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ABSTRACT

Objective: In health informatics, there have been concerns with reuse of electronic health data for research, includ-

ing potential bias from incorrect or incomplete outcome ascertainment. In this tutorial, we provide a

concise review of predictive value–based quantitative bias analysis (QBA), which comprises epidemiologic meth-

ods that use estimates of data quality accuracy to quantify the bias caused by outcome misclassification.

Target Audience: Health informaticians and investigators reusing large, electronic health data sources for re-

search.

Scope: When electronic health data are reused for research, validation of outcome case definitions is recom-

mended, and positive predictive values (PPVs) are the most commonly reported measure. Typically, case defini-

tions with high PPVs are considered to be appropriate for use in research. However, in some studies, even small

amounts of misclassification can cause bias. In this tutorial, we introduce methods for quantifying this bias that

use predictive values as inputs. Using epidemiologic principles and examples, we first describe how multiple

factors influence misclassification bias, including outcome misclassification levels, outcome prevalence, and

whether outcome misclassification levels are the same or different by exposure. We then review 2 predictive

value–based QBA methods and why outcome PPVs should be stratified by exposure for bias assessment. Using

simulations, we apply and evaluate the methods in hypothetical electronic health record–based immunization

schedule safety studies. By providing an overview of predictive value–based QBA, we hope to bridge the disci-

plines of health informatics and epidemiology to inform how the impact of data quality issues can be quantified

in research using electronic health data sources.

Key words: electronic health records, outcome assessment, bias, medical informatics

INTRODUCTION
Large electronic health data sources such as electronic health record

(EHR) and claims databases are increasingly relied on for medical

research.1–3 In health informatics, there have been concerns with

the accuracy of electronic health data that is reused for research pur-

poses,4,5 including potential bias that may arise from incorrect and

incomplete ascertainment of clinical outcomes.6 Epidemiologists

have also recognized such data accuracy issues can lead to outcome
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misclassification, which is as a major threat to study validity.3,7,8

