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ABSTRACT

Objective: The Phenotype Risk Score (PheRS) is a method to detect Mendelian disease patterns using pheno-

types from the electronic health record (EHR). We compared the performance of different approaches mapping

EHR phenotypes to Mendelian disease features.

Materials and Methods: PheRS utilizes Mendelian diseases descriptions annotated with Human Phenotype Ontol-

ogy (HPO) terms. In previous work, we presented a map linking phecodes (based on International Classification of

Diseases [ICD]-Ninth Revision) to HPO terms. For this study, we integrated ICD-Tenth Revision codes and lab data.

We also created a new map between HPO terms using customized groupings of ICD codes. We compared the perfor-

mance with cases and controls for 16 Mendelian diseases using 2.5 million de-identified medical records.

Results: PheRS effectively distinguished cases from controls for all 15 positive controls and all approaches

tested (P<4 � 1016). Adding lab data led to a statistically significant improvement for 4 of 14 diseases. The cus-

tom ICD groupings improved specificity, leading to an average 8% increase for precision at 100 (-2% to 22%).

Eight of 10 adults with cystic fibrosis tested had PheRS in the 95th percentile prio to diagnosis.

Discussion: Both phecodes and custom ICD groupings were able to detect differences between affected cases

and controls at the population level. The ICD map showed better precision for the highest scoring individuals.

Adding lab data improved performance at detecting population-level differences.

Conclusions: PheRS is a scalable method to study Mendelian disease at the population level using electronic

health record data and can potentially be used to find patients with undiagnosed Mendelian disease.
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INTRODUCTION

Recognizing clinical patterns is a cornerstone of medical diagnosis.1

Physicians are trained to look at patient symptoms, signs, laboratory

values, and diseases in relation to each other in order to identify un-

derlying causes that can explain seemingly divergent conditions. Pat-

terns of these phenotypes can be particularly useful for recognizing

Mendelian conditions, as genetic mutations often manifest as a con-
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stellation of phenotypes.2,3 The knowledge of these patterns, which

formed the basis for medical genetics, has been recorded in resources

like the Online Mendelian Inheritance in Man (OMIM).4 In this

article, we evaluate modifications to the phenotype risk score

(PheRS), a high-throughput, automated approach to study Mendel-

ian disease by applying the phenotypic patterns described in OMIM

to electronic health record (EHR) data.

EHRs are an important resource for genetic research and have been

used to discover genetic associations for a wide variety of pheno-

types.5,6 EHRs have also been used to provide insight into the pathoge-

nicity of rare genetic variants.7 We recently described a method called

the Phenotype Risk Score (PheRS) as a means to assess the phenotypic

overlap between a patient and the clinical profile of a Mendelian dis-

ease.8 For example, the PheRS calculation for cystic fibrosis (CF) is

based on the diverse set of features that are commonly observed in

patients with CF, such as bronchiectasis, asthma, infertility, and pneu-

monia. PheRS enables the recognition of patients who are similar to

Mendelian disease profiles, without relying on the diagnosis label itself.

The original PheRS method was based on phenotypes repre-

sented as phecodes, which are aggregated International Classifica-

tion of Diseases-Ninth Revision (ICD-9) codes designed for

performing phenome-wide association studies (PheWAS).6,9 We

found that the PheRS was significantly elevated among patients with

Mendelian disease vs controls. Applying PheRS to an EHR-linked

cohort of genotyped patients, we showed that we could generate evi-

dence of pathogenicity for variants of unknown significance in a

high-throughput manner.

Our initial work on PheRS demonstrated the problem of under-

diagnosis of Mendelian disease, a finding that has also been seen in

other studies.10,11 We found that the majority of patients with rare

genetic variants did not receive genetic testing, despite having signifi-

cant morbidity. Patients with atypical or mild presentations are often

not tested for genetic disease due to lack of clinical suspicion.12 As

we discover more pathogenic variants in Mendelian disease–causing

genes, the number of patients who can be diagnosed will increase.13

Because of the rapid pace of discovery, clinical practice has not fully

responded to the growing diagnostic power of genetic testing. PheRS

may be used as a tool to help clinicians find undiagnosed patients.

In this article, we tested 3 specific potential advances to PheRS.

First, we integrated ICD-Tenth Revision (ICD-10) codes using the re-

cently released ICD-10 to phecode map.14 Second, we created a new

map that directly relates custom groupings of ICD codes to Human

Phenotype Ontology (HPO) terms, eliminating the use of intermedi-

ary phecodes. Third, we integrated laboratory measurements. Using

a gold standard set of clinically diagnosed patients, we evaluated

these modifications using a series of tests intended to cover 2 use

cases. First, we tested the ability of PheRS discriminate between cases

and controls at a population level, a task analogous to testing rare ge-

netic variants for pathogenicity. Second, we tested the ability of

PheRS to identify cohorts that are highly enriched for individuals af-

fected by Mendelian disease, a capability that is necessary if PheRS is

to be used in the clinical setting to help identify undiagnosed patients.

