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Background: Precision medicine requires a stratification of patients by disease presentation that is sufficiently informative
to allow for selecting treatments on a per-patient basis. For many diseases, such as neurological disorders, this stratification
problem translates into a complex problem of clustering multivariate and relatively short time series because (i) these
diseases are multifactorial and not well described by single clinical outcome variables and (ii) disease progression needs to
be monitored over time. Additionally, clinical data often additionally are hindered by the presence of many missing values,
further complicating any clustering attempts. Findings: The problem of clustering multivariate short time series with
many missing values is generally not well addressed in the literature. In this work, we propose a deep learning-based
method to address this issue, variational deep embedding with recurrence (VaDER). VaDER relies on a Gaussian mixture
variational autoencoder framework, which is further extended to (i) model multivariate time series and (ii) directly deal
with missing values. We validated VaDER by accurately recovering clusters from simulated and benchmark data with
known ground truth clustering, while varying the degree of missingness. We then used VaDER to successfully stratify
patients with Alzheimer disease and patients with Parkinson disease into subgroups characterized by clinically divergent
disease progression profiles. Additional analyses demonstrated that these clinical differences reflected known underlying
aspects of Alzheimer disease and Parkinson disease. Conclusions: We believe our results show that VaDER can be of great
value for future efforts in patient stratification, and multivariate time-series clustering in general.
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In precision medicine, patients are stratified on the basis of
their disease subtype, risk, prognosis, or treatment response by
means of specialized diagnostic tests. An important question
in precision medicine is how to appropriately model disease
progression and accordingly decide on the right type and time
point of therapy for an individual. However, the progression of
many diseases, such as neurological disorders, cardiovascular
diseases, diabetes, and obesity [1-5], is highly multifaceted and
not well described by 1 clinical outcome measure alone. Classi-
cal univariate clustering methods are likely to miss the inherent
complexity of diseases that demonstrate a highly multifaceted
clinical phenotype. Accordingly, stratification of patients by dis-
ease progression translates into the challenging question of how
to identify a clustering of a multivariate time series.

Clustering is a fundamental and generally well-investigated
problem in machine learning and statistics. Its goal is to seg-
ment samples into groups (clusters), such that there is a higher
degree of similarity between samples of the same cluster than
between samples of different clusters. Following Hastie et al. [6],
algorithms to solve clustering problems may be put into 3 main
categories, (i) combinatorial algorithms, (ii) mixture modeling,
and (iii) mode seeking. Within each of these 3 categories, a wide
range of methods is available for a great diversity of clustering
problems. Combinatorial algorithms do not assume any under-
lying probability model but work with the data directly. Exam-
ples are K-means clustering, spectral clustering [7], and hierar-
chical clustering [8]. Mixture models assume that the data can
be described by some probabilistic model. An example is Gaus-
sian mixture model clustering. Finally, in mode seeking one tries
to directly estimate modes of the underlying multi-modal prob-
ability density. An important example here is the mean-shift al-
gorithm [9].

For the clustering of multivariate time-series data, a few
techniques have been developed [10-14]. However, these ap-
proaches generally rely on time series of far greater length than
available in most longitudinal clinical datasets. Moreover, these
methods are not suited for the large numbers of missing values
often found in clinical data.

Missing valuesin clinical data can occur for different reasons:
(i) patients drop out of a study, e.g., owing to worsening of symp-
toms; (ii) a certain diagnostic test is not taken at a particular visit
(e.g., owing to lack of patient agreement), potentially resulting
into missing information for entire variable groups; (iii) unclear
further reasons, e.g., time constraints, data quality issues, etc.
From a statistical point of view, these reasons manifest into dif-
ferent mechanisms of missing data [15,16]:

(1) Missing completely at random (MCAR): The probability of
missing information is related neither to the specific value
that is supposed to be obtained nor to other observed data.
Hence, entire patient records could be skipped without intro-
ducing any bias. However, this type of missing data mecha-
nism is probably rare in clinical studies.

