in the intestines by ente-

rochromaffin cells. As discussed earlier, a recent study

using germ-free mice colonized with spore-forming bacte-

ria identified a role for metabolites from commensal

microbes in promoting serotonin biosynthesis by colonic

enterochromaffin cells.37 Although the effects of serotonin

on intestinal immune cells have not been completely

characterized, most immune cells express the serotonin

transporter (SERT), and there is evidence that functions

as diverse as T-cell activation, eosinophil trafficking and

tumour necrosis factor-a-mediated inflammation are

modulated by serotonin.81–83

IEC transport of microbial antigens and metabolites

An important mechanism by which intestinal epithelial

cells direct adaptive immune responses to gut microbes is

by antigen sampling and presentation to immune cells

underlying the epithelium. Specialized M cells are concen-

trated in the follicle-associated epithelium that overlies

the luminal surface of Peyer’s patches and isolated lym-

phoid follicles of the small intestine. M cells directly take

up antigens and intact microorganisms from the intestinal

lumen and transport them in a unidirectional way for

presentation to resident immune cells. Antigen sampling

by M cells is likely to be the key initiator of intestinal IgA

responses to commensal bacteria as mice with impaired

M cell differentiation display decreased faecal secretory

IgA.84

In addition to M cells, goblet cells contribute to anti-

gen sampling by forming goblet cell-associated antigen

passages (GAPs) to deliver intestinal lumen antigens to

CD103+ dendritic cells in the lamina propria.85 Regula-

tion of GAPs may constitute a dynamic means of modu-

lating intestinal immune responses. While small intestine
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small intestine these include interleukin-15 (IL-15), required for the recruitment of protective T-cell receptor (TCR) -cd+ intraepiethlial lympho-
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goblet cells form GAPs in response to acetylcholine, colo-

nic goblet cell sensing of commensal microbes via MyD88

decreases their acetylcholine responsiveness and formation

of GAPs to limit inflammatory immune responses to

commensals.86 Timed control of GAPs during the pre-

weaning phase has been implicated in Treg cell-mediated

tolerance towards commensal bacteria,87 and during Sal-

monella infection IL-1b inhibits GAP formation, leading

to decreased bacterial dissemination.88

Enterocytes also participate in antigen presentation by

several processes. These include presentation of lipid anti-

gens to natural killer T cells via expression of CD1d, and

IEC CD1d expression has been shown to suppress pro-in-

flammatory natural killer T-cell functions thereby reduc-

ing intestinal inflammation.89 In addition, MHC class II

has been shown to be constituitively expressed by IECs in

the upper villi of the small intestine, and surface expres-

sion appears to be increased in patients with inflamma-

tory bowel disease and in response to interferon-c.90–92

Reciprocally, IEC antigen presentation was shown to pro-

mote interferon-c secretion by CD4+ T cells in co-cultures

of normal T cells with IECs from patients with inflamma-

tory bowel disease;93 however, more recent studies suggest

that interferon-c-induced MHC class II expression on

IECs plays a more anti-inflammatory role by promoting a

tolerogenic ratio of Treg cells to effector CD4+ T cells.94,95

Still, the role of IEC antigen presentation in shaping

intestinal immunity has not been thoroughly explored,

and the intimate contact between the epithelium and

commensal microbes provides ample opportunity for

IECs to curate intestinal T-cell responses.

Immune cell contributions to IEC differentiation and
function

In addition to IECs regulating immune cell functions,

several intestinal immune cell types influence IEC home-

ostasis and inflammatory responses (Fig. 3). For example,

TregTreg

Th17Th17

Lamina
propria 

Intestinal
lumen

IECs

IL-22

AMPs

Tryptophan

Commensal
microbes

Pathogens

Tryptophan
catabolites 

Fut2

TJPs

C. rodentium

STAT3

Mucin
production

Goblet
cell

Tuft cell

Parasite
infection

IL-25
IL-33
TSLPIL-13

DifferentiationIL-17A
IL-17F
IL-22

FGF2

IL-10

WISP-1

Epithelial
repair

TGF-b

Notch
signalling

IL-12

IL-12Rb2

Food
antigens

Tolerance
to food

antigens 

Epithelial
repair

S. typhimurium

?