Finally, we demonstrate the utility of this approach by testing PheRS

on diagnosed patients who do not have a relevant ICD code in their

record and on patient data ascertained before diagnosis.

MATERIALS AND METHODS

Setting
We performed this analysis in the Vanderbilt University Medical

Center (VUMC) Synthetic Derivative (SD), a de-identified version of

the EHR containing about 2.5 million patients.15,16 The SD contains

essentially all EHR data, including clinical notes. The data have

been stripped of patient identifiers.

Gold standard curation
We defined a gold standard set of cases for 16 genetic diseases (see

Table 1). These diseases were chosen based on the following criteria:

1. Profile for disease present in OMIM

2. Feature set from HPO mapped to at least 3 unique EHR-derived

phenotypes

3. At least 100 clinically diagnosed cases in the SD

We included the 5 diseases from the original PheRS analysis that

met the above criteria (achondroplasia, CF, hereditary hemochro-

matosis [HH], Marfan syndrome [MS], phenylketonuria [PKU]); Li–

Fraumeni syndrome was excluded due to lack of cases. To find the

additional 10 diseases, we used prevalence estimates from the 2019

Orphanet Report Series.17 Starting with the most prevalent disease,

we worked our way down the list to identify diseases that met our

criteria. In this way, we added Down syndrome (DS), DiGeorge syn-

drome, fragile X syndrome (FX), polycythemia vera (PV), sickle cell

anemia, alpha-1 antitrypsin deficiency (A1A), hereditary hemor-

rhagic telangiectasia (HHT), Duchenne muscular dystrophy (DMD),

and tuberous sclerosis.

We identified the ICD-9 and ICD-10 codes that are used for each

diagnosis (Supplementary Table S1). The charts of individuals who

had a mention of the disease in their problem list, �4 ICD codes, or a

diagnostic genetic report were reviewed. A positive assertion of the di-

agnosis was required for each case. We retrieved all available genetic

testing in pathology results for HH, A1A, PV, FX, and CF. For HH,

A1A, CF, and PV, we required cases to have a positive genetic test (de-

fined as homozygosity or compound heterozygosity for pathogenic

variants in the HFE gene for HH or CFTR for CF; the ZZ genotype

for A1A; positive JAK2 for PV). We did not require a positive genetic

test for FX due to the limited number of cases. Those who were clini-

cally diagnosed with HH or A1A but had negative genetics were ex-

cluded (neither a case nor a control). We required that sickle cell cases

have a specific mention of hemoglobin SS disease.

For controls, we used the nearly 2.5 million individuals in the

SD, excluding those who had a negative genetic test for the disorder,

1 or more ICD diagnosis codes, or mention of the disease in the

problem list, and lacked a clear diagnosis in their notes.

Identifying relevant HPO terms
We used the HPO annotation table to find the HPO terms used to

annotate our 16 gold standard diseases, using the OMIM mapping

(Supplementary Table S2). Collectively, 359 unique HPO terms

were used to describe these 16 diseases. We excluded terms that did

not have any correlated ICD codes or labs, such as “long face” and

“reduced phenylalanine hydroxylase activity.” The following work

is focused on the 276 remaining HPO terms.

Updating the HPO-phecode map to include ICD-10

codes
Phecodes were generated from ICD-9 codes using the 1.2 version of

the phecode map (available at http://phewascatalog.org). ICD-10

codes (which were not included in our prior PheRS study) were in-

corporated using the ICD-10 to phecode map.14 We refer to this

original map as the HPO-phecode map (see Supplementary Table S3

for HPO-phecode map used in this study).
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Creating HPO-ICD maps
We developed a new map that directly relates ICDs to HPO terms

(referred to as the HPO-ICD map). This map consists of 2 submaps:

one for ICD-9 to HPO and the other for ICD-10 to HPO. A list of

candidate HPO-ICD pairs was created by combining pairs found in

the following sources:

1. All ICDs that were related to HPO terms via phecodes in the

original map

2. Cases in which the HPO term name and the ICD string name

were an exact match or one was a substring for the other.

3. ICD-HPO terms that were annotated with the same CUI in

UMLS (version 2018AB) OR related via the MRREL with the

rel specified as CHD, RQ, SY, or RO

4. ICDs found using WikiMedMap,18 a tool that finds ICD codes

based on free text strings

5. ICDs related via a child HPO term (eg, ICDs mapped to the

HPO term “tachycardia” were also added to the HPO term for

the parent concept of arrhythmia)

A team of specialists (3 physicians and a bioinformatician)

reviewed these candidate pairs, keeping ICD codes that would be

used if a patient had a particular disease or symptom. During re-

view, ICD codes that were not relevant to the HPO term were re-

moved. For example, the HPO term for dolichocephaly was mapped

to the phecode 749—“Congenital anomalies of face and neck”—

which comprises 66 ICD-9 and 83 ICD-10 codes, including codes

for “webbing of neck” and “microtia” that had no relation to the

HPO term. The new map includes ICD-9 754.0 (Congenital muscu-

loskeletal deformities of skull, face, and jaw [of which dolichoceph-

aly is a synonym, according to the ICD9-CM index] andICD-10

Q67.2 (Dolichocephaly). ICDs not present in the map were added

based on text searches of the ICD-9 and ICD-10 billing codes.