(2) Missing at random (MAR): The probability of missing infor-
mation depends on other observed data but is not related to
the specific missing value that is expected to be obtained. An
example would be patient dropout due to worsening of cer-
tain symptoms, which are at the same time recorded during
the study.

(3) Missing not at random (MNAR): any reason for missing data
that is neither MCAR nor MAR. MNAR is problematic because

the only way to obtain unbiased estimates is to model miss-
ing data.

Multiple-imputation methods have been proposed to deal
with missing values in longitudinal patient data [16]. How-
ever, any imputation method will result in certain errors,
and if imputation and clustering are performed separately,
these errors will propagate through to the following clustering
procedure.

To address the problem of clustering multivariate and rela-
tively short time-series data with many missing values, in this
article we propose an approach that uses techniques from deep
learning. Autoencoder networks have been highly successful in
learning latent representations of data (e.g., [17-20]). Specifically
for clustering, autoencoders can be first used to learn a latent
representation of a multivariate distribution, to then indepen-
dently find clusters [21]. More recently, some authors have sug-
gested simultaneously learning latent representations and clus-
ter assignments. Interesting examples are deep embedded clus-
tering [22] and variational deep embedding (VaDE) [23].

Here, we present a new method for clustering multivariate
time series with potentially many missing values, variational
deep embedding with recurrence (VaDER). VaDER is in part based
on VaDE [23], a clustering algorithm based on variational autoen-
coder principles, with a latent representation forced towards a
multivariate Gaussian mixture distribution. Additionally, VaDER
(i) integrates 2 long short-term memory (LSTM) networks [24]
into its architecture, to allow for the analysis of multivariate
time series; and (ii) adopts an approach of implicit imputation
and loss reweighting to account for the typically high degree of
missingness in clinical data.

After a validation of VaDER via simulation and benchmark
studies, we applied the method to the problem of patient strat-
ification in Alzheimer disease (AD) and Parkinson disease (PD),
using data from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) [25] and the Parkinson’s Progression Markers Ini-
tiative (PPMI) [26], respectively. AD and PD are multifactorial
and highly heterogeneous diseases, in both clinical and bio-
logical presentation, as well as in progression [27-30]. For ex-
ample, PD is characterized by motor symptoms and behav-
ioral changes (e.g., sleeping disorders), as well as cognitive im-
pairment [31]. Cognitive impairment, one of the hallmarks of
AD, is not straightforward to assess, because cognition itself is
highly multifaceted, and described by, e.g., orientation, speech,
and memory. Consequently, in the field of AD, a wide range
of tests have been developed to assess different aspects of
cognition.

This heterogeneity presents one of the major challenges in
understanding these diseases and developing new treatments.
As such, better clustering (stratification) of patients by disease
presentation could be of great help in improving disease man-
agement and designing better clinical trials that specifically fo-
cus on treating patients whose disease is rapidly progressing.

Our analyses of the ADNI and PPMI data show that VaDER
is highly effective at disentangling multivariate patient trajecto-
ries into clinically meaningful patient subgroups.

Variational autoencoders for clustering

Our proposed VaDER method is in part based on VaDE [23], a vari-
ational autoencoding clustering algorithm with a multivariate
Gaussian mixture prior. In variational autoencoding algorithms,
the training objective is to optimize the variational lower bound



on the marginal likelihood of a data point x [32]:

L(%) = Eq [log(p(x12))] — Dxw(a(21%)!p(2)). (1)

This lower bound can be seen as composed of 2 parts. The
first term corresponds to the likelihood of seeing x given a latent
representation z. Its negative is often called the "reconstruction
loss,” and it forces the algorithm to learn good reconstructions of
its input data. The negative of the second term is often called the
"latent loss.” It is the Kullback-Leibler divergence of the prior p(z)
to the variational posterior q(z|x), and it regularizes the latent
representation z to lie on a manifold specified by the prior p(z).

