Table 1.
Method | Mechanism of mutation | Mutation frequency | Dose | Mutants produced | Pros | Cons | ||
---|---|---|---|---|---|---|---|---|
Chemical | ||||||||
EMS | Guanine alkylation, G/C to A/T transitions or G/C to C/G or G/C to T/A transversions. | 2-10 mutations each Mb (Till et al., 2007) | 0.2–2.0% | Plant development and metabolism (Feldman et al., 2014; Feldman et al., 2017) |
Improve one or two traits with decreased rates of undesirable changes. |
Manipulation of the mutagen |
||
Herbicide resistance (LSU AgCenter) | ||||||||
Abiotic stress tolerance (Panigrahy et al., 2011; Poli et al., 2013; Mohapatra et al., 2014; Xu et al., 2017a) | ||||||||
MNU | Guanine and cytosine alkylation, G/C to T/A transitions. | 1 mutation each 135 Kb (Satoh et al., 2010) | 0.25 - 1.00 mM | Plant development and metabolism (Cha et al., 2002; Miyoshi et al., 2004; Ikeda et al., 2005; Nagasaki et al., 2007; Kurakawa et al., 2007; Qiao et al., 2010; Akter et al., 2014; Chen et al., 2015; Zhou et al., 2017; Inahashi et al., 2018) | ||||
Nutritional quality (Sakata et al., 2016; Kim et al., 2018b) | ||||||||
Plant chemical element transporters (Ma et al., 2007; Shao et al., 2017; Kim et al., 2018a) | ||||||||
Biotic stress resistance (Jung et al., 2005; Busungu et al., 2016) | ||||||||
Yield and quality improvement (Itoh et al., 2017; Long et al., 2017; Seo et al., 2017) | ||||||||
AS | Generates azidoalanine causing G/C to A/T transitions. | 1.4 - 2.9 mutation each Mb (Tai et al., 2016) | 1 - 10 mM | Industrial quality (Mo et al., 2013); | ||||
Nutritional improvement (Jeng et al., 2011; Jeng et al., 2012) | ||||||||
Abiotic stress tolerance (Hussain et al., 2012; Lin et al., 2016) | ||||||||
Yield and quality improvement (Lin et al., 2011; Lin et al., 2014)) | ||||||||
Colchicine | Chromosome doubling, affects the microtubules promoting symmetric cell division. | − | 0.04 - 0.3% | Nutritional quality (Tu et al., 2014) | ||||
Regulatory mechanism of genome duplication (Cai et al., 2007; Zhang et al., 2015) | ||||||||
Abiotic stress tolerance (Tu et al., 2014) | ||||||||
Yield and quality improvement (Cai et al., 2007; Zhang et al., 2017; Guo et al., 2017) | ||||||||
DEP | Guanine and adenine alkylation, deletions (1Kb) and point mutations. | − | 0.004% - 0.006% | Abiotic stress tolerance(Nakhoda et al., 2012) | ||||
Physical | ||||||||
γ rays | Single nucleotide substitution, inversion and deletion. | 7.5×10−6 to 9.8×10−6 (Li et al., 2016c) | 50 - 350 Gy | Plant development and metabolism (Hirano et al., 2010; Han et al., 2012; Smillie et al., 2012; Li et al., 2017a; Mbaraka et al., 2017; Li et al., 2018c) | Higher DNA damage, affecting many traits. | Necessary specialized physical structure. | ||
Industrial quality (Kong et al., 2015) | ||||||||
Nutritional quality (Chun et al., 2012; Hwang et al., 2014; (Sansenya et al., 2017) | ||||||||
Abiotic stress tolerance (Song et al., 2012; Joshi et al., 2016; Hwang et al., 2017) | ||||||||
IBR | Point mutation (deletion), inversion, translocation and insertion. | Survival rates from 70 to 90% mutation of 1.7%; 70% survival rates mutation of 2.0% (Yamaguchi et al., 2009) | Carbon 20 - 50 Gy (up to 220 MeV) Neon 10 Gy (60-80 keV/µm) |
Nutritional quality (Ishikawa et al., 2012) Plant development and metabolism (Abe et al., 2002; Maekawa et al., 2003; Hayashi et al., 2007; Phanchaisri et al., 2007; Phanchaisri et al., 2012) |
||||
FNI | A/T to G/C transition, insertion, inversion, duplication and deletion. | 28-78 genome mutations (Li et al., 2016a) | 20 Gy | Industrial quality (Mei, 2010) | ||||
Biotic stress resistance (Bart et al., 2010; Chern et al., 2014; Chern et al., 2016) | ||||||||
Abiotic stress tolerance (Ruengphayak et al., 2015) | ||||||||
CRR | − | − | 15 days space environment | Plant development and metabolism (Kim et al., 2012) |
EMS, Ethyl methane sulfonate; MNU, N-methyl-N-nitrosourea; SA, Sodium azide; DEP, Diepoxybutane; IBR, Ion beam radiation; FNI, Fast-neutron irradiation; CRR, Cosmic-ray radiation.