In the original HPO-to-phecode map, only a single phecode—the

one that best represented the HPO term—could map to a single

HPO term. While this restriction made the process of creating and

using the map, it also led to situations in which relevant phecodes

were left out of the map. For example, ICD-9 codes often encode a

distinction between acquired vs congenital forms of disease, and

these ICD codes were often grouped into different phecodes. For ex-

ample, pes planus has an ICD-9 referring to congenital pes planus

(754.61 [Pes planus, congenital]) and acquired (ICD-9 734.0 [Flat

foot]), which map to phecodes 755.1 and 735.1, respectively (see

Supplementary Tables 4 and 5 for HPO-ICD maps). We published

the HPO-ICD maps, version 1.0-beta, on phewascatalog.org. Upon

completing the new HPO-ICD map, we calculated the overlap be-

tween the HPO-ICD map and the HPO-phecode map.

Creating HPO-lab map
A total of 23 of the HPO terms used to describe our gold standard

diseases were present in the HPO-to-LOINC (Logical Observation

Identifiers Names and Codes) map produced by Zhang et al.19 From

this list, we excluded hypertension (mapped to blood pressure) and

arrythmia (mapped to heart rate). These values are frequently mea-

sured in a variety of contexts in which they may be temporarily ab-

normal (eg, due to pain) without reflecting underlying physiology.

“Increased red blood cell mass” was not used because our EHR did

not have any labs relevant to this feature. We also added 4 HPO

terms that were not in the HPO-LOINC map. Because data in the

SD is not consistently mapped to LOINC terms, we used lab identi-

fiers specific to VUMC; we include the long-form descriptions

of these identifiers as well as the HPO-lab itself in Supplementary

Table 1. Mendelian diseases tested in this study

Gold standard counts

OMIM ID Disease Abbrev Gene HPO

terms

Mapped

HPO terms

Cases Exclude Mean age

at last visit (y)

Mean unique

years

Female

(%)

100800 Achondroplasia ACH FGFR3 26 16 107 610 19 7.3 55

613490 Alpha-1 antitrypsin deficiency A1A SERPINA1 6 6 250 10 013 46 5.8 43

219700 Cystic fibrosis CF CFTR 15 14 766 1648 23 8.9 50

188400 DiGeorge syndrome DGS 22q11.2 52 48 284 349 9 6.2 53

190685 Down syndrome DS Chr 21 30 17 2301 1429 16 6.4 44

310200 Duchenne muscular dystrophy DMD DMD 20 19 199 1316 17 7.5 3

300624 Fragile X syndrome FXS FMR1 21 14 106 1667 19 6.2 23

235200 Hereditary hemochromatosis HH HFE 26 26 401 4454 55 6.6 37

187300 Hereditary hemorrhagic

telangiectasia

HHT ACVRL1

& ENG

37 30 159 205 45 5.8 64

154700 Marfan syndrome MS FBN1 53 43 449 996 33 6.1 48

162200 Neurofibromatosis, type 1 NF1 NF1 30 29 722 841 21 6.6 51

101000 Neurofibromatosis, type 2 NF2 NF2 19 19 104 373 44 6.5 47

261600 Phenylketonuria PKU PAH 26 17 218 160 20 7.6 59

263300 Polycythemia vera PV JAK2 14 11 219 4047 65 7.0 51

603903 Sickle cell anemia SCA HBB 17 16 491 1229 21 8.3 51

191100 Tuberous sclerosis TS TSC1 & 2 32 25 207 204 22 7.9 53

— ALL SD — — — — 2 493 408 — 36 3.2 53

We identified diagnosed cases among the 2.5 million patients at Vanderbilt University Medical Center for 16 diseases. This table includes basic demographics

for this cohort, as well as information about the gold standard diseases. The number of HPO terms indicates the number of HPO terms used to describe the clini-

cal features of each disease. The number of mapped HPO terms indicates the number of HPO terms we were able to capture using International Classification of

Diseases codes.

HPO: Human Phenotype Ontology; OMIM: Online Mendelian Inheritance in Man; SD: Synthetic Derivative.
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Table S6, and includes 24 lab-related features. This map also speci-

fies whether the HPO term pertains to an abnormally low or abnor-

mally high lab.

