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Abstract

In this paper we describe a completely automated volume-based method for the segmentation of 

the left and right ventricles in 4D tagged MR (SPAMM) images for quantitative cardiac analysis. 

We correct the background intensity variation in each volume caused by surface coils using a new 

scale-based fuzzy connectedness procedure. We apply 3D grayscale opening to the corrected data 

to create volumes containing only the blood filled regions. We threshold the volumes by 

minimizing region variance or by an adaptive statistical thresholding method. We isolate the 

ventricular blood filled regions using a novel approach based on spatial and temporal shape 

similarity. We use these regions to define the endocardium contours and use them to initialize an 

active contour that locates the epicardium through the gradient vector flow of an edgemap of a 

grayscale-closed image. Both quantitative and qualitative results on normal and diseased patients 

are presented.

1 Introduction

Cardiovascular disease is the leading cause of death in many developed countries. To reduce 

morbidity, quantifying the motion of the heart is valuable for understanding normal and 

abnormal physiology and for patient diagnosis. SPAMM [1,2], is a promising non-invasive 

technique for measuring the shape and motion of the heart. Parallel sheets of tissue are 

magnetically tagged at end-diastole and they appear as dark lines when imaged in the 

direction normal to the sheets. This paper presents a completely automated method to find 

the epicardium and endocardium contours in tagged MR images. The endocardium 

segmentation is challenging because the tag lines obscure these contours and the images 

tend to have low contrast between the blood and the myocardium and because the intensities 

of the tissue change as the tags fade and new blood enters the heart. Epicardium 

segmentation is challenging because the boundary is occluded by adjacent structures such as 

the liver or a layer of fat.

Tracking the motion of the tag sheets provides 3D information about the motion of the 

myocardium and there has been significant research [3–8] into methods for automating tag 
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sheet tracking. These methods are more accurate [3,4] when the epicardium and 

endocardium contours are provided because the contours restrict the search space for tag 

sheets to the myocardium. Methods that do not use the epicardium and endocardium 

contours have limited applicability in the thin walled structures such as the RV (right 

ventricle) where there is a sparsity of tags to track. It has been shown[9] that if the 

epicardium and endocardium contours could be segmented then measuring the 3D shape 

deformation in thin walled structures such as the RV becomes possible through finite 

element analysis. It has also been shown [10–12] that endocardium and epicardium contours 

can be used in conjunction with tag sheet tracking to determine a low dimensional, clinically 

relevant description of the motion of the LV (left ventricle). Moreover, the contours help 

identify and track key anatomical features useful for the inter-subject comparison of strain 

fields recovered from these tag tracking. The contours can also be used directly to measure 

ejection fraction, and wall thickening. Several researchers have developed methods for 

locating the contours of the heart in tagged MR images. The system proposed by Guttman et 
al. [13] was able to delineate the contours of the LV on radially tagged SA (short axis) slices 

using a dynamic programming method based on a minimum cost algorithm after the user 

indicated the center of the LV cavity and the region of interest. Goutsias [14] proposed a 

watershed segmentation method to locate the contours of the LV in SA images. While we 

have not directly used these techniques due to their inapplicability to our problem, these 

papers have influenced our work. Our method does not require any user interaction to 

segment the left and right ventricles. Some of these systems appear to require dark blood. 

Procedures such as “black blood” imaging add complexity and some time to the image 

acquisition procedure. Our method does not require this extra step. Another advantage of our 

method is that it requires only raw SPAMM data acquisition, not CSPAMM data acquisition 

which can substantially increase acquisition time which is problematic for the patient with 

cardiac disease, not accustomed to long periods of continual breath holding.

We have found that 80% or 4 of the 5 hours required to analyze tagged SPAMM data sets 

involves the outlining the contours of the ventricles. We present a method that directly 

addresses this most significant portion of the analysis time by segmenting the endocardium 

and epicardium contours without requiring user input. In section 2, we describe how we 

remove background intensity variation in each volume to prepare the volumes for 

segmentation. In section 3 and 4 we describe how we locate the heart and segment the 

endocardium and epicardium in the corrected volumes. We provide qualitative and 

quantitative results in section 5 and our conclusions in section 6.