In VaDE, this prior is a multivariate Gaussian mixture. Ac-
cordingly including a parameter for choosing a cluster c, the vari-
ational lower bound can then be written as follows:

L(x) = Eq(z.c [l0g(p(x12))] — Dxi(q(z. clx)IIp(2, c))- )

By forcing the latent representation z towards a multivariate
Gaussian mixture distribution, VaDE has the ability to simulta-
neously learn latent representations and cluster assignments of
its input data. For more details on variational autoencoders and
VaDE, we refer the reader to Jiang et al. [23], Kingma and Welling
[32], and Doersch [33].

VaDER

VaDER is an autoencoder-based method for clustering multi-
variate time series with potentially many missing values. For
simultaneously learning latent representations and cluster as-
signments of its input samples, VaDER uses the VaDE latent loss
as described above and in Jiang et al. [23].

To model the auto- and cross-correlations in multivariate
time-series data, we integrate peephole LSTM networks [24,34]
into the autoencoder architecture (Fig. 1).

To deal with missing values, we directly integrate imputa-
tion into model training. As outlined in the Background, separat-
ingimputation from clustering can potentially introduce bias. To
avoid this bias, we here propose an implicit imputation scheme,
which is performed within VaDER training. Our approach to im-
putation bears some similarity to other approaches [35,36]. How-
ever, in contrast to Lipton et al. [35], VaDER uses missingness
indicators for implicit imputation as an integral part of neural
network training. Additionally, in contrast to Manning et al. [36],
our method of imputation is also suited for MNAR data, which
are often encountered in clinical datasets.

We first define a weighted reconstruction loss on feature and
sample level: imputed values are weighted to 0, non-imputed
values are weighted to 1. To retain the balance with the la-
tent loss, the resulting reconstruction loss is rescaled to match
the original dimensions of the data. More formally, for a mean
squared reconstruction loss, let L be the number of samples in
our dataset, x! a single input sample, and &' its corresponding
reconstructed output (I € 1...L). x! and %' are matrices € RN*M,
where N is the number of time points and M is the number
of clinical outcome measures (e.g., cognitive assessments) for
a particular patient. Then the unweighted mean reconstruction
loss is

YL ) ®)

Now, let A := {x}j |x|-1]-is missing}, 14(.) be the indicator function on
set A, and |A| be the cardinality of A. Then, the weighted mean

squared reconstruction loss is:

NM
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In addition to the weighted reconstruction loss, we adopt an
implicit imputation scheme, where imputed values are learned
as an integral part of model training. More specifically, Let x!,
N, M, x}j, A, and 14(.) be defined as above. Also assume that all
xl; for which 1,(x};) = 1 are initially imputed with arbitrary finite
values. Then we add 1 additional layer before the input LSTM
(Fig. 1) as follows:

R = %) x [1— 1a(x}))] +bij x La(x)). ©)

Here, x}j is the actual observed (or missing) value of sample
| at time points i and assessment j, and 5(})- serves as input to
the LSTM. In other words, if ><in is missing, then it is replaced by
bj; in X. Parameters b;; are trained as an integral part of VaDER
using stochastic gradient descent and can be considered (time,
assessment)-specific expected values. Note that (i) the initial ar-
bitrary imputation does not influence the eventual clustering
and (ii) the implicitly imputed values are weighted to O in the
reconstruction loss.

VaDER achieves high accuracy on simulated data

As a first step in technically validating VaDER, we simulated data
with a known ground truth clustering and assessed how well
VaDER was able to recover these clusters. A natural framework
to this end is the vector autoregressive (VAR) model because (i) it
can express serial correlation between time points, (ii) it can ex-
press cross-correlation between variables, and (iii) given a fully
parameterized VAR process, one can simulate random trajecto-
ries from that VAR process.

More specifically, to generate clusters of multivariate time se-
ries, we simulated from VAR process mixtures, for different val-
ues of a clusterability parameter .. The clusterability parameter
2 influences how easily separable the simulated clusters are (see
Section Simulation experiments). Sample data are provided in
the Supplementary Figure S1. We used the cluster purity mea-
sure [37] to record how well the true clustering could be recov-
ered (for more details, see Methods).