Outcome misclassification occurs when a case definition does not

correctly identify the outcome of interest in the electronic health

data source. Diagnosis codes, procedure codes, laboratory results,

and other electronic data indicators may be used in an outcome case

definition,8 which are also called phenotypes.9

Outcome validation through review of medical provider notes,

patient or provider questionnaires or other methods has been en-

couraged in research using electronic health data sources.10–12 In

small studies, validation of outcome status for all individuals may be

feasible. More commonly, studies using electronic health data sour-

ces are large, including thousands or hundreds of thousands of indi-

viduals, and validation of outcome status for all individuals is not a

practical option.6 Instead, conducting an internal validation on a sam-

ple of individuals or using case definitions that have been previously

validated elsewhere are recommended practices.11–13 Several large sys-

tematic reviews have summarized results from validation studies of

outcomes identified in electronic health data sources. These reviews

have found a wide range of misclassification levels across clinical out-

comes and data sources.4,9,14–16 A recent review of the accuracy of

clinical outcomes in primary care records reported sensitivity levels

from 17% to 100%, specificity levels from 67% to 100%, negative

predictive values (NPVs) from 51% to 100%, and positive predictive

values (PPVs) from 12% to 100%.9 Of the 66 validation studies

reporting outcome PPVs, 94% reported PPVs <100%, indicating evi-

dence of false positive outcomes in the data source.9

PPVs are the most frequently reported measure of outcome mis-

classification from electronic health data sources.9,17 A common ap-

proach to estimating a PPV involves applying the outcome case

definition to the electronic health data source, reviewing clinical

provider notes from a sample of individuals who meet the outcome

case definition, and distinguishing true positive outcomes from false

positive outcomes. A PPV is estimated as the percentage of outcomes

that met the case definition that are true positives. Case definitions

with high levels of PPVs have been suggested to be fit for use in re-

search.6,18 However, previous epidemiological research has found

that, in some cases, even small amounts of misclassification can

cause “profound” bias in research studies.19

When reusing EHR data for clinical research, health informati-

cians have identified the need to incorporate data quality evaluation

approaches used in other disciplines and to integrate statistical meth-

ods for assessing the impact of data quality issues.5 In this tutorial,

our objective is to provide a concise review of methods from the disci-

pline of epidemiology for quantifying the bias caused by outcome mis-

classification. We introduce quantitative bias analysis (QBA), a field

of epidemiologic methods in which estimates of data accuracy are

used to quantify the bias of an exposure-outcome association caused

by outcome misclassification.20,21 To date, there has been minimal

use of QBA in research,21,22 particularly in electronic health data–

based studies. One reason for their low usage is a lack of knowledge

of these methods among researchers.21 Also, traditional QBA involves

using sensitivity and specificity estimates as inputs. In studies using

electronic health data, PPVs are often the only measure of outcome

validity that researchers can estimate. Therefore, in this article, we fo-

cus on QBA methods that rely solely on predictive values.

In this tutorial, we first review terminology used in epidemiology

to describe outcome misclassification, when outcome misclassifica-

tion causes bias of an exposure-outcome association, and why over-

all PPVs do not always adequately reflect this bias. We then review

2 QBA methods using predictive values20,23 and use simulations to

demonstrate the application and effectiveness of these methods. The

tutorial is concluded with a discussion of the strengths and limita-

tions of these methods, and on extensions of QBA that could be

used in electronic health data–based research.

One motivation for this work was to review QBA for use in a

field of research we work in, immunization schedule safety research

using EHR data. We previously published original research in

which, in simulations of immunization schedule safety studies with

misclassified outcomes, we found that overall outcome PPV esti-

mates did not always reflect the bias caused by misclassification. We

also found that traditional methods of QBA using sensitivity and

specificity measures as inputs were effective in bias correction.24 In

contrast, in this tutorial we review distinct QBA methods that use

predictive values as inputs. These predictive value–based QBA meth-

ods are not as well known as traditional QBA methods using

sensitivity and specificity estimates. However, these predictive val-

ue–based QBA methods are more pertinent to studies in which elec-

tronic health data are being reused for research purposes, as the PPV

is the most accessible estimate to researchers using these data sour-

ces. While our simulations are modeled on EHR-based immuniza-

tion schedule safety studies, the predictive value–based QBA

methods examined in this tutorial can be broadly applied in elec-

tronic health data–based research.

OUTCOME MISCLASSIFICATION BIAS

Misclassification is ubiquitous in electronic health data sources, and

there are many reasons misclassification occurs when electronic

health data are reused for research. Outcome false positives can oc-

cur when the diagnostic or procedural codes used do not reflect the

true medical issue or when a clinician applies a code to a patient’s

medical record but later rules out the condition.8 Outcome false neg-

atives can occur when patients do not seek medical treatment for

clinical conditions, or seek care outside of the medical institutions

contributing data to the study.8 Applying an incorrect code to a

patient’s record (ie, miscoding) can lead to both false positives and

false negatives. In health informatics, the data quality dimensions of

correctness and completeness have been assessed comparably to

PPV and sensitivity (Box 1).4,5

The magnitude and direction of bias of an exposure-outcome as-

sociation caused by outcome misclassification is influenced by multi-

ple factors.25 One factor is the level of misclassification,

traditionally measured by sensitivity and specificity. However, the

magnitude of bias is also influenced by the prevalence of the out-

come in the study population. In general, the magnitude of bias is

most affected by false positives in a data source, and bias becomes

larger the more rare an outcome is. The direction of bias is impacted

by whether misclassification is the same or different by exposure

group. In epidemiology, the terms “nondifferential” and

“differential” are used to describe whether outcome sensitivity and

specificity are the same or different by exposure. If outcome specific-

ity levels are the same across a binary exposure, then a risk ratio is

diluted by an equal rate of false positives among exposed and unex-

posed persons, and bias toward the null typically occurs. In contrast,

a risk ratio is not biased by nondifferential outcome sensitivity; how-

ever, other exposure-outcome association measures, such as a risk

difference, can be biased. When outcome sensitivity or specificity is

differential by exposure, under- or overestimation of a true effect

can occur.26

PPVs <100% indicate that specificity is also <100% and that

outcome false positives are present in the data source. In Table 1, we

provide examples to demonstrate the limitations of relying on

Journal of the American Medical Informatics Association, 2019, Vol. 26, No. 12 1665