We mapped each abnormal lab value to the corresponding HPO

term, taking into consideration if the lab was low or high (using

reference ranges included in lab data). For example, a high iron lab

result was mapped to the HPO term for “Increased serum iron,”

while low or normal labs were not mapped to this term. Thus, indi-

viduals were annotated with the HPO term for “Increased serum

iron” if they had 1 or more elevated iron measurements. Individuals

with normal or low iron measurements, as well as those without rel-

evant lab data, were not labeled with the HPO term.

Height was the only measured value that did not have a reported

standard reference range. To ascertain concepts pertaining to short

or tall stature, we created a table with the most recent height for all

individuals in the SD. We split adult (>21 years of age) and pediatric

populations, excluding all individuals younger than 2 years of age.

We ran a regression model to predict height using age (splined with

8 knots) and gender. We calculated the residual for each individual

in the set. Individuals whose most recently measured height was

greater than 2 standard deviations from the expected value were an-

notated with the HPO term for tall stature and those with a height

>2 standard deviations from the expected value were annotated

with the HPO term for short stature.

Calculating PheRS
We calculated the PheRS of each individual for the 16 gold standard

diseases using 4 different maps: HPO-phecode, HPO-ICD, HPO-

phecodeþlab and HPO-ICDþlab. Using each of these maps, we gen-

erated tables translating the source data (ie, ICDs, phecodes, or labs)

into HPO terms (Figure 1). We then calculated the prevalence of

each of these in the population by dividing the number of unique

individuals with the HPO term by number of individuals in our co-

hort. We calculated the -1og10 of the prevalence to use as the weight

for the feature. The PheRS for a particular disease was calculated by

summing up the weights of each feature that is present for an indi-

vidual.

To calculate the ICDþlabs PheRS, we merged the HPO terms de-

rived from ICD codes with those derived from ICDs. When an HPO

term was linked to both an HPO term and a lab (as was the case for

hematuria and others), we included individuals who had either an

ICD or lab value.

Normalizing PheRS
We produced a residualized PheRS (rPheRS) using a linear regres-

sion model adjusted for age, sex, presence of ICD-9 codes, presence

of ICD-10 codes, and the number of unique years for which they

had billing data in the EHR (ie, PheRS � Age þ Sex þ Race þ has_i-

cd9þhas_icd10þuniq_encounter_years). We used a cubic spline

with 3 knots for age. The rPheRS is defined as the studentized resid-

ual of the PheRS (expected vs actual) from this model.

Testing ability of PheRS to distinguish cases from

controls at the population level
We used a 1-sided Wilcoxon rank sum test to test the hypothesis

that the rPheRS of cases was greater than controls for the 4 maps:

HPO-phecode, HPO-ICD, HPO-phecodeþlabs, and HPO-

ICDþlabs. We created a receiver-operating characteristic (ROC)

curves and calculated the area under the curve (AUC-ROC) and the

AUC for precision recall.

Testing sensitivity of PheRS
We calculated the precision at K for the 10, 100, 1000, and 10 000

top-scoring individuals by dividing the number of true positives by

the number of individuals. We calculated the % of cases with nor-

mal PheRS scores, defined as rPheRS <1.

Comparing performance of different maps
We tested for a shift in the distribution of rPheRS among cases be-

tween the HPO-phecode map vs the HPO-ICD map and the HPO-

ICD map vs the HPO-ICDþlab map. We used Wilcox rank sum test

for this comparison.

Testing PheRS on underdocumented and prediagnosis

cases
We identified cases in our gold standard that did not have any rele-

vant ICD codes indicating their Mendelian disease diagnosis. We

calculated the average rPheRS for these individuals, using the HPO-

ICDþlab map (we used the HPO-ICD for FX and NF2, which have

no relevant lab features). We counted the percent of under-

documented cases with highly elevated PheRS scores (95th percen-

tile and 99th percentile).

We identified CF patients who were diagnosed at VUMC and

had at least 1 month and at least 2 clinic visits before diagnosis. For

that subset of patients, we determined the date of their diagnosis by

chart review. We calculated rPheRS for these patients at each clinic

visit, using the HPO-ICD map.

Statistical tools
All statistically analyses were performed using R (version 3.4.1; R

Foundation for Statistical Computing, Vienna, Austria). Plots were

Figure 1. Diagram of Human Phenotype Ontology (HPO) maps tested in this

article. Each map was used to translate phenotypic information contained in

International Classification of Diseases (ICD) codes and labs into HPO terms.

In the original HPO-phecode map, ICD codes were first translated the pheco-

des and then HPO terms. The new HPO-ICD map translates custom groupings

of ICD codes to HPO without the intermediary phecodes. New information

can be integrated into the Phenotype Risk Score, creating a map between the

data elements and HPO terms, as we have done for labs. The HPO-pheco-

deþlabs table is not shown in this diagram. ICD-9: International Classification

of Diseases-Ninth Revision; ICD-10: International Classification of Diseases-

Tenth Revision.
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generated using ggplot2. Given that some of our P values were

reported as 0 in R, we obtained the smallest representable number in

R using the command Machine$double.xmin. Wilcoxon rank sum

tests were performed using the wilcox.test function. ROC curves

and AUCs were generated using the precrec package. Other figures

were generated using ggplot2.