VaDER was able to highly accurately recover the simulated
clusters, achieving a cluster purity of >0.9 for » ~ 0.08, and con-
verging to 1.0 for larger A (Fig. 2a). Moreover, even without exten-
sive hyperparameter optimization, VaDER performed substan-
tially better than hierarchical clustering using various distance
measures, some of which were specifically designed for mul-
tivariate time series (multidimensional dynamic time warping
[MD-DTW] [38] and Global Alignment Kernels [GAK] [39]) or short
univariate time series (the STS distance [40]). Only for » < 0.04
was VaDER outperformed by MD-DTW. This may be attributed to
the fairly limited number of samples used for the simulation (n
= 2,000), and omitting extensive optimization of VaDER’s hyper-
parameters.

We used the same VAR framework to assess how varying de-
grees of missing values affect the performance of VaDER. Both
MCAR and MNAR were simulated as described in the Meth-
ods. In the MCAR simulation, missing values were uniformly
distributed across time and clinical outcome measures. In the
MNAR simulation, the expected degree of missing values sig-
moidally depended on time (see Methods). For varying cluster-
ability levels A, it can be seen that VaDER’s implicit imputation
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Figure 1: VaDER architecture.
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Table 1. Multivariate time-series classification datasets used in this study

Name k n
ArabicDigits 10 8,800
JapaneseVowels 9 640
CharacterTrajectories 20 2,858
UWave 8 4,478
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p ne n Source
13 4-93 24 UCI [41]
12 7-29 15 UEA/UCR [42]
3 109 - 205 23 UCI [41]
3 315 25 UCI [41]

k: number of classes; n: number of samples; p: number of variables; n;: number of time points; n;: number of samples after processing to equal and/or shorter length; UCI:
University of California Irvine machine learning repository; UEA/UCR: University of East Anglia/University of California, Riverside time-series classification archive.

scheme is overall more robust against missing values than using
VaDER with pre-imputation of missing values (Figs 2b and c).

VaDER achieves high accuracy on benchmark classification datasets
As an additional validation step towards applying VaDER to
real-world clinical data, we collected a number of real-world
benchmark datasets for multivariate time-series classification
(Table 1). The datasets were normalized and processed to equal
and/or shorter length as described in the Methods.

Comparing the ability of VaDER in recovering these a priori
known classes to the other methods mentioned above reveals
that VaDER consistently achieves better results (Fig. 3a). More-
over, VADER’s approach of integrating imputation with model
training again outperforms pre-imputation of missing values
(Figs 3b and c).

Application 1: VaDER identifies clinically diverse AD patient sub-
groups

After the technical validation using simulated and benchmark
data, we applied VaDER to clinical data for identifying meaning-
ful patient subgroups. From ADNI [25], we collected data from

689 patients who at some point received a diagnosis of demen-
tia during the course of this study. Four different cognitive as-
sessment scores were available at 8 different visits: ADAS13,
CDRSB, MMSE, and FAQ. We pre-processed the data as described
in the ADNI data preparation section. Overall, the fraction of
missing values was ~43%. We used VaDER to cluster patients by
disease progression as measured using these cognitive assess-
ments.

Hyperparameter optimization was performed by random
grid search as described in the Methods. For each number of
clusters k € {2...15}, the prediction strength [43] of the corre-
sponding optimal model was compared to a null distribution
(see Section Hyperparameter optimization and choice of num-
ber of clusters), which is shown in Supplementary Figure S2.