overall PPVs to assess the magnitude or direction of outcome mis-

classification bias. Examples 1a, 1b, and 1c show 3 hypothetical co-

hort studies from large data sources. Each example study includes

10 000 exposed and 400 000 unexposed individuals, and a baseline

outcome prevalence of 2.5%. Across the 3 examples, the true rela-

tive risk (RR) and outcome sensitivity and specificity by exposure

differ, but the observed RR with misclassification is the same (RRob-

served , 0.87), and the overall outcome PPV is 93%-94%. Despite

having high overall outcome PPVs, in example 1a there is negligible

bias, in example 1b misclassification bias would lead to an inaccu-

rate conclusion as to the magnitude of the exposure-outcome associ-

ation, and in example 1c misclassification bias would cause type I

error. Without knowing the underlying nature of the misclassifica-

tion, with a calculated RR of 0.87 and an overall PPV of 93%-94%,

the reported results could be unbiased (example 1a), underestimate

the true effect (example 1b), or report an effect that does not truly

exist (example 1c). Across all examples, sensitivity and specificity

levels are high and in line with levels previously reported in valida-

tion studies. However, in examples 1b and 1c, the varying direction

of bias is driven by differential outcome sensitivity and specificity. In

studies relying on electronic health data, differential outcome mis-

classification may occur for several reasons. People have varying

propensity to seek care for medical conditions or may have chosen

to seek care outside the health system from which the electronic

health data were collected. If such care-seeking behavior is also asso-

ciated with exposure, then differential outcome sensitivity would oc-

cur. For example, differential outcome sensitivity is a concern in

immunization schedule safety research, as children who are under-

vaccinated or whose parents choose alternative immunization sched-

ules have lower rates of healthcare utilization than do children

vaccinated per the U.S. recommended immunization schedule.27,28

Moreover, differential outcome misclassification can occur due to

chance alone, and even small differences in outcome misclassifica-

tion, particularly in outcome specificity, can lead to varying magni-

tudes and directions of bias.29

QBA USING PREDICTIVE VALUES

Given information about the extent of outcome misclassification,

QBA methods can be used to assess how far an observed effect is

from the true effect in a research study.20 Traditional QBA methods

for outcome misclassification rely on sensitivity and specificity

measures as inputs, called bias parameters.20 As described in the pre-

vious section, these measures of outcome misclassification are usu-

ally not accessible to researchers using electronic health data

sources, and predictive values are more commonly reported. Here,

we describe 2 published QBA methods for outcome misclassification

that use predictive values.20,23

In the textbook Applying Quantitative Bias Analysis to Epide-

miologic Data, Lash et al20 provide a bias analysis method for ex-

posure misclassification using PPVs and NPVs. In the top half of

Table 2, a similar approach for outcome misclassification is dem-

onstrated. In Table 2, the cells A, B, C, and D denote observed

exposure-outcome counts. Measures of association are calculated

from these counts; formula 1 shows calculation of a relative risk.

Let PPV1 and PPV0 denote outcome PPVs among exposed and

unexposed groups, respectively, and NPV1 and NPV0 denote out-

come NPVs among exposed and unexposed groups, respectively.

The bottom half of Table 2 shows the calculations for the cor-

rected cell sizes for each exposure-outcome combination (denoted

Box 1. Epidemiological framework for outcome misclassification in electronic health data sources.

Truth

Has outcome Does not have outcome 

Observed in 
electronic 

health data 
source 

(identified 
through case 
definition or 
phenotype)

Has outcome True Positives (TP) False Positives (FP) 

Does not have 
outcome

False Negatives (FN) True Negatives (TN) 

Measures of misclassification: 

Sensitivity =  

Specificity =  

Positive predictive value (PPV)=  

Negative predictive value (NPV) =  
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as A*, B*, C*, and D*), and a QBA-corrected relative risk can

then be calculated (formula 2).