RESULTS

Composition HPO-ICD and HPO-phecode maps
We found the original HPO-phecode map and the new HPO-ICD

map were quite divergent in terms of the ICDs related to a particular

HPO term (Supplementary Figure S1). 51% of the ICD codes in-

cluded in the HPO-phecode map were excluded from the new HPO-

ICD map. ICDs pertaining to congenital conditions were most likely

to be excluded, with 93% of the ICDs in the HPO-phecode map ex-

cluded from the HPO-ICD map. This is not surprising, given that

many specific (and individually rare) congenital ICD codes are con-

densed into a single phecode. Many codes were also added to the

HPO-ICD map; 56% of the ICDs included in the HPO-ICD map are

not included in the HPO-phecode map. The majority of these codes

were added due to a small number of very broad HPO terms, such

as “Recurrent infections” (2610 ICD codes) and “Arthropathy”

(1026 codes). In other cases, ICDs were added to the new map be-

cause the relevant codes were split across phecodes. For example,

the HPO term “Bronchiectasis” has corresponding ICD codes in

chapters relating to respiratory system, infectious disease, and con-

ditions originating in the perinatal period, and no single phecode

contains all of these phenotypes (Table 2).

The candidate HPO-ICD pairs came from a number of sources,

including the Unified Medical Language System (UMLS) and Wiki-

MedMap. A total of 39% of the HPO-ICD9 pairs in the final map

were present in the UMLS, while 807 HPO-ICD9 pairs were ex-

cluded from the map; 21% of the HPO-ICD9 pairs were found using

WikiMedMap (214 were not present in the UMLS), and 151 of the

pairs found in WikiMedMap were excluded from the map. The

remaining HPO-ICD9 pairs identified via the HPO-phecode map,

using substrings and manual entry from curators. Proportions for

HPO-ICD10 were similar.

Using PheRS to distinguish cases vs controls: Both the HPO-ICD

map and the HPO-phecode map generated PheRSs distinguished

cases from controls for 15 of the 16 diseases (all P < 4 � 10�16) (Ta-

ble 3). The only exception was PKU, in which the PheRS from both

maps were not elevated among diagnosed cases. This was an

expected result. A similar analysis of PKU was included in the origi-

nal PheRS study, and cases were no different than controls in that

case as well. We recognized that the patients with PKU were asymp-

tomatic due to early detection with newborn screening and effective

control of the disease through dietary means. PheRS from HPO-

ICDþlab and HPO-phecodeþlab also effective in distinguishing all

14 diseases tested (2 diseases had no relevant lab data), including

PKU (all P < 1 � 10�56) (Figure 2; Supplementary Figure S2A-N).

Comparison of HPO-ICD vs HPO-phecode maps: The compari-

son PheRS for HPO-ICD vs HPO-phecode demonstrated a positive

location shift for all diseases tested except A1A and DMD. How-

ever, this difference was only significant for MS. Adding labs

resulted in a positive location shift for all labs except DMD, HHT,

sickle cell anemia, and tuberous sclerosis. Four positive shifts were

significant (CF, DS, HHT, and PKU) (Table 3).

Compared with the HPO-phecode map, using the HPO-ICD

map led to increased precision among top scorers. The precision at

K (K¼10, 100, 1000, and 10 000) was consistently higher for 11

diseases using the HPO-ICD map vs the HPO-phecode map; the re-

verse was true for only 2 diseases (A1A and FX). The HPO-

Table 2. Select examples of differences between the HPO-phecode map and HPO-ICD map

HPO term ID HPO term name Phecode Included in both HPO-phecode only HPO-ICD only

1508 Failure to thrive (264.2) Failure to

thrive

(childhood)

(783.41/R62.51) Failure to

thrive (child)

None (779.34/P92.6) Failure to

thrive in newborn

(783.7/R62.7) Adult failure

to thrive

2099 Asthma (495) Asthma (493*/J45*) Asthma None (E945.7) Adverse effects of

antiasthmatics in therapeu-

tic use

(T48.6X6*) Underdosing of

antiasthmatics

2110 Bronchiectasis (496.3) Bronchiectasis (494*/J47*) Bronchiectasis None (011.5*) Tuberculous bron-

chiectasis

(748.61/Q33.4) Congenital

bronchiectasis

1738 Exocrine pancreatic

insufficiency

(577) Diseases of pan-

creas

(577.8) Other specified dis-

eases of pancreas

(577.2/K86.2) Cyst of

pancreas

None

(K86.81) Exocrine pancreatic

insufficiency

þ 5 ICD-9 codes &

34 ICD-10 codes

4401 Meconium ileus (656.6) Perinatal dis-

orders

of digestive system

(777.1) Meconium obstruc-

tion in fetus or newborn

None (777.5*/P77*) Necrotizing

enterocolitis in newborn

(P76.0) Meconium plug syn-

drome

(777.6/P78.0) Perinatal intes-

tinal perforation

This table contains 5 of the HPO terms used to describe cystic fibrosis. Each HPO term has a corresponding phecode from the HPO-phecode map. Each phe-

code contains 1 or more ICD code. The ICD codes that were included in both the HPO-phecode map and HPO-ICD map are listed, as well as the ICD codes that

are exclusive to a single map.