2 Volumetric Intensity Correction

Tagged images are acquired mostly with one and sometimes with two surface coils. While 

the coils increase image contrast, they can also cause the same tissue to have different 

intensities depending on its location in the image. We use a new scale-based correction 

procedure to correct the background intensity variation throughout each volume. A variety 

of techniques have been employed to correct background intensity variation in MRI, few 

meet the following requirements that make them clinically useful: (1) no user input is 

needed on a per volume basis (2) the method is pulse sequence and surface coil independent 

(3) intensity distributions for tissue classes need not be known. Details on this method, 
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including its performance on non-cardiac images can be found in [15]. We present an 

overview of the method and a modification that works well for all of the subjects that we 

have processed. We have found empirically that iterating the steps below 10 times works 

well for all subjects. Fig. 1 shows a sample slice from a corrected volume.

1. 1. Given a volume f (x) , define the foreground volume as:

f foreground (x) = 1 f (x) > mean ( f (x))
0 otherwise

1. 2. Compute the scale volume f scale(x) for the pixels where f foreground (x) = 1. 

Scale at a pixel is defined as the radius of the largest ball centered at the pixel for 

which a pixel intensity homogeneity measure [15] is preserved.

2. 3. Let Smax be the maximum value in f scale(x) and let the set PixelsOfSmax be 

the set of all pixels in the scale image that have a scale of Smax. Compute the 

mean μ and standard deviation σ of the intensities in f (x) for the pixels of 

PixelsOfSmax. Let the set objectPixels be the set of pixels in the volume that 

have intensities in the interval [μ – ασ, μ + βσ]. For tagged MR, the objects we 

are most interested in correcting are the bright objects (the myocardium and 

blood regions) and we find empirically that setting α= 1.0 and β= 5.0 works well 

for all subjects.

3. 4. To estimate the background intensity variation, a 2nd order polynomial β(x) is 

fitted to the normalized intensities in objectPixels by minimizing

∑
v ∈ objectPixels

β(v) − f (v)/μobjectPixels
2

1. 5. In MRI, background intensity variation is typically modeled as multiplicative 

noise, therefore image is corrected by replacing f (x) with f (x) β(x) .

3 Endocardium Segmentation

The endocardium contours are the boundaries between the blood filled ventricular cavities 

and the myocardium. To locate these boundaries reliably we look for strong image features 

that are present for every subject. Since we are not using “black blood” imaging, the blood 

appears bright and we leverage this fact to accurately locate the salient blood filled cavities 

of the LV and RV and the inflow and outflow tracts of the RV. In all our images from the 

second time (second volume) the motion of the blood has washed out the tags. We begin our 

endocardium segmentation in this volume by applying a 3D grayscale morphological 

opening operation. Let the given volume be f (x) where x is an element of the domain of 

f : x ∈ D f  and let the structuring element be b(x) where x ∈ Db. Then the gray-scale opening 

of f by b is written as f °b = ( f − b) ⊕ b where f − b is the gray-scale erosion of f by b defined 

in eqn (1a) and f Å b is the gray-scale dilation of f by b defined in eqn (1b)
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(a) ( f − b)(s) = min f (s + x) − b(x) s + x ∈ D f ; x ∈ Db
 (b) ( f ⊕ b)(s) = max f (s − x) + b(x) s − x ∈ D f ; x ∈ Db

(1)

The intensity value at a pixel x in the opened volume is the maximum of the minimum 

values in the pixels covered by the structuring element when centered at x We use a binary 

3D cylinder shaped structuring element whose radius, R1, is 1.5 times the tag separation 

width and whose length L1 spans 4 image planes. We have found that this structuring 

element gives the best initial segmentation of the blood filled regions of the images. The 

radius is sufficient to cover at least 2 tags; therefore even if noise has corrupted one tag, the 

other tag covered by the structuring element will enable the opening result to reflect the 

presence of tags. Fig. 2b shows sample slices from the opening of a volume at time 2.

An important advantage in this cavity-locating method is that it can be applied without 

change in all the slices through the heart. For example the bifurcation of the right ventricle 

into inflow and outflow tracts can be located (see first column in Fig. 4d). In slices through 

the tip of the apex (not shown), a blood filled region is detected only if present. This 

property is important since in some subjects the apex of the LV cavity is inferior to the apex 

of the RV cavity, while for other subjects the reverse is true. We note that this gray-scale 

opening based method can detect whether there are blood filled regions are present –down to 

the size of the structuring element used in the opening operation. For our images this is 

rarely a significant limitation since the tags are closely spaced (6 pixel spacing), yielding a 

small-diameter structuring element.