A limitation of this approach is that NPVs may sometimes be diffi-

cult to estimate from electronic health data. To estimate an NPV, one

would need to sample from individuals who did not have the outcome

recorded in the data source, and then determine which individuals truly

did have the outcome. For some clinical conditions, it is likely that

hundreds of observed nonoutcomes would need to be reviewed before

any false negatives are identified. Moreover, standard approaches for

estimating PPVs such as chart reviews may not be effective for ascer-

taining false negatives due to outside use of health services.

In 1993, Brenner and Gefeller23 demonstrated a QBA method

that only requires outcome PPV estimates by exposure. They showed

that if the observed RR, PPV1, and PPV0 are known, and sensitivity

is nondifferential to exposure, then a corrected RR can be calculated

using only PPVs (formula 3).23 This method is a special case of the

method by Lash et al,20 but the requirement of nondifferential out-

come sensitivity is a limitation. Depending on the study, outcome

sensitivity may be nondifferential or differential to exposure.

Both the method by Lash et al20 and the method by Brenner

and Gefeller23 require that predictive values are stratified by expo-

sure. This is because predictive values are a function of sensitivity,

specificity, and prevalence (formulas 4 and 5).30 If any of these fac-

tors differ by exposure, then the outcome PPV will differ by expo-

sure. Even if sensitivity and specificity are equal across exposure

groups, outcome PPVs will differ if a true exposure-outcome asso-

ciation exists, since outcome prevalence will differ by exposure.

The true outcome prevalence will be higher in the exposure group

with the higher risk, and thus the outcome PPV will also be higher

in that group.

SIMULATIONS OF QBA USING PREDICTIVE
VALUES

Simulation methods
To demonstrate the application and effectiveness of predictive val-

ue–based QBA methods, we conducted simulations of EHR-based

cohort studies of early childhood immunization schedule safety. A

2013 Institute of Medicine report called for observational studies on

risks of chronic outcomes in children whose parents choose alterna-

tive immunization schedules for them as compared with children

whose parents follow the U.S. recommended immunization sched-

ule.31 The U.S. Centers for Disease Control and Prevention’s Vac-

cine Safety Datalink (VSD), which coordinates a linked database

from health plans for vaccine research, is conducting such stud-

ies.28,32 However, validation studies for several outcomes of inter-

est, such as asthma, chronic urticaria, and diabetes,33–35 indicate

that some misclassification of these outcomes is likely.

We nested the simulations within a cohort of children born

2002-2012 from 2 VSD sites, Kaiser Permanente Colorado and Kai-

ser Permanente Northern California. Both health plans’ Institutional

Review Boards approved this study. The cohort included 257 010

children continuously enrolled in their health plan from birth to

their second birthday, which is when children are recommended to

receive up to 28 vaccine doses per the U.S. recommended immuniza-

tion schedule.36 Follow-up time for these children was from their

second birthday to the first occurrence of either disenrollment from

Table 2. Quantitative bias analysis for outcome misclassification using positive predictive values and negative predictive values

Exposure-outcome cell counts observed in electronic health data source, not accounting for outcome misclassification

Observed to have the outcome in data source Observed to not have the outcome in data source

Exposed A B

Unexposed C D

Formula 1: Calculation of relative risk observed in electronic data in an analysis of electronic data, without consideration of outcome misclassification

RR(Observed) ¼
A

AþB
C

CþD

Corrected distribution of outcomes by exposure using positive and negative predictive values20

With Outcome Without Outcome

Exposed A� ¼ AðPPV1Þ þ B(1-NPV1) B� ¼ ðAþ BÞ –ðAðPPV1Þ þ B(1-NPV1))

Unexposed C� ¼ CðPPV0Þ þ D(1-NPV0) D� ¼ ðCþDÞ –ðCðPPV0Þ þ D(1-NPV0))

Formula 2: Calculation of corrected relative risk following corrected distribution of outcomes by exposure

RR(Corrected) ¼
A�

A�þB�

C�

C�þD�

NPV0: negative predictive value among unexposed; NPV1: negative predictive value among exposed; PPV0: positive predictive value among unexposed; PPV1:

positive predictive value among exposed; RR: relative risk.