HPO: Human Phenotype Ontology; ICD: International Classification of Diseases.
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ICDþlabs map yielded the highest results across all K values in 5

cases (Figure 3).

The HPO-ICD produced higher ROC-AUCs than HPO-phecode

in for 12 of the 16 diseases, though the difference was often very

small. The PRC-AUCs improved for 14 of 16 diseases, and this im-

provement was substantial for diseases like CF (PRC-AUC 0.13 vs

0.29). The HPO-ICDþlab map produced the overall best ROC-

AUC for 6 diseases and the best PRC-AUC for 6 diseases (Figure 4;

Table 4).

Underdocumented and prediagnosed case analysis
A total of 535 patients in our gold standard set (8%) lacked any

ICD codes indicating diagnosis. A1A had the highest proportion of

cases without an ICD (25%), followed by FX (20%). The mean

Figure 2. Boxplots of Phenotype Risk Score cases for 2 diseases: These boxplots compare the residualized Phenotype Risk Score (rPheRS) of cases generated

form the different maps vs controls (scored with Human Phenotype Ontology [HPO]-phecode map). For hereditary hemochromatosis (HH), the addition of labs

improved performance. However, phecodes produces the highest percentage of outliers. For Marfan syndrome (MS), HPO-International Classification of Diseases

(ICD) resulted in a higher median than HPO-phecode.

Table 3. Results from case/control and method comparison

Performance of maps, cases vs controls Comparison between maps

HPO-phecode HPO-ICD HPO-ICDþlab HPO-ICD vs HPO-phe HPO-ICDþlab vs HPO-ICD

P loc diff P loc diff P loc diff P loc diff P loc diff

Achondroplasia 2.4 � 10�31 3.21 4.6 � 10�34 4.59 1.4 � 10�59 5.53 .309 .54 .063 1.32

Alpha-1-antitrypsin deficiency 1.5 � 10�68 3.21 9.3 � 10�86 2.77 2.2 � 10�120 3.26 .401 �.14 .175 .31

Cystic fibrosis <5 � 10�324 7.06 <5 � 10�324 7.33 <5 � 10�324 7.92 .607 .10 2.1 � 10�33 2.72

Di George’s syndrome 2.7 � 10�160 6.30 3.8 � 10�155 6.88 1.7 � 10�158 6.29 .151 .57 .160 �.58

Down Syndrome <5 � 10�324 3.52 <5 � 10�324 3.91 <5 � 10�324 4.36 .121 .11 1.1 � 10�11 .72

Duchenne muscular dystrophy 4.0 � 10�82 4.77 2.4 � 10�110 5.22 6.7 � 10�111 5.22 .826 �.07 .860 .05

Fragile X syndrome 4.1 � 10�16 2.65 5.0 � 10�19 2.94 — — .584 .12 — —

Hereditary hemochromatosis 3.0 � 10�27 .71 4.6 � 10�40 .96 3.8 � 10�133 2.14 .308 .14 3.9 � 10�13 1.09

Hereditary hemorrhagic

telangiectasia

4.6 � 10�59 3.19 1.7 � 10�59 3.03 6.0 � 10�59 2.97 .813 .09 .888 �.05

Marfan syndrome 1.5 � 10�177 3.98 3.0 � 10�203 4.81 1.1 � 10�211 5.23 3.2 � 10�5 .95 .251 .29

Neurofibromatosis, type 1 3.0 � 10�137 2.17 6.6 � 10�148 2.53 6.0 � 10�152 2.55 .050 .23 .944 .01

Neurofibromatosis, type 2 5.8 � 10�49 1.02 9.2 � 10�53 8.51 — — .274 .97 — —

Phenylketonuria 1 �.38 1 �.37 2.5 � 10�105 2.71 .982 .00 8.4 � 10�48 3.07

Polycythemia vera 2.3 � 10�58 2.19 1.8 � 10�38 2.55 4.3 � 10�86 2.96 .993 .00 .361 .26

Sickle cell anemia 1.5 � 10�191 4.64 2.4 � 10�237 4.66 1.1 � 10�261 4.57 .416 .22 .353 �.20

Tuberous sclerosis 2.8 � 10�86 4.64 1.1 � 10�89 5.23 2.2 � 10�89 5.16 .277 .43 .865 �.04

We used the Wilcoxon rank sum test to test the ability of PheRS to differentiate between cases and controls using 3 different maps (HPO-phecode, HPO-ICD,

and HPO-ICDþlab). We compared the performance of HPO-ICD vs HPO-phecode and HPO-ICDþlab vs HPO-ICD by testing the differences between the PheRS

of cases. Location shifts and P values were generated using a 2-sided Wilcoxon rank sum test. P values equal to <5 � 10�324 are listed as such because the exact P

value was lower than the smallest representable double in R.