Next, we threshold the images and fill the holes with a binary morphological closing 

operation. To select the threshold in this initial time, we use the threshold that minimizes the 

variance of the pixels grouped into the foreground object. The results of thresholding these 

images are shown in Fig. 2c.

To identify which of these binary regions are from the ventricles, we first find the binary 

regions corresponding to the LV and RV on a mid-ventricular slice. To identify a mid 

ventricular slice, as well as the pair of regions forming the LV and RV cavities on that slice, 

we find the most spatially consistent pair of regions. We describe this measure formally with 

the following definitions and the accompanying drawing (Fig 3a).

We are given a short axis dataset consisting of a set V of N volumes: V = {vk}where k ∈
[1..N] Each volume consists of a set S of M slices: S = {sj} where j ∈[1..M]. After 

thresholding a morphologically opened volume, the jth slice on the kth frame consists of a set 

R of B(j,k) regions R = {ri } where i ∈[1..B(j,k)].

We define the similarity in eqn 2., as in [16]. The similarity between region rijk (the ith 

region on the jth slice of the kth volume) and the region rljm (the lth region on the mth slice of 

the nth volume) is
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Sim ri jk, rlmn =
area ∩ ri jk, rlmn

area ∪ ri jk, rlmn
(2)

the area of their intersection divided by the area of their union. For a given region rijk the 

most similar region rl*mk spatially and the most similar region rîjn temporally are defined as:

rl*mk = argmax
l ∈ B(m, k), m ≠ j

Sim ri jk, rlmk ri jn = argmax
l ∈ B( j, n), n ≠ k

Sim ri jk, rl jn (3)

To find the LV or the RV on the mid ventricular slice we define the spatial shape consistency 
and temporal shape consistency of a region rijk as:

ssc ri jk = ∑
m = 1, m ≠ j

M
Sim ri jk, rl*mk tsc ri jk = ∑

n = 1, n ≠ k

N
Sim ri jk, r

l jn
(4)

To find the pair of LV and RV regions on the mid ventricular slice we define the spatially 

consistent region pair ri jk, rl jk  as:

ri jk, rl jk = argmax
j ∈ 1..M

i, l ∈ B j, k , i ≠ l

ssc ri jk + ssc rl jk (5)

and we define the most spatially and temporally consistent region pair as the pair ri jk, rl jk

of regions whose spatial and temporal shape consistency values are maximal:

ri jk, rl jk = argmax
j ∈ 1..M
k ∈ 1..N

i, l ∈ B j, k , i ≠ l

ssc ri jk + tsc ri jk + ssc r jk + tsc r jk
(6)

The RV bifurcates at the base of the heart into inflow and outflow tracts and has a tapered 

lobe below the base, while the cavity of the LV resembles a prolate spheroid cropped at the 

top. Consequently, in the thresholded images, three regions appear in the base (RV inflow 

and outflow tracts and the LV cavity), two relatively large regions appear in the mid-

ventricular images and two small regions appear near the apex. Because of these 

characteristics, the most spatially consistent region pair in the thresholded images is the pair 

of regions from the mid ventricular slice from the LV and RV. The LV and RV regions near 

the apex are too small to be the most spatially consistent pair and the inflow and outflow 

tracks at the base prevent the base slices from being the slice containing the most consistent 

pair. In addition the regions from the aorta are not part of the most spatially consistent pair 

because they receive low spatial shape consistency scores because the aorta does not run 

throughout the whole short axis volume and because the aorta is typically not oriented 

perpendicular to the short axis image planes. Regions from the blurring of tags due to 
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motion artifacts, which can appear on an individual slice, are also not in the most spatially 

consistent pair because they do not extend throughout the short axis volume.

The mid-ventricular slice is the slice with the pair of most spatially consistent regions. We 

attach the regions in the superior and inferior slices that have sufficient intersection with 

these pairs. We determine which regions overlap through orthographic projection. To form 

the base volume of the cavities, we project the regions on the current slice (initially the mid 

ventricular slice) up to the next slice orthographically (see Fig 3b). The regions that overlap 
are connected to the regions from the previous slice. To form the apical volume of the 

cavities, we project the regions on the current slice (initially the mid ventricular slice) down 

to the next slice orthographically and the regions that overlap are connected to the regions 

from the previous slice. The boundaries of the cavities define the boundary between the 

blood and the myocardium and thereby yield the endocardium.

