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Prognostic models will be victims of their own success,

unless. . .
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ABSTRACT

Predictive analytics have begun to change the workflows of healthcare by giving insight into our future health.

Deploying prognostic models into clinical workflows should change behavior and motivate interventions that

affect outcomes. As users respond to model predictions, downstream characteristics of the data, including the

distribution of the outcome, may change. The ever-changing nature of healthcare necessitates maintenance of

prognostic models to ensure their longevity. The more effective a model and intervention(s) are at improving

outcomes, the faster a model will appear to degrade. Improving outcomes can disrupt the association between

the model’s predictors and the outcome. Model refitting may not always be the most effective response to

these challenges. These problems will need to be mitigated by systematically incorporating interventions into

prognostic models and by maintaining robust performance surveillance of models in clinical use. Holistically

modeling the outcome and intervention(s) can lead to resilience to future compromises in performance.
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Artificial intelligence and machine learning change how patients and

healthcare providers interact.1–3 Many hope that predictive models

are one of the technologies that improve patient health by giving

insight to our current or future health, thereby promoting

patient-provider-caregiver decisions that improve clinical out-

comes and quality of life.4–7 Predictive models show great promise

in a number of applications, such as reducing time to accurate di-

agnosis, reducing complications through automated monitoring

and prognosis, and empowering preventive medicine through

personalized forecasting.8–15

Predictive models have a life cycle. This life cycle is iterative and

nonlinear. In the simplest form of the model life cycle, it begins with

model development, updating, or validation. Initial model develop-

ment has a large and well-established literature.16–21 Next, model

developers and information technology professionals implement their

models into the workflow of patients, clinicians, or administrators,

so that the models might be acted on. The model implementation

and deployment phase requires a different set of skills from model

development. This phase is also one that investigators have studied

in the informatics and implementation science literature, although

this field is less mature than model development.22–28 Within

this stage, explicit consideration for how and which downstream

actions could be triggered by the model implementation are often

neglected.29,30 Once the model is implemented, and impacted pro-
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cess workflows stabilize, the model enters the surveillance and main-

tenance phase.31–35 This phase requires skills from both the develop-

ment and the implementation phase.

Surveillance and maintenance are key to preventing degradation

of model performance over time.32,36 Models degrade in healthcare,

because those models attempt to characterize biological, business, or

behavioral processes with unknown or unmeasured confounders.37

Those models also rely on readily available data that cannot fully

describe the underlying patient case mix, practice of medicine, and

work environment. Known deterministic formulae (eg, force ¼ mass

� acceleration) rarely govern the processes informatics practitioners

attempt to model, leaving those models vulnerable to changes in the

processes they attempt to describe.1 Impactful changes in the data pro-

cess can also manifest as changes in documentation requirements,

medical practice, or database definitions. These data process changes

affect the performance measures of a predictive model such as its

calibration (how well a model’s forecasts reflect the true values)38 or

its discrimination (how well a model can split data into different

meaningful categories).39 The extent of causal predictors used in a

model will partly dictate the attrition in calibration and discrimina-

tion. A model only associated with the target outcome may suffer deg-

radation in both discrimination and calibration, whereas a more

causally founded model may only lose calibration.

During maintenance, both social and technical adjustments are

made to optimize and maintain model-related workflows over time.

Researchers have not studied this phase as well as the preceding 2

phases. The last portion of the model life cycle is the de-

implementation phase.40–44 In de-implementation, the model is

removed or replaced due to a change in workflow, information tech-

nology, modeling technique, or some combination of factors.40 Figure

1 visualizes the stages of the model life cycle—development,16–21 imple-

mentation,22–28 maintenance,31–35 and de-implementation40–44—along

with some example components for each stage. Further details on each

component can be found in the accompanying reference in Figure 1.

The diversity of skills needed to develop, deploy, and maintain a

model give reason to silo different parts of the model life cycle to dif-

ferent teams. However, compartmentalization may come at the cost

of efficiency and efficacy for prognostic models. Prognostic models

seek to predict a future patient state, event, or outcomes.3,45–47

Some prognostic models incorporate the intervention space into the

modeling process or forecast nonmodifiable risk (eg, genetic

risk).48–51 Many prognostic models forecast modifiable risk without

accounting for interventions.25,52–55 For example, a model that fore-

casts the probability of the onset of sepsis in the next 6 hours for a

patient on a medical ward is prognostic. After issuing the forecast,

clinicians may act by administering broad-spectrum antibiotics or

transfer to intensive care. The fundamental purpose of that prognos-

tic model is to improve clinical outcomes, which will change the

outcome distribution over time. Deploying a prognostic model into

clinical sociotechnical workflows should change behavior. The im-

plicit assumption of the prognostic model is that providing enough

forewarning should allow the forecasted outcome(s) to be modified,

optimized, or mitigated. This assumption establishes an intimate

relationship between the prognostic model and the intervention(s)

the model hopes to activate. Despite this interdependence, many

models are developed without specifying intervention(s) or without

consideration for the implementation phase (eg, readmission

risk and suicide attempt risk).52,56 This divide may help explain the

limited impact of readmission risk models on clinical care. Model

developers have reported gains in the initial performance of readmis-

sion models along with increased provider adoption of readmission

risk models,57,58 yet 30-day readmission rates and age-adjusted mor-

tality rates have stagnated.59–61 Even fewer models are developed

with consideration to the maintenance phase.

Figure 1. Model life cycle.
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If end users (eg, patients, clinicians, administrators) act in re-

sponse to a forecast, then the distribution of the outcome should be

altered in some way if the response impacts the outcome. Ideally,

prognostic models anticipate and attempt to account for expected

changes in the data process due to the fact that they are being intro-

duced. Figure 2 shows the evolution of a prognostic model from ob-

serving a clinical process while in development to directly

interacting with that process after implementation.