Formula 3: Calculation of corrected relative risk using

positive predictive values stratified by exposure, assum-

ing nondifferential sensitivity.23

Formula 3 : RRðCorrectedÞ ¼ RRðobservedÞ x
PPV1

PPV0

Formulas 4 and 5: Bayes’ rule for relating sensitivity, spe-

cificity, and prevalence to the positive and negative pre-

dictive values.30

Formula 4 : Positive Predictive Value

¼ Sensitivity x Prevalence

Sensitivity x Prevalenceþ 1� Specificityð Þx ð1� PrevalenceÞ

Formula 5 : Negative Predictive Value

¼ Specificity x ð1� PrevalenceÞ
Specificity x 1� Prevalenceð Þ þ 1� Sensitivityð Þx Prevalence

1668 Journal of the American Medical Informatics Association, 2019, Vol. 26, No. 12
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the health plan or their eighth birthday. Actual birthdates and follow-

up time were used from this cohort; all other data were simulated.

Details of our simulation methodology to study misclassification

bias in immunization schedule safety research have been published

elsewhere.24 Briefly, we used probabilistic modeling to simulate that

2.4% of the cohort were vaccinated per alternative immunization

schedules (exposed group) and 60.6% received all vaccines on time

per the U.S. recommended immunization schedule (unexposed

group). The remaining 37.0% are assumed to be undervaccinated by

some other pattern (eg, completely unvaccinated, missing some vac-

cines); these patterns are not considered in our simulations. We sim-

ulated a baseline outcome rate of 1000 events/100 000 person-years

between 2-8 years of age and RRs of 2.00, 1.00, and 0.50 across

1000 replications. These simulated RRs represent the true exposure-

outcome association, without misclassification bias.

We then applied imperfect outcome specificity ranging from

90% to 99% and sensitivity ranging from 50% to 95%, based on

overall outcome misclassification levels previously measured in

EHR or claims databases.33–35,37,38 We simulated hypothetical lev-

els of both nondifferential and differential misclassification, with

both small and large differences in specificity sensitivity levels. In

simulations of nondifferential misclassification, specificity and sensi-

tivity were applied without regard to exposure. In simulations of

differential misclassification, specificity and sensitivity were applied

separately by exposure group. We simulated scenarios of lower sen-

sitivity among children on alternative immunization schedules, as

parents of these children express greater distrust in the traditional

medical system and are more likely to seek outside care.39 We simu-

lated scenarios of both higher and lower specificity in the exposed

group as compared with the unexposed. Sensitivity and specificity

were applied to simulated data as probabilities, and Bernoulli trials

determined which children had an outcome false positive or false

negative status, representing outcome misclassification.

For each combination of sensitivity and specificity tested, we

reported the mean outcome PPV and NPV overall, PPV1 and NPV1,

and PPV0 and NPV0 across the 1000 replications. We reported the me-

dian RRs and 95% simulation intervals (SIs) from our simulated analy-

ses of electronic health data when misclassification is present. The 95%

SI represents the 2.5th and 97.5th percentiles of the RR generated across

the 1000 replications of a simulation.40 We then applied the QBA meth-

ods shown in formulas 2 and 3 to the simulated data, and report the

median RR and 95% SI from these bias correction methods. While ac-

tual follow-up time in the VSD cohort was used to simulate probability

of the outcome, our RR calculations used counts of people as the

denominators for each exposure group (as shown in formulas 1 and 2).

For simulations in which true RR¼1, we reported type I error as

the percent of simulated replications where the null hypothesis was

rejected at alpha¼ .05. Type I error is a function of both systematic

error (exhibited as a biased RR estimate) and random error, as

greater precision in RR estimation, usually from larger sample sizes,

will lead to greater probability in rejecting the null hypothesis with a

biased estimate.

All analyses were conducted in SAS version 9.4 (SAS Institute,

Cary, NC).

