Table 4.
Performance comparison of different feature selection methods and machine learning models for GTR patients.
Model | Accuracy | p (Binomial) | MSE | Median err. | SpearmanR |
---|---|---|---|---|---|
VIF-BASED FEATURE SUBSET | |||||
Regression | 0.47 | 0.01 | 28154236838 | 1,112 | 0.18 |
Regr. BH | 0.46 | 0.07 | 109618 | 148 | 0.46 |
Lasso | 0.36 | 0.60 | 2293591760 | 557 | 0.05 |
Ridge | 0.33 | 1.0 | 16655918658 | 672 | −0.02 |
kNN | 0.30 | 0.53 | 159553 | 223 | −0.08 |
RFR | 0.35 | 0.75 | 149299 | 207 | 0.15 |
SVR | 0.27 | 0.20 | 140181 | 189 | −0.77 |
SVC | 0.40 | 0.17 | 194331 | 445 | 0.06 |
FEATURES EXTRACTED by PCA | |||||
Regression | 0.39 | 0.17 | 672193 | 478 | 0.03 |
Lasso | 0.36 | 0.59 | 688037 | 559 | 0.04 |
Ridge | 0.38 | 0.25 | 558488 | 457 | 0.02 |
kNN | 0.34 | 0.92 | 149014 | 194 | 0.07 |
RFR | 0.34 | 0.92 | 163826 | 218 | 0.02 |
SVR | 0.27 | 0.20 | 140298 | 189 | −0.79 |
SVC | 0.40 | 0.17 | 198655 | 445 | 0.05 |
Regr. BH, Regression on all features that were significant after Benjamini–Hochberg multiple test correction.