?

Mucin production
Differentiation

Disease severity

ILC2

ILC3
Basophil

Macrophage

DC

APC

ILC2

ILC3
Basophil

Macrophage

DC

APC

Figure 3. Immune cells contribute to the regulation of intestinal epithelial cell (IEC) differentiation and barrier function. For example, type 3

innate lymphoid cells (ILC3) secretion of interleukin-22 (IL-22) regulates IEC secretion of antimicrobial peptides (AMPs) and mucins, tight junc-

tion formation, and surface protein glycosylation, assisting in resistance to pathogenic microbes. Tolerance to food antigens is reported to involve

IEC responsiveness to IL-12; however, the subsequent IEC signalling pathways and immune cell types that mediate this response are not currently

known.

ª 2019 John Wiley & Sons Ltd, Immunology, 158, 267–280274

A. T. Soderholm and V. A. Pedicord



in response to microbial metabolites such as tryptophan

catabolites, type 3 innate lymphoid cells (ILC3s) produce

cytokines that regulate barrier functions of IECs.25 ILC3s

secrete IL-22, which promotes IEC homeostasis and

repair, and can induce AMPs to control the growth of

both pathogenic and commensal microbes.96–98 IL-22 also

affects the glycosylation of IEC surface proteins by induc-

ing fucosyltransferase 2 (Fut2) expression, thereby

enhancing host protection against Salmonella Typhimur-

ium.99 Mucin production by IECs is also increased by IL-

22 through the activation of signal transducer and activa-

tor of transcription STAT3,100 and tight junction proteins

such as claudin-2 have recently been shown to be up-reg-

ulated by IL-22, inducing diarrhoea and facilitating clear-

ance of Citrobacter rodentium in a mouse model of

enteric infection.101

Beyond ILC3s and IL-22, some other lymphoid cells

also contribute to IEC responses. During parasitic infec-

tion, IECs secrete a number of cytokines that promote

the expansion and activation of group 2 innate lymphoid

cells (ILC2s) and basophils, including IL-33 and thymic

stromal lymphopoietin (TSLP), and IL-25 produced by

tuft cells.2,5,102,103 Reciprocally, activated ILC2s secrete IL-

13, which promotes tuft and goblet cell differentiation

and parasite clearance.3,104 The signature cytokines

secreted by Th17 cells (IL-17A, IL-17F and IL-22) can

also induce IEC-mediated AMP secretion and reinforce

IEC tight junctions.105–108 In addition, production of

fibroblast growth factor 2 (FGF2) by Treg cells has

recently been shown to synergize with IL-17 to enhance

mechanisms of intestinal epithelial repair.109 IEC respon-

siveness to tumour necrosis factor also promotes mucosal

repair and healing in individuals with Crohn’s disease,

human cells and mouse models.110

Myeloid cells also play key roles in IEC differentiation

and function. For instance, perturbations to macrophage–
IEC interactions lead to aberrant differentiation of IEC