HPO: Human Phenotype Ontology; ICD: International Classification of Diseases; PheRS: Phenotype Risk Score.
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rPheRS was elevated for underdocumented cases for all diseases,

and 33% of the 535 cases had rPheRS >95th percentile (Supplemen-

tary Table S7).

We found 32 CF patients who had EHR data before diagnosis.

The average age of diagnosis for these patients was 21 (range, 1-80)

years of age. They had an average of 24 (range, 3-167) clinic visits

before their diagnosis. Sixteen of the 32 patients had PheRS greater

than the 95th percentile before diagnosis at an average 886 days

before their diagnosis (range, 3-3689 days). Among the 10 patients

diagnosed as adults (�21 years of age), 80% had a PheRS in the

Figure 3. Precision @ K. Graphs of the precision for each disease tested at K¼10, 100, 1000 and 10000. The table includes the combined percentages for each

map.

Table 4. ROC-AUC and PRC-AUC results

ROC-AUC PRC-AUC

HPO-phe HPO-ICD HPO-pheþlab HPO-ICDþlab HPO-phe HPO-ICD HPO-pheþlab HPO-ICDþlab

Achondroplasia 0.82 0.84 0.94 0.95a 0.007 0.029 0.009 0.031a

Alpha-1-antitrypsin deficiency 0.82 0.86 0.91 0.93a 0.005a 0.004 0.004 0.003

Cystic fibrosis 0.95 0.95 0.96 0.96 0.127 0.294 0.210 0.403a

Di George’s syndrome 0.96a 0.95 0.96 0.96 0.035 0.104a 0.027 0.075

Down syndrome 0.88 0.85 0.91a 0.90 0.056 0.080 0.083 0.121a

Duchenne muscular dystrophy 0.89 0.96 0.91 0.96a 0.009 0.014 0.011 0.016a

Fragile X syndrome 0.73 0.75a — — 0.001 0.002a — —

Hereditary hemochromatosis 0.65 0.69 0.84 0.85a 0.002 0.001 0.002a 0.002

Hereditary hemorrhagic telangiectasia 0.87 0.87 0.87a 0.87 0.012 0.015a 0.010 0.013

Marfan syndrome 0.89 0.91 0.90 0.92a 0.017 0.038 0.018 0.048a

Neurofibromatosis, type 1 0.77 0.78 0.77 0.78a 0.022 0.036a 0.021 0.035

Neurofibromatosis, type 2 0.91 0.93a — — 0.018 0.050a — —

Phenylketonuria 0.32 0.34 0.93a 0.93 0.000 0.000 0.001a 0.001

Polycythemia vera 0.81 0.75 0.90a 0.88 0.002 0.007 0.002a 0.003

Sickle cell anemia 0.88 0.93 0.93 0.95a 0.050 0.057 0.029 0.038a

Tuberous sclerosis 0.89 0.90a 0.89 0.90 0.036 0.060a 0.034 0.058

Best 1 3 5 7 1 6 3 6

AUC: area under the curve; PRC: precision-recall curve; ROC: receiver-operating characteristic.
aHighest value among the 4 methods tested.
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95th percentile before their diagnosis (mean ¼1222 days; range,

51-3389 days). Three of these adults had a PheRS in the 99th per-

centile for over 2 years before diagnosis (Figure 5, Supplementary

Figure S3A, B; Supplementary Table S8).

DISCUSSION

PheRS is a method that measures the similarity between a patient

and an idealized description of Mendelian disease. In this article, we

sought to improve the method in 3 ways: integrating ICD-10 codes,

integrating lab data, and mapping ICDs directly into HPO terms in-

stead of using intermediary phecodes. We tested the performance of

PheRS using several metrics to simulate different applications of

the method. All maps tested were found to have significant differen-

ces between groups of cases and controls. The maps we tested

demonstrated different strengths depending on the performance

metric.

