Skip to main content
. 2019 Nov 8;13:73. doi: 10.3389/fncom.2019.00073

Table 4.

Performance comparison of different feature selection methods and machine learning models for GTR patients.

Model Accuracy p (Binomial) MSE Median err. SpearmanR
VIF-BASED FEATURE SUBSET
Regression 0.47 0.01 28154236838 1,112 0.18
Regr. BH 0.46 0.07 109618 148 0.46
Lasso 0.36 0.60 2293591760 557 0.05
Ridge 0.33 1.0 16655918658 672 −0.02
kNN 0.30 0.53 159553 223 −0.08
RFR 0.35 0.75 149299 207 0.15
SVR 0.27 0.20 140181 189 −0.77
SVC 0.40 0.17 194331 445 0.06
FEATURES EXTRACTED by PCA
Regression 0.39 0.17 672193 478 0.03
Lasso 0.36 0.59 688037 559 0.04
Ridge 0.38 0.25 558488 457 0.02
kNN 0.34 0.92 149014 194 0.07
RFR 0.34 0.92 163826 218 0.02
SVR 0.27 0.20 140298 189 −0.79
SVC 0.40 0.17 198655 445 0.05

Regr. BH, Regression on all features that were significant after Benjamini–Hochberg multiple test correction.