subtypes. Using CSF1R blockade to deplete macrophages

that localize to the intestinal crypt epithelium, a recent

study found that absence of macrophages results in

reduced Lgr5+ intestinal stem cells, lysozyme-expressing

Paneth cells and Peyer’s patch M cells, and increased gob-

let cell density.111 Macrophages have also been shown to

be the likely source of IL-10 in a colon biopsy-induced

injury model, and in this model, macrophage IL-10

induced epithelial synthesis of the pro-repair WNT1-in-

ducible signalling protein 1 to mediate IEC proliferation

and mucosal wound healing.112 In DCs, transforming

growth factor-b signalling has been suggested to control

goblet cell numbers, mucus production and disease sever-

ity in dextran sulphate sodium colitis via Notch sig-

nalling, although the effects of DC dysfunction and

involvement of other immune cell types were not fully

investigated in this study.113 More recently, IL-12 respon-

siveness via IL-12Rb2 on IECs has been shown to play a

protective role in food allergy; however, the precise mech-

anism of protection is once again unknown.114

Immune cell–microbiota crosstalk

Due to limited direct contact, most immune cell–micro-

biota communication is likely mediated, at least to some

extent, by IECs; however, the contributions of IECs to

many microbiota–immune cell interactions have yet to be

fully realized. Nevertheless, a growing body of work has

revealed the importance of commensal microbes for the

proper development and function of immune cells

(Fig. 4), and immune cells reciprocally shape the micro-

bial habitat and microbiota diversity.

Microbiota modulation of intestinal lymphocytes

As mentioned earlier, the proper development of IL-17-

secreting Th17 cells requires SAA production by IECs in

response to microbial adhesion and specifically MATE in

response to SFB adhesion. The human symbiont Bifi-

dobacterium adolescentis, which closely associates with the

gut epithelium, is also reported to induce Th17 cells in

the murine intestine with a transcriptional programme

distinct from SFB, suggesting that Th17 accumulation can

also be promoted by another mechanism.115 Although

precise roles for IECs have not been completely defined,

roles for commensal microbial metabolites and antigens

also continue to emerge for the generation and function

of Treg cells. In three seminal studies, commensal-derived

butyrate was shown to drive induction of peripheral Treg

cells in the colon.116–118 A later study also showed a role

for recognition of antigens from commensal microbes in

intestinal Treg cell differentiation. Transfer of naive trans-

genic T cells specific for commensal antigens into mice

with a normal microbiota resulted in robust Foxp3

induction in these cells.119 At weaning, the intestinal

microbiota induces a vigorous immune response associ-

ated with the generation of RORct+ Treg cells in an SCFA

and retinoic acid-dependent manner, and inhibition of

this response leads to later immunopathologies including

colitis.120

RORct+ Treg cells specific for Helicobacter hepaticus

have also been shown to mediate tolerance to this com-

mensal pathobiont,121 and a polysaccharide from the

same species induces anti-inflammatory IL-10 secretion in

intestinal macrophages.122 However, Helicobacter speci-

ficity itself does not dictate an anti-inflammatory pro-

gramme. A recent study demonstrated that the same

Helicobacter-specific T cells differentiate to Treg cells dur-

ing homeostasis and effector T cells during colitis.123

Helicobacter bilis colonization, on the other hand, has

previously been shown to induce persistent immune reac-

tivity to other commensal bacteria.124 Collectively, these

studies suggest the importance of antigen-independent
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contextual cues during T-cell activation in the gut for

determining T-cell fates. Indeed, two secondary bile acids,

generated by commensal bacteria transformation of pri-

mary bile acids, were recently shown to inhibit Th17 dif-

ferentiation and promote Treg cell induction.125

Identifying the full spectrum of contextual cues will be

integral for understanding how intestinal T cells are pro-

grammed.

In addition to conventional T cells, IELs have proved

to be markedly influenced by the commensal microbiota.

For example, TCR-ab+ IELs are almost absent in germ-

free mice,126,127 and TCR-cd+ IELs have impaired cytoly-

tic activity.128 The mechanisms of this control are still

under investigation, but they likely involve transmission

of signals through the IECs. The gut microbiota is also an

important factor in the generation of TCR-

ab+ CD4+ CD8aa+ IELs. In a recent study, introduction

of tryptophan-metabolizing Lactobacillus reuteri in mice

given a diet rich in tryptophan was sufficient to induce

TCRab+ CD4+ CD8aa+ IEL differentiation.129 Another

study has demonstrated microbiota-dependent conversion

of lamina propria Foxp3+ Treg cells into

TCRab+ CD4+ CD8aa+ IELs upon homing to the intesti-

nal epithelium.130 The ability of epithelial cells and

microbial metabolites to contribute to the induction of

this IEL subset is also still being elucidated.

