Skip to main content
. 2019 Apr 5;16(4):513–523. doi: 10.1007/s10433-019-00508-y

Table 2.

Estimation results: Marginal effects from probit estimation with positive attitude towards different technologies as dichotomous depentent variable

Communication & entertainment Support & health
Men Women Men Women
Age group (ref.: 50–59)
60–69 - 0.06 - 0.05 0.06 - 0.07
(0.04) (0.05) (0.06) (0.04)
70–79 - 0.25*** - 0.28*** 0.05 - 0.07
(0.05) (0.06) (0.06) (0.04)
80+ - 0.47*** - 0.48*** - 0.01 - 0.05
(0.07) (0.07) (0.07) (0.05)
Higher education (ref.: no)
Yes 0.18*** 0.18*** 0.11** 0.06+
(0.04) (0.05) (0.04) (0.03)
Employment (ref.: retired/not employed)
White collar 0.13* 0.18** 0.15** - 0.04
(0.05) (0.06) (0.05) (0.06)
Blue collar 0.01 0.02 0.17** 0.06
(0.09) (0.12) (0.06) (0.06)
Financial distress (ref.: no)
Yes - 0.01 0.06 - 0.06 - 0.02
(0.05) (0.04) (0.05) (0.03)
Living in a house (ref.: no)
Yes 0.01 0.04 0.08+ 0.04
(0.04) (0.04) (0.04) (0.03)
Urban area (ref.: no)
Yes 0.09* 0.03 0.02 0.02
(0.04) (0.04) (0.04) (0.03)
Partner in household (ref.: no)
Yes 0.01 - 0.02 0.04 - 0.02
(0.04) (0.03) (0.04) (0.03)
Has children (ref.: no)
Yes 0.07 0.02 0.04 0.01
(0.05) (0.05) (0.05) (0.04)
Poor or fair health (ref.: no)
Yes - 0.05 - 0.03 0.17*** 0.06*
(0.04) (0.03) (0.04) (0.03)
# IADL limitations - 0.01 - 0.06*** 0.01 0.00
(0.01) (0.02) (0.01) (0.01)
Observations 1034 1372 1050 1461

Standard errors in parentheses. Marginal effects at means from probit estimation. +(p<0.10), *(p<0.05), **(p<0.01), ***(p<0.001)