For most practical applications, determining an unambigu-
ously correct number of clusters k is not possible, and a wide
range of rules of thumb exist (see, e.g., [43-47]). For our subse-
quent analyses, we chose k = 3. This demonstrated relatively
high prediction strength, significantly different from the null
distribution, while still allowing VaDER to demonstrate its abil-
ity to uncover potentially interesting statistical interactions be-
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Figure 2: VaDER performance on simulated data, with varying degrees of clusterability and missingness. (a) Cluster purity [37] for clustering of simulated data as a
function of the clusterability parameter 2, with higher 1 implying a higher degree of similarity between profiles in the same cluster. Results are shown for VaDER as
well as hierarchical clustering using 5 different distance measures, (i) Euclidean distance, (ii) Pearson correlation, (iii) the STS distance [40], (IV) multi-dimensional
dynamic time warping (MD-DTW), [38] and (5) Global Alignment Kernels (GAK) [39]. (b) Cluster purity as a function of the fraction ¢ of values missing completely at
random (MCAR), for various levels of the clusterability parameter %, for both VaDER with implicit imputation and VaDER with pre-imputation. Confidence intervals
were determined by repeating the clustering 100 times using newly generated random data and missingness patterns. (c) Cluster purity as a function of the fraction 6 of
values missing not at random (MNAR) (see Methods for details), for various levels of the clusterability parameter 1, for both VaDER with implicit imputation and VaDER
with pre-imputation. Confidence intervals were determined by repeating the clustering 100 times using newly generated random data and missingness patterns.

tween trajectories of different cognitive assessments. A statisti-
cal interaction between different cognitive assessments could,
e.g., manifest in the ability to distinguish patient subgroups
based on 1 cognitive assessment, while this is not possible on
another assessment. Another example would be a permuted or-
dering of clusters with respect to different assessment scores.
For ADNI data the resulting cluster mean trajectories are
shown in Fig. 4 and demonstrate that (i) VaDER effectively clus-
ters the data into patient subgroups showing divergent disease

progression and (ii) VaDER is able to find interactions between
the different cognitive assessments, which would be principally
difficult to distill from univariate analyses of the assessments.
For example, the patients in Cluster 1 are the patients whose
disease is the most severely progressing when assessed using
ADAS13, CDRSB, and MMSE. However, the FAQ assessment (in-
strumental activities of daily living) does not distinguish be-
tween these patients with severely progressing disease and the
patients with more moderately progressing disease in Cluster 1.



@ 1.0

0.8 1
>
=
5 06 -
o
-
9]
@
S5 04 A
O
0.2
0.0 =
© 2
o =2
a
> o
@
2 s
e <
c
<
o
<
8
(b) o JapaneseVowels ° CharacterTrajectories
© _| @ _|
(=] (=]
2z 2
5 «© 5 «©
g o7 g o
5} 5}
- < - <
2 37 2 37
o o
N o
o 7| — Implicit o 7] Implicit
Pre-imputed Pre-imputed
o _|--- 95%Cl o _|--- 95%Cl
(=} (=}
T T T T T T T T T T
00 02 04 06 08 00 02 04 06 08
6 6
UWave ° ArabicDigits
© _| @ _|
(=] (=]
2 2
5 «© ER]
g o] g o
5} 5}
- < b <
2 37 2 37
o o
o o
o 7| = Implicit o 7| = Implicit
Pre-imputed Pre-imputed
o _|--- 95%Cl o _|--- 95%Cl
(=} (=}
T T T T T T T T T T
00 02 04 06 08 00 02 04 06 08
6 6

VaDER
Correlation
STS
MD_DTW
GAK

EEDOHE

8 ¢
= ]
o =
© =)
LN
g
=
9]
2
1]
Il
°
I
e
(@)
(c) ° JapaneseVowels ° CharacterTrajectories
© _| @ _|
o =] T
> = 5
S © s ©
£ oS g oS
3 3
= < = <
ERE-ln ERE-ln
) [$)
(. o
=} — Implicit =} — Implicit
Pre-imputed Pre-imputed
o _|--- 95%Cl o _|--- 95%Cl
o o
T T T T T T T T T T
00 02 04 06 08 00 02 04 06 08
0 0
UWave ArabicDigits
e e
© _| @ _|
o o
2 =
s o© s ©
g oS g oS
3 3
+= < += <
2 37 2 37
) [S)
o o
o | = Implicit o | = Implicit
Pre-imputed Pre-imputed
o _|--- 95%Cl o _|--- 95%Cl
o o
T T T T T T T T T T
00 02 04 06 08 00 02 04 06 08
0 0