If PheRS is used to assess pathogenicity of genetic variants in a

population, then its performance needs to be tuned to finding differ-

ences between cases and controls in aggregate. All of the maps that

we tested performed well in this regard, as demonstrated by the

strong and statistically significant differences found between cases

and controls. While we observed some improvement using the HPO-

ICD map vs the HPO-phecode map, the differences between the 2

were small and only statistically significant for MS. Adding lab data,

on the other hand, led to robust improvements across several dis-

eases. This was particularly evident for PKU; while ICD features

were entirely unsuccessful at differentiating PKU cases and controls,

Figure 4. The receiver-operating characteristic curves for each disease testing the ability of Phenotype Risk Score (PheRS) to classify cases vs controls. The red

line indicates the PheRS generated by the Human Phenotype Ontology [HPO]-phecode map; the blue line indicates the PheRS generated by the HPO-International

Classification of Diseases (ICD) map; green is HPO-ICDþphecode; purple is HPO-ICDþlab. ACH: achondroplasia; A1A: alpha-1 antitrypsin deficiency; CF: cystic fi-

brosis; DGS: DiGeorge syndrome; DS: Down syndrome; DMD: Duchenne muscular dystrophy; FXS: fragile X syndrome; HH: hereditary hemochromatosis; HHT:

hereditary hemorrhagic telangiectasia; MS: Marfan syndrome; NF1: neurofibromatosis, type 1; NF2: neurofibromatosis, type 2; PKU: phenylketonuria; PV: polycy-

themia vera; SCA: Sickle cell anemia; TS: tuberous sclerosis.
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high serum phenylalanine was highly effective. Other diseases with

multiple lab abnormalities such as A1A and HH were also improved

with lab features.

To identify subsets enriched for patients with Mendelian dis-

ease—a “phenotype-first approach”—PheRS must have high

specificity so that affected patients have high ranking scores. For

this application, the HPO-ICD map had better performance com-

pared with the HPO-phecode map, leading to an average 8% in-

crease in the number of cases identified in the 100 top-scoring

patients.

Diagnoses are not always well documented in the EHR, which is

a challenge for EHR-based research. PheRS may help find these

patients. We found that 8% of the patients in our gold standard set

had no ICD codes relevant to their Mendelian disease diagnoses.

Figure 5. Phenotype Risk Score of adults with cystic fibrosis over time. Each row represents a patient. The dots indicate a clinic visit. The line is pink during the pe-

riod before diagnosis and blue after diagnosis. Residualized Phenotype Risk Score (rPheRS) was calculated at each new clinical encounter using the Human Phe-

notype Ontology-International Classification of Diseases map.
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However, these patients did have elevated PheRS compared with

controls.

Mendelian diseases can be difficult to diagnose, particularly in

patients with symptoms that are milder or develop in adulthood.12

We found that 36% of children and 80% of adults diagnosed with

CF at VUMC had PheRS in the 95th percentile before their diagno-

sis. Three of the adult cases had scores in the 99th percentile for

over 2 years before diagnosis.

The HPO-ICD map used in this study is presented as a starting

point. It will evolve as we learn more about the way patient features

are reflected in their claims data. In future work, we will attempt to

refine the map with an empirical approach using EHR data. Further

improvement to the method may also be realized by integrating ad-

ditional sources of phenotypic information. Many of the features of

the Mendelian diseases studied in this article are not readily cap-

tured by ICD and lab data. Examples include epicanthus for DS,

short femoral neck for achondroplasia, and increased axial length of

the globe for MS. Some of these features may be captured from clini-

cal narratives or reports from radiology or pathology.20,21 Our

work integrating lab data demonstrates a method by which this can

be accomplished. If phenotypes from new sources are mapped to

HPO terms, the scoring algorithm will not require modification.

While expanding the sources of phenotypic information will

likely further improve the performance characteristics of PheRS, the

fact that the algorithm works well with ICDs alone is an important

finding. ICD billing codes are ubiquitous, easy to manipulate, and

are more easily shared across institutions than clinical narratives or

laboratory data.22 They do note require sophisticated and often site-

specific natural language processing techniques to extract and can

be de-identified in a relatively simple manner. Advances in and in-

creased adoption of common data models may ameliorate current

challenges in utilizing clinical notes.23,24 In researching rare genetic

diseases and variants, large cohorts are an absolute requirement.

Many of these large cohorts, such as the UK Biobank or China

Kadoorie Biobank, do not have narrative or EHR laboratory

data.25,26 Thus, using an algorithm that relies on readily available

data such as ICD codes will likely have utility over large datasets.

The goal of precision medicine is to tailor treatment for an indi-

vidual patient. Genetic sequencing and molecular diagnostics are in-

creasingly used in pursuit of personalized treatment. However, even

in the context of these powerful technologies, the phenotype is, and

will likely always be, essential to the practice of medicine. Although

computational phenotypes such as PheRS will never replace the

careful observation of a good clinician, they may be useful in in-

creasing clinical suspicion for patients who are difficult to diagnose.

Much of what we know about Mendelian disease has been dis-

covered through studying individual patients and their families.27

While their methods were distinctly “low-tech,” the pioneers of ge-

netic medicine assembled an impressive body of knowledge by view-

ing nuanced phenotypes through the lens of Mendelian inheritance.

With the massive amount of medical data that is being aggregated

today in EHRs and research cohorts like the All of Us Research Pro-

gram28 and the UK Biobank, we now have an opportunity to study

phenotypic patterns at the population level. From this new perspec-

tive, we can enhance our understanding of Mendelian disease so

that we can better detect and diagnose individual patients.
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