Simulation results
Across replications, an average of 6117 children were simulated to

be exposed to alternative immunization schedules and 155 731 chil-

dren were simulated to the fully vaccinated unexposed group. There

was an average of 8207 simulated outcomes in the unexposed

group, equating to a 5% baseline outcome prevalence. With

nondifferential outcome misclassification and simulated RR¼2.00,

the outcome PPV among the exposed group (PPV1) was higher than

the PPV among the unexposed group (PPV0) due to higher outcome

prevalence among exposed (Table 3). In contrast, when simulated

Figure 1. Overall outcome positive predictive value (PPV) and observed relative risk (RR), without bias analysis, from 8 simulated scenarios of outcome misclassification.

(1) nondifferential misclassification: overall outcome sensitivity (SN) ¼ 95%, overall outcome specificity (SP) ¼ 99%; (2) nondifferential misclassification: SN ¼ 90%, SP ¼
98%; (3) differential specificity: outcome sensitivity among exposed (SN1)¼ 95%, outcome specificity among unexposed (SN0)¼ 95%, outcome specificity among exposed

(SP1) ¼ 90%, outcome sensitivity among unexposed (SP0) ¼ 99%; (4) differential specificity: SN1 ¼ 95%, SN0 ¼ 95%, SP1 ¼ 99%, SP0 ¼ 98%; (5) differential sensitivity: SN1

¼ 70%, SN0¼ 95%, SP1 ¼ 99%; SP0 ¼ 99%; (6) differential sensitivity: SN1¼ 50%, SN0¼ 95%, SP1 ¼ 99%; SP0¼ 99%; (7) differential specificity and sensitivity: SN1¼ 70%;

SN0¼ 95%, SP1¼ 99%; SP0¼ 98%; and (8) differential specificity and sensitivity: SN1¼ 90%; SN0¼ 95%, SP1¼ 90%; SP0¼ 99%.
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RR¼0.50 and outcome misclassification is nondifferential to expo-

sure, PPV1 is lower than PPV0 (Table 3).

In the 8 misclassification scenarios we simulated, the median

RRs observed with analysis of electronic health data as is, ignoring

misclassification bias, ranged from 1.04 (95% SI, 0.94-1.14) to 3.19

(95% SI, 3.01-3.36) when true RR¼2.00 (Table 3) and from 0.39

(95% SI, 0.32-0.45) to 2.05 (95% SI, 1.92-2.20) when true

RR¼0.50 (Table 3). Overall mean outcome PPVs ranged from

71.1% to 84.6% (Figure 1). The QBA method with PPVs and NPVs

stratified by exposure (formula 2) resulted in correction of misclassi-

fication bias in all simulations. Applying PPVs stratified by exposure

and assuming nondifferential sensitivity (formula 3) was also effec-

tive, except when outcome sensitivity was simulated to be differen-

tial (Tables 3 and 4). In some cases, applying this method when

outcome sensitivity was differential by exposure resulted in more bi-

ased estimates than did analysis of electronic data, ignoring misclas-

sification bias. For example, when true RR was simulated at 0.50,

we observed an RR of 0.39 (95% SI, 0.32-0.45) when sensitivity

among exposed was 50%, sensitivity among unexposed was 95%,

and specificity in both groups was 99%. After applying the ratio of

PPV1 to PPV0 formula (formula 3), the RR was 0.26 (95% SI, 0.21-

0.32) (Table 3).

When simulated RR¼1.00, nondifferential outcome misclassifi-

cation resulted in type I error rates<5%. However, across simula-

tions of differential outcome misclassification, type I error ranged

from 80.7% to 100% (Table 4). The 2 methods with stratified out-

come PPVs corrected the median biased RR back to 1.00, except

when sensitivity was differential to exposure and formula 3, which

assumes nondifferential sensitivity, was used.

DISCUSSION

Data quality concerns in electronic health data–based research have

garnered considerable attention, with calls for use of validated

algorithms,9,12,13 increased transparency in data quality report-

ing,9,13 and guidelines for the conduct and reporting of validation

studies.9,10 While these efforts affirm the importance of assessing

data quality, there has been less emphasis on how to quantify and

correct the bias caused when outcomes are misclassified in studies

that reuse electronic health data. In this tutorial, we introduced epi-

demiologic methods for quantifying this bias, focusing on QBA

methods that are likely to be most accessible in electronic health

data–based research: methods using predictive values.