Figure 3: VaDER performance on benchmark data, for varying degrees of missingness. (a) Cluster purity [37] for clustering of benchmark data. Results are shown
for VaDER as well as hierarchical clustering using 5 different distance measures, (i) Euclidean distance, (ii) Pearson correlation, (iii) the STS distance [40], (iv)
multi-dimensional dynamic time warping (MD-DTW) [38], and (v) Global Alignment Kernels (GAK) [39]. For each dataset, the best performance across methods is
marked by a horizontal dotted line. Confidence intervals were determined by bootstrapping the clustering 10° times. (b) Cluster purity as a function of the fraction
0 of values missing completely at random (MCAR), for both VaDER with implicit imputation and VaDER with pre-imputation. Confidence intervals were determined
by repeating the clustering 5 times using newly generated random missingness patterns. (c) Cluster purity as a function of the fraction ¢ of values missing not at
random (MNAR), for both VaDER with implicit imputation and VaDER with pre-imputation. Confidence intervals were determined by repeating the clustering 5 times

using newly generated random missingness patterns.

In addition to cognitive assessment measurements, ADNI
presents a wealth of data on brain volume and various AD mark-
ers that we did not use for clustering. In these data, we iden-
tified numerous statistically significant associations with our
patient subgroups. For example, the clusters strongly associ-
ated with time-to-dementia diagnosis relative to baseline, with
Cluster 2 showing generally the shortest time and Cluster 0
the longest. The patients with relatively mildly progressing dis-
ease in cluster 0 also demonstrated on average a larger whole-
brain volume at baseline, which moreover declined less steeply
over time, compared to more patients with severely progress-
ing disease. Especially the middle temporal gyri and fusiform
gyri were larger (and shrinking more slowly over time), whereas
the ventricles were smaller (and expanding more slowly over

time). Indeed, atrophy of the middle temporal gyri and fusiform
gyri, as well as ventricular enlargement, have been associated
with AD progression [48,49]. As another example, the patients
with more severely progressing disease (Cluster 1 and especially
Cluster 2) demonstrated lower cerebral glucose uptake and lower
cerebrospinal Abeta42 levels, again confirming the literature
[50,51] (see Methods and Supplementary Figures S3-8). These
observations demonstrate that the clinical differences between
our patient subgroups reflect known AD aspects.

Application 2: VaDER identifies clinically diverse PD patient sub-
groups

We additionally applied VaDER to clinical data from the Parkin-
son’s Progression Markers Initiative (PPMI) [26]. From PPMI,
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we collected data from 362 de novo PD patients who had re-
ceived a diagnosis within a period of 2 years before study on-
set and had initially not been treated. Nine variables on sev-
eral motor and non-motor symptoms (UPDRS total, UPDRS1-
3, tremor dominance [TD], postural instability and gait distur-
bance [PIGD], RBD, ESS, SCOPA-AUT) measured at either 5 or
10 time points were available. The data were pre-processed
as described in the PPMI data preparation section. Over-
all, the fraction of missingness values was ~17% (or ~31%,
when including time points entirely missing for some as-
sessments). We again used VaDER to cluster patients ac-
cording to disease progression as measured by these assess-
ments.

Hyperparameter optimization and selection of the number of
clusters was performed in the same way as for ADNI (see Supple-
mentary Figure S9), and we decided on k = 3 patient subgroups
accordingly. The resulting cluster mean trajectories are shown
in Fig. 5. These again illustrate that (i) VaDER effectively clus-
ters the data into clinically divergent patient subgroups, and (ii)
VaDER is able to find interactions between the assessments that
would principally be difficult to find based on univariate anal-
yses alone. For example, Cluster O represents patients with a
moderate progression in terms of mental impairment, behavior,
and mood (UPDRS1) and autonomic dysfunction (SCOPA). How-
ever, these patients remain relatively stable, or even improve, on

many other assessments, such as TD, the self-reported ability to
perform activities of daily life (UPDRS2), and motor symptoms
evaluation (UPDRS3).