For subsequent times we begin the processing by opening the volumes with the 3D 

structuring element described above. To choose a threshold for the opened images, we use 

the segmentation map from the prior time. As shown in Fig. 4 (a)-(c), the endocardium 

regions found in the previous time are propagated onto the grayscale-opened image of the 

current time.

The ventricular cavity regions on the mid-ventricular slice (Fig 4a) from the previous 

volume are eroded by a disk of radius 3 pixels and their boundaries are propagated to the 

same slice on the next volume. We estimate the mean intensity of the pixels in the blood 
region on the opened image by computing the mean of the intensities of the pixels in this 

region (Fig. 4b). To compute the mean of the intensity of the myocardium portion of the 

opened volume we form a ring shaped sampling region by dilating the LV endocardium 

region from the previous volume’s mid ventricular slice by a disk of radius, R4 of 3 pixels 

and a disk of radius, R3 of 9 pixels. This band is propagated to the same slice on the next 

volume and is located roughly in the center of the myocardium of the LV (Fig. 4c).

We identified which region was the LV from the pair of regions on the mid ventricular slice 

in the previous volume by noting which orthographically connected region bifurcated in the 

base (the RV bifurcates) or if neither has then the LV is identified as the region which has a 

smaller volume above the mid ventricular slice. In our datasets this provides an accurate 

determination of the RV and LV because the RV is typically larger than the LV and the RV 

volume includes the inflow and outflow tracks. Also it is important to use our knowledge of 

the mid ventricular slice: propagating contours from the mid ventricular slice to the same 

slice on the next volume works well, however if we propagated contours from a base slice to 

the same slice on the next volume, topological changes in the RV (see Fig. 5) can render the 

blood intensity sampling less accurate.

The opened images from the current time are then thresholded with the mean of the mean 

intensities of the blood and myocardium tags: δthresh=(μblood+μmyo)/2. We have found that 

this threshold selection method compares well with thresholds selected manually by 

selecting an intensity at a valley between peaks in the histogram of the opened image. 

Moreover the intensity inhomogeneity correction step described in the previous section 
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makes the intensities of tissues within each volume more uniform and improves the results 

of thresholding the opened images using a threshold from the mid ventricular slice. Once we 

have thresholded the opened volume we compute the most spatially and temporally 
consistent binary region pair in the slices of each volumes processed thus far and attach the 

regions in the superior and inferior slices as described above. Since the base moves toward 

the apex, the mid-ventricular slice can change over time. By using both temporal consistency 

and spatial consistency we are able to update the mid-ventricular slice to be the slice that 

contains the pair of regions that change the least over time and throughout the imaged 

volume. The results for several times are shown in Fig. 5.

4 Epicardium Segmentation

We are interested in finding a contour on each slice that defines the epicardium of the heart, 

which is the boundary between the myocardium and the tissues that surround the heart. The 

epicardium is typically harder to segment than the endocardium because there is little 

contrast between the myocardium and surrounding tagged structures, such as the liver and 

the chest wall. Fat often appears as a partial ring of tissue surrounding the heart and is 

particularly challenging to handle since the ring is narrow. Fat is often included in the 

myocardium in methods that attempt to segment the endocardium in tagged MR images. 

Here we present an automatic method that largely overcomes this problem by expanding a 

physics-based deformable model known as an active contour [17] from the interior of the 

heart towards the exterior edge of the myocardium so that it will stop when it gets to the 

dark pixels between the myocardium and fat.

We fill the tags in each slice at each time with a linear structuring element whose width is 

equal to the tag width. In our images the structuring element is 4 pixels and the filled images 

are shown in Fig. 6(b). This fills in all the tags while leaving most borders intact. Next we 

adaptively Wiener filter the filled images to smooth the intensities of the myocardium while 

preserving edges. We apply less filtering where the local intensity variance is large and 

greater filtering where the local variance is small. Fig. 6(c) shows the result, which we will 

refer to as f (x, y) . The magnitude of the gradient of this image, with edges in the 

endocardium regions found in section 3 suppressed, is shown Fig. 6(d). We compute a 

gradient vector flow (GVF) [18] field (see Fig 6(e)) from ∇f to provide forces for the 

deformable model. The GVF field captures object boundaries from either side and consists 

of a 2D vector field v(x, y) = (u(x, y), v(x, y))Tthat minimizes the energy in eqn 7a. The PDE 

(eqn 7b) that minimizes this functional is found through the calculus of variations and the 

equilibrium solution to this equation defines the flow field.
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 (a) E(v) = ∬ μ ux
2 + uy