Directly changing the outcome process has strong potential impli-

cations for prognostic model maintenance. In the idealized case, end

users incorporate the model to great effect. The intervention and

model deployment reduce the variance of the outcome, and may

shrink the relationship of predictors associated with the outcome to-

ward zero. The magnitude of these effects is directly related to how

strongly the intervention impacts the outcome, which can range from

very mild impacts (if the intervention is less effective than desired) to

very strong ones. The variance of the dependent variable is reduced as

the model-directed interventions promote the desired outcomes. With

significantly fewer poor outcomes, the distribution of outcomes

becomes more concentrated. Actions inspired by the prediction may

disrupt the association of predictors to outcomes. This disruption

takes place as a result of risk-focused interventions modifying

the occurrence of outcomes. For this reason, the successful use of

the model results in its own decline in performance. The model is a

victim of its own success. Figure 3 demonstrates the results of model

refit after the deployment of an intervention on patients at risk in a

simple univariate regression simulation. For this example, we assume

the presence of a perfect discrimination model. As the intervention

gains effectiveness, the slope of the regression line moves toward zero.

This result should also be observed in more realistic scenarios in

which the prognostic model and the interventions are only moder-

ately effective. As the incidence of the outcome changes in the de-

sired direction, the baseline event rate also shifts, and almost all

models are sensitive to changes in overall population outcome event

rate. Event rate shifts particularly impact calibration. Under these

circumstances, the performance of standard evaluation metrics for

calibration, such as log loss, explained variance,62 or Brier score,63

and discrimination (sensitivity, specificity, or positive predictive

value)64 will appear to deteriorate. In the idealized case of Figure 3,

the model still performs perfectly years later. However, naive assess-

ment of the model without attention to the transformation in the

outcome process will result in a suboptimal refit of the model. The

refit model will misclassify some patients in need of intervention.

Refitting again can lead to the same issue for a different group of

patients creating an iterative cycle. Operating the model in a de-

graded state results in misclassification, potentially leading to safety

concerns. This negative cycle may also hasten a model to its de-

implementation, diminishing the return on investment of time and

capital put into model development, deployment, and maintenance.

One could ignore model updating altogether but would still encoun-

ter degradation in performance associated with temporal changes of

the underlying data process at some point. The same questions of

safety and adequate return on investment are also relevant when

avoiding model maintenance. There are strategies to mitigate this

conundrum by thinking holistically about the model life cycle during

model development.

One strategy to avoid this maintenance complication is to include

interventions into the model.1,51 Modeling the intervention space can

enable the model to adjust for the actions recommended by model

forecasts. This step also allows the model to maintain calibration

longer, thereby extending the utility of the model. Including variables

on the intervention pathway is not trivial. The interventions may be

poorly defined, unrecorded, or not yet implemented. For example,

patient-implemented interventions, such as a food or calorie log, may

be difficult to find within accessible data sources. Intervention vari-

ability, in which only few patients receive the same treatment(s), can

lead to biased estimates of effect. For example, a patient at risk for

depression may have a large number of preventative options pre-

sented to them. Issues of adequate sampling for intervention effect es-

timation will also plague rare events or outcomes.

If the intervention cannot be directly modeled, informatics prac-

titioners should consider incorporating intervention surrogates.

Intervention surrogates are data documenting the workflow associ-

ated with an intervention. An intervention surrogate should be

correlated with the intervention. While it may not fully capture

complex effects of an intervention, it can serve a rough estimate of

the intervention’s effect. Intervention surrogates can suffer from the

same modeling challenges as the interventions themselves.

If modeling interventions directly or through a surrogate is not

an option, one can think of the interventions as a latent variable in

Figure 2. Model interactions with outcome.
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the model. Latent variables are not directly observed but are inferred

through a mathematical framework. For example, when building a

retrospective cohort to measure the effects on bone density one

treatment has against another, there may be confounders that are

not present in the available data (eg, whether a subject regularly

exercises by jogging or not). These unmeasured confounders will

cause variability that cannot be explained using standard

modeling techniques. Latent variable models may permit the recov-

ery of other independent variable weights on the outcome but reduce

the modeling options available. Generalized mixed effects models,

Hidden Markov models and Bayesian frameworks are natural meth-

ods for estimating latent variables; however, these methods can add

significant complexity to model development or to maintenance

efforts.

Model surveillance remains crucial to preserving clinical utility

regardless of how one represents interventions in a prognostic

model. One cannot begin to diagnosis true and model-mediated per-

formance degradation in a state of ignorance. The efforts to validate

and implement a prognostic model into clinical or administrative

workflows are not trivial and the potential to cause harm at scale

are real.65–69 It is therefore prudent to design models and their ac-

companying infrastructure to enable monitoring and maintenance.

Prognostic models produce forecasts on complex and dynamic

data processes. Models require surveillance and maintenance over

time, so that model developers and implementers can evolve models

in concert with the models’ nonstationary targets. Failure to monitor

prognostic models over time will limit their effectiveness and can in

the worst case pose a hazard.32 However, model surveillance and

updating alone are not enough. If a prognostic model does not incor-

porate the intervention space directly, through surrogates, or as a la-

tent variable, then model updating may be more frequently

required, and may result in exposing more patients to poorly per-

forming model predictions. It is important to keep in mind that the

more strongly an intervention impacts the outcome, the more vul-

nerable prognostic models are to this phenomenon. Prognostic mod-

els should be able to mitigate these issues by considering the entire

model life cycle as well as the entire outcome process.
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