Similar to ADNI, PPMI presents a wealth of additional data
on brain volume and various PD markers that were not used
for clustering. Aligning these data with our PD patient sub-
groups, we found numerous statistically significant associa-
tions that confirmed existing literature, many related to qual-
ity of life and physiological changes to the brain. For exam-
ple, men were over-represented in cluster 1 and showed the
most severe disease progression, confirming the literature on
sex differences in PD (e.g., [52]). Moreover, these patients with
severely progressing disease showed an expected steeply declin-
ing ability to perform activities of daily living (modified Schwab
and England score [53]), as well as rapidly developing symp-
toms of depression (geriatric depression scale [54]), common
in patients with PD [55]. Additionally, these patients demon-
strated physiological differences in the brain when compared
to patients with more mildly progressing disease. Examples are
the caudate nucleus and putamen brain regions, which were
smaller at baseline and during follow-up examinations in the
patients with more severely progressing disease in Cluster 1
and, from the literature, are known to be subject to atrophy
in PD [56] (see Methods and Supplementary Figures S10-15).
These observations demonstrate that the clinical differences be-
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Figure 5: Normalized cluster mean trajectories relative to baseline (x-axis in months), as identified by VaDER from the PPMI motor/non-motor score data.

tween our patient subgroups reflect known aspects of PD disease
progression.

Identifying subgroups of patients with similar progression pat-
terns can help to better elucidate the heterogeneity of complex
diseases. Together with predictive machine learning methods,
this might improve decision making on the right time and type
of treatment for an individual patient, as well as the design of
clinical studies. However, one of the main challenges is the mul-
tifaceted nature of progression in many areas of disease.

In this article, we proposed VaDER, a method for clustering
multivariate, potentially short, time series with many missing
values, a setting that seems generally not well addressed in the
literature so far but is nonetheless often encountered in clinical
study data.

We validated VaDER by showing the very high accuracy on
clustering simulated and real-world benchmark data with a

known ground truth. We then applied VaDER to data from (i)
ADNI and (ii) PPMI, resulting in subgroups characterized by clin-
ically highly divergent disease progression profiles. A compari-
son with other data from ADNI and PPMI, such as brain imag-
ing and motor and cognitive assessment data, furthermore sup-
ported the observed patient subgroups.

VaDER has 2 main distinctive features. One is that VaDER
deals directly with missing values. For clinical research this is
crucial because clinical datasets often show a very high degree
of missing values [57, 58]. The other main distinctive feature is
that, as opposed to existing methods [10-14], VaDER is specif-
ically designed to deal with multivariate and relatively short
time series that are typical for (observational) clinical studies.
However, it is worthwhile to mention that the application of
VaDER is not per se limited to longitudinal clinical study data
or to time series of short length. Future applications (potentially
requiring some adaptations) could, e.g., include data originat-
ing from electronic health records, multiple wearable sensors,
video recordings, or time-series gene (co-)expression. Moreover,



VaDER could be used as a generative model: given a trained
model, it is possible to generate “virtual” patient trajectories.
Altogether, we believe that our results show that VaDER has
the potential to substantially enhance future patient stratifica-
tion efforts and multivariate time series clustering in general.

ADNI data preparation

Data used in the preparation of this article were obtained from
the ADNI database (adni.loni.usc.edu). The ADNI was launched
in 2003 as a public-private partnership, led by Principal Inves-
tigator Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography, other biological markers, and
clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment and early
AD. For up-to-date information, see www.adni-info.org.

The ADNIMERGE R-package [59] contains mainly 2 categories
of data, (i) longitudinal and (ii) non-longitudinal. These data
represent 1,737 participants that include healthy controls and
patients with a diagnosis of AD. The non-longitudinal features
such as demographic characteristics and apolipoprotein E4 sta-
tus were measured only once, at baseline. The longitudinal fea-
tures (i.e., neuroimaging features, cerebrospinal fluid biomark-
ers, cognitive tests, and everyday cognition) were recorded over
a span of 5 years.