2 + vx
2 + vy

2 + ∇ f 2 v − ∇ f
2

dxdy

(b) vt = μ∇2v − ∇ f
2

(v − ∇ f )

(c) ut = 1
Δt ui, j

n + 1 − ui, j
n ∇2u = 1

ΔxΔy

ui + 1, j + ui, j + 1 + ui − 1, j + ui, j − 1 − 4ui, j

(7)

We favor strong fidelity of the GVF field to ∇f since there are weak edges between the heart 

and liver that we want to capture with the active contour. We have found that setting μ =0.05 

works well to segment the epicardium. To form an initial epicardium contour for our 

physics-based deformable model we construct the convex hull of the RV and LV regions 

from the previous section. We have found that using discrete approximations shown in eqn. 

7c to the partial derivatives in eqn. 7b with Δt = Δx = Δy = 1and iterating a forward Euler 

finite difference scheme 50 times is sufficient to extend the capture range of the initial active 

contour to segment the epicardium.

Our physics-based deformable active contour, X (s) , is parameterized by arc length and 

deforms according to Newton’s second law (eqn. 8a). To stop at weak edges we set the mass, 

m, of the contour to zero. The governing motion equation (eqn. 8b) is formed by defining the 

internal force from the stretching and bending of the semi-rigid contour and the external 

force from the gradient vector flow field, v.

 (a) m∂2X
∂t2

= Fdampening(X) + Finternal (X) + Fexternal(X)

(b) ωd
∂X
∂t

−Fdampening

= ∂
∂s ωs

∂X
∂s + ∂2

∂s2 ωr
∂2X
∂s2

Finternal

+ ωe v(X)
Fexternal

(8)

The parameters used to control the deformable model are: elasticity ωs =0.5, rigidity ωr 

=350, viscosity ωd =1 and external force field weight ωe =0.6. We have found these values 

work well on all of our tests for both normal and diseased hearts. We approximate the 

derivatives with finite differences and iterate a forward Euler finite difference scheme until 

the contour converges. We define convergence to occur when the contour area has not 

changed appreciably (1 pixel area) over the last 10 iterations. In all our tests convergence 

occurs within 85 iterations. In Fig 7(a)-(e) we see that our approach has avoided classifying 

the ring of fat which appears near the top of the epicardium as myocardium. In Fig. 7(a),(c) 

the triangular shaped fat region which appears near the bottom left corner of the epicardium 

has also been excluded from the myocardium.
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5 Results

Our method finds the bi-ventricular boundaries throughout the volume of the heart and over 

time during contraction, starting at end-diastole. We have a database of over 15 subjects with 

diseases affecting the left and right ventricles and normal subjects. We explain the analysis 

results on 3 of these subjects, two of whom are normal and one has right ventricular 

hypertrophy. Below we provide both qualitative and quantitative evidence of the accuracy 

and robustness of our tracking method.

For qualitative validation we compare the segmented bi-ventricular boundaries to those 

drawn by expert cardiologists (see Fig. 8a–d). These boundaries are shown for several slices 

at time 2 and time ES. By superimposing both boundaries over the images and enlarging 

them we find convincing evidence of the accuracy of our algorithm. We have also discovered 

cases (see Fig. 8e) in which the cardiologists have found our algorithm to be more accurate 

than those drawn by hand, causing us to have the anatomists revise the ground truth 

contours.

For quantitative validation we compute the distance between each segmented contour A and 

the corresponding contour, B, drawn by the expert anatomist by computing the distance 

d(a, B) = min
b ∈ B

a − b  for all points a on the automatic contour. We also compute d(b, A) for 

the points, b on the expert contours. Fig. 9 shows the cumulative distribution of these error 

distances for the contour points over all slices in all volumes from ED (end diastole) to ES 

(end systole) for the normal and diseased subjects comprising over 175 images. To validate 

the segmented RV endocardium we use the full manually drawn RV endocardium and the 

portion of the LV epicardium that delineates the septum. Likewise during validation of the 

segmented single epicardium contour we use the full manual RV epicardium contour and the 

portion of the LV epicardium corresponding to the non-septum boundary. It can be seen 

(Fig. 9) that on the average the distance error of our segmented epicardium contour is less 

than 1.2 pixels and that 90% of the time the error is less than 4.1 pixels. The endocardium 

contours are still quite accurate although our contours include the papillary muscle in the 

myocardium while the manually drawn contours have excluded them, thus the “error” 

distance is larger. For the RV endocardium we still find though that on the average the 

distances are less than 2.3 pixels and 90% of the time the segmented contour is within 6.5 

pixels of the expert’s contour.