To date, results from validation studies have been considered in

a largely qualitative manner, with high levels of sensitivity, specific-

ity, or predictive values being interpreted as valid and acceptable for

use. However, multiple factors influence how outcome misclassifica-

tion biases an exposure-outcome association, and, in some cases,

small amounts of misclassification can cause large amounts of

bias.19,25,29 Furthermore, to apply the QBA methods reviewed in

this tutorial, overall outcome PPVs cannot be used; PPVs should be

estimated by exposure. Of the 2 QBA methods we reviewed, the

method by Brenner and Gefeller23 is the most accessible to research-

ers using electronic health data, since it relies only on PPVs. How-

ever, a limitation is the assumption of nondifferential sensitivity. In

their paper, Brenner and Gefeller23 demonstrated that if sensitivity

is in fact differential by exposure group, then the “corrected” RR

will still be biased by a factor of sensitivity among unexposed
sensitivity among exposed . Therefore, it

is recommended that if differential sensitivity is known or suspected,

then the impact of such differential sensitivity be tested by including

this additional bias factor in bias analyses.

Bias analysis may not be necessary for studies that are descriptive

or exploratory in nature, or that do not address causal links between

exposures and outcomes. However, quantifying bias is important

for studies assessing causal associations, or when policy decisions

may be based on the study’s results.21 If results from an electronic

health data–based study will be used for either of these purposes,

then bias analysis is recommended when possible. Unfortunately,

applying QBA may be desirable but not feasible. The methods pre-

sented here are best suited for studies where PPVs can be estimated

by exposure from an internal validation study. If such internal vali-

dation is not possible, but an overall outcome PPV has been

previously estimated in a comparable data source, then an approach

could be used whereby the overall PPV is used to estimate the num-

ber of false positive outcomes in the present dataset. Then, 2 bias

analyses could be conducted: one in which all outcome false posi-

tives are assumed to be in the exposed group and one in which all

outcome false positives are assumed to be in the unexposed group.

This approach would show the 2 extremes of the potential impact of

false positives. In scenarios in which the PPV is relatively high and

the outcome is relatively common, such an analysis may provide re-

assurance that the results observed are robust against imperfect out-

come specificity in the electronic health data source.

This tutorial has several limitations. We used simulations to eval-

uate the application and effectiveness of QBA methods that use PPVs

as bias parameters. By establishing different levels of nondifferential

and differential misclassification, we were able to evaluate these

QBA methods across multiple scenarios. However, while the overall

levels of misclassification used in our simulations were informed by

previous observations in electronic health data, there has been mini-

mal empirical research measuring differential misclassification;

therefore, our simulated levels of differential misclassification were

hypothetical. Also, we only focused on simple QBA applied to 2x2

tables with exposure-outcome counts or directly to RR estimates.

However, extensions of simple QBA should be considered in re-

search using electronic health data sources. For example, multiple

bias analysis allows consideration of co-occurring sources of bias, in-

cluding exposure misclassification, covariate misclassification, and

unmeasured confounding.20 Probabilistic bias methods, whereby a

range of bias parameters are considered, are especially promising for

electronic health data–based research, as additional uncertainty in es-

timation of sensitivity, specificity, or predictive values can be incor-

porated.20,22 While epidemiologic studies using electronic health

data sources are ideal candidates for bias analysis because sample

sizes are typically large and random error is minimized, Bayesian

methods that incorporate both systematic and random error should

be considered.20,41 QBA applied to individual-level data merit

broader consideration, including methods that treat outcome mis-

classification as a missing data problem.42 Finally, multiple strategies

for bias analysis in multivariable modeling are available, including

calculating bias parameters by stratum or using propensity scores to

summarize information on the covariates in the bias analysis.43

CONCLUSION

Large data sources such as EHR and claims data have become cor-

nerstones of modern medical and public health research. By provid-

ing an overview of methods for quantifying bias using predictive

values, we hope to encourage broader consideration of QBA in stud-
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ies where electronic health records and claims data are being reused

for research purposes.
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