Immune cell effects on the intestinal microbiota

Although historically met with scepticism and compara-

tively understudied, the influences of intestinal immune

cells on the microbiota are also gaining appreciation. Evi-

dence that the adaptive immune system shapes microbial

composition and diversity in the gut has been provided

using sequencing of bacteria in multiple intestinal loci in

Rag-deficient mice that lack B and T cells.131 However,

while ILCs are present in Rag-deficient mice, there is evi-

dence that their number and function are altered,132 com-

plicating the conclusions that can be drawn from these

animals about the role of B and T cells. Further studies
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have identified an important role for polyreactive IgA in

facilitating the induction of bacteria-specific IgA, and dif-

ferences in these significantly influence colonization by

commensal microbes.133 Indeed, Bacteroides fragilis has

now been shown to permit binding of IgA to facilitate its

ability to occupy a privileged intestinal niche in close

proximity to IECs.134 Very recently, an important role

was identified for commensal-specific IgG that results

from epithelial disruption in the gut. Responsiveness to

these IgGs in intestinal macrophages via activating FccRs
drives intestinal inflammation and colitis.135 Although the

effects of these IgGs on microbiota composition have not

yet been characterized, future studies may define func-

tions for both intestinal IgA and IgG in modulating com-

mensal microbial communities.

Immune cells in the gut are tasked with maintaining a

balance of physiological inflammation and tolerance. The

resulting intestinal immune cell programmes regulate the

microbial ecosystem in the gut in a manner that allows

for beneficial colonization and deters invasive pathogenic

infection. For example, Foxp3+ Treg cells have been

shown to support microbiota diversity both by suppress-

ing inflammation and facilitating IgA selection in Peyer’s

patches.136 Conversely, a lack of peripheral Treg cells

leads to increased type 2 immune responses and disrup-

tion of microbial niches for IEC border-dwelling bacte-

ria,137 highlighting the importance of these T cells in

shaping the intestinal microbial environment. In addition

to composition and diversity, the evolution of commensal

bacterial species has also been shown to be influenced by

host adaptive immunity. In the intestines of Rag-deficient

mice, the rate and predictability of E. coli adaptation are

altered in comparison with wild-type hosts.138 Taken

together, these studies bring new insight into the intimate

interdependence of the intestinal microbiota and immune

system and open additional questions about the mecha-

nisms involved and contribution of IECs.

Conclusion

Due to the anatomical location of IECs between the

intestinal microbiota and the host intestinal tissues, it is

reasonable to predict that IECs play an important role in

controlling the interaction between the luminal micro-

biota and underlying immune cells. Indeed, recent litera-

ture has highlighted the ability of IECs to contribute to

shaping both host intestinal immunity and gut microbial

composition. However, despite recent progress in the

field, several challenges remain to be addressed and over-

come.

Demonstrating that IEC-secreted factors are induced in

response to microbe-derived signals, and the effects of

these factors on immune cells, has proved difficult. Most

IEC-derived cytokines are also produced by other cell

types, therefore IEC involvement in vivo is usually

inferred but not definitively demonstrated. Knockout

mice for certain receptors or effector molecules expressed

by IECs have yielded further insight into the roles of IECs

as direct sensors of microbial signals; however, few stud-

ies have employed IEC-specific genetic ablation in vivo.

Studying the impact of microbe–IEC signalling on the

function of immune cell subsets is also limited due to the

difficulty in isolating and manipulating these cell types;

the lifespan of IECs is extremely short as they are

renewed every 2–6 days.139 Although in vitro models have

provided valuable insight into IEC signalling pathways

and production of effectors, they remain unable to reca-

pitulate the complexity of the intestinal environment, and

interpretation of these studies is consequently limited. By

further elucidating the mechanisms involved in microbe–
immune crosstalk at the intestinal epithelium, we can bet-

ter understand the role of IECs in regulating host immu-

nity during homeostasis as well as during states of

dysbiosis and disease.
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