There is still room for improvement. Our quantitative results include time 1 (end-diastole). 

For this volume the tags have not washed away completely so we have used the 

endocardium contours from time 2 and used them to initialize our active contour that locates 
the epicardium at time 1. Using an active contour for both the endocardium segmentation 

(using the grayscale opened images) and the epicardium segmentation will enable us to 

estimate the velocity of the endocardium contour relative to the epicardium contour. 

Inverting the motion will give us an improved endocardium estimate for time 1. We are also 

experimenting with improved edge sensitivity that can handle the occasional leakage (see 

Fig 9b) of the epicardium contour into the liver.
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6 Conclusions

We have presented a method that dramatically reduces the most significant portion of the 

analysis time required to process SPAMM data. All of the steps in our algorithm are 

completely automated, requiring no user input. The contours can be used to measure ejection 

fraction and as a basis to register motion fields derived from tag tracking algorithms which 

enables effective inter-subject comparison of motion data. The algorithm removes 

background intensity variation throughout each imaged volume using a new scale based 

intensity correction method and implements a novel region-based segmentation technique to 

segment the ventricular blood filled volumes and the LV and RV endocardium contours. We 

have also located the inflow and outflow tracts of the right ventricle automatically and 

obtained excellent epicardium results through a combination of adaptive local statistics-

based image filtering, a gradient vector flow field and physics-based active contours.
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Fig. 1. 
1D intensity profiles are plotted for the white lines shown in the images: (a) before 

correction (b) after correction. Intensity through the heart is much more uniform after 

correction; the two prominent intensity valleys are caused from the sampling line skimming 

two tags which remain dark after correction
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Fig. 2. 
Steps to find the endocardium (a) 3 slices from original volume (b) grayscale opened volume 

(c) thresholded volume (d) pruned volume using shape similarity. Note the aorta has been 

pruned away. (e) Algorithm parameters
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Fig. 3. 
(a) For a given region rijk, the regions on slice m in volume k are searched to find the most 

spatially similar regionrl*mk. The regions on slice j in volume n are searched to find the most 

temporally similar region, rîjn (b) Orthographic projection to form the LV and RV cavities
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Fig. 4. 
(a) Mid ventricular regions from the previous time. Contours from these two regions are 

used to delineate regions on the same slice for the current time to sample blood tissue, [the 

regions inside the contours in (b)] and to sample the myocardium [using the region in 

between the contours in (c)]. In (d) the endocardium processing steps are shown for all slices 

for one time. First row: opened images. Second row: results from adaptive thresholding. 

Third row: results from shape similarity pruning

Montillo et al. Page 15

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2019 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
All endocardium contours (dashed) and epicardium contours (solid) over time 2 through end 

ES (end systole) for a particular slice near the base
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Fig. 6. 
Epicardium segmentation steps: (a) original image (b) grayscale closing (c) adaptive Wiener 

filtering (d) edge map (e) gradient vector flow field (f) Segmented LV-RV epicardium (single 

solid line) and separate, manual RV and LV epicardium (dotted lines)
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Fig. 7. 
The expansion of an initial active contour from inside the heart avoids classifying a 

surrounding layer of fat as myocardium
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Fig. 8. 
Qualitative validation: segmented contours (solid lines), manual contours (dotted lines). 

Epicardium (a) and endocardium (b) contours from two slices at time 2. Epicardium (c) and 

endocardium (d) contours from the same two slices at time ES. Note that our algorithm finds 

one epicardium contour while two manual contours (LV and RV epicardium contours have 

been drawn). Also our algorithm includes papillary muscle in the myocardium while the 

manual contour excludes it. Shown in (e) top row is a case in which our algorithm was more 
accurate than manual contours along the RV. Bottom row: endocardium contours segmenting 

the papillary muscle
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Fig. 9. 
(a) Cumulative distribution of distances errors between the corresponding portions of the 

expert manual contours and the segmented contours from all slices, in all volumes, from ED 

through ES. (b) Occasionally the epicardium boundary is too weak after the tags are filled 

via the morphological closing. Then the active contour can expand beyond the myocardium, 

so we are developing ways to correct this case (see text)
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