Skip to main content
. 2019 Nov 14;18:110. doi: 10.1186/s12938-019-0726-2

Table 2.

Comparison of the performance for each method

Sensitivity Specificity Accuracy Time cost (s)
Dual-input 1:000 (0:832; 1:000) 0.450 (0.231, 0.685) 0.725 (0.561, 0.854) 0:0366 ± 0:0001
Dual-input + RAGS 0.960 (0.751, 0.999) 0:910 (0:683; 0:988) 0:935 (0:796; 0:984) 0:0569 ± 0:0013
Rahmany et al. [15] 0.950 (0.751, 0.999) 0.300 (0.119, 0.543) 0.625 (0.458, 0.773) 62:5460 ± 23:222
YOLOv3 [22] 0.850 (0.621, 0.968) 0.700 (0.457, 0.881) 0.775 (0.616, 0.892) 0:0232 ± 0:0005
RetinaNet [31] 1:000 (0:832; 1:000) 0.420 (0.191, 0.639) 0.710 (0.535, 0.834) 0:0456 ± 0:0036
Physician 0.900 (0.683, 0.988) 0.900 (0.683, 0.988) 0.900 (0.763, 0.972)

Data shown in “italic” are the highest value of the column

Data in parentheses are 95% CI