Clinical data In the present study, we have focused on those par-
ticipants who received a diagnosis of AD at baseline or during
1 of the follow-up visits. After this filtering step, we had a total
of 689 patients. For these 689 patients, 4 cognitive assessments
were selected for clustering:

® ADAS-13: Alzheimer’s Disease Assessment Scale

® CDRSB: Clinical Dementia Rating Sum of Box Score
® FAQ: Functional Activities Questionnaire

* MMSE: Mini-Mental State Examination

The above assessments were taken at baseline and at 6, 12,
18, 24, 36, 48, and 60 months after baseline. For each of the 4 cog-
nitive assessments, all time points were normalized relative to
baseline by (i) subtracting the baseline mean across the 689 pa-
tients and (ii) dividing by the baseline standard deviation across
the 689 patients.

Imaging data All available MRI scans (T1-weighted scans) from
the ADNI database were quantified by an open-source, auto-
mated segmentation pipeline at the Erasmus University Med-
ical Center, The Netherlands. The number of slices of the T1-
weighted scans varied from 160 to 196 and the in-plane resolu-
tion was 256 x 256 on average, yielding an overall voxel size of
1.2 x 1.0 x 1.0 mm. From the 1,715 baseline ADNI scans, the vol-
umes of 34 bilateral cortical brain regions, 68 structures in total,
were calculated using a model- and surface-based automated
image segmentation procedure, incorporated in the FreeSurfer
Package (v.6.0 [60]). Segmentation in Freesurfer was performed
by rigid-body registration and nonlinear normalization of im-
ages to a probabilistic brain atlas. In the segmentation process,
each voxel of the MRI volumes was labeled automatically as a
corresponding brain region based on 2 different cortex parcella-
tion guides [61, 62], subdividing the brain into 68 and 191 regions,
respectively.

PPMI data preparation
Patients were selected if their PD diagnosis was <2 years old at
baseline and if follow-up data were available for >48 months (5-
10 time points), resulting in a total of 362 patients. For these 362
patients, a set of 9 motor and non-motor symptoms were se-
lected for clustering:

® TD: tremor dominance

* PIGD: postural instability and gait disturbance

* UPDRS1: Unified Parkinson Disease Rating Scale, part 1: men-
tation, behavior, and mood

® UPDRS2: Unified Parkinson Disease Rating Scale, part 2: ac-
tivities of daily living

* UPDRS3: Unified Parkinson Disease Rating Scale, part 3: mo-
tor examination

® UPDRS: Unified Parkinson Disease Rating Scale (UPDRS1 +
UPDRS2 + UPDRS3)

* RBD: REM sleep behavior disorder

® ESS: Epworth Sleepiness Scale

® SCOPA-AUT: Scales for Outcomes in Parkinson Disease: As-
sessment of Autonomic Dysfunction

All scores were normalized relative to baseline by (i) subtract-
ing the baseline mean across all patients and (ii) dividing by the
baseline standard deviation across all patients.

For some assessments, fewer time points were available.
These were treated as missing values.

Benchmark datasets for multivariate time-series classification
Because no benchmark datasets exist for multivariate time se-
ries clustering, we collected a number of benchmark datasets
for multivariate time-series classification [41, 42]. Because cur-
rently, VaDER still only works with equal-length time series (see
also Section Discussion and conclusions), we pre-processed all
samples to equal-length time series by linear interpolation be-
tween start and end point. Following [63, 64], we chose constant
lengths of [Tmax/ [ B2x]], where Tmax is the maximum length of
the lengths of the samples in a given dataset.

Moreover, all resulting time series were standardized to zero
mean and unit variance.

The VaDER model is extensively described in the Results section.
This section describes how VaDER was trained.

Pre-training

Similar to Jiang et al. [23], we pre-train VaDER by disregarding
the latent loss during the first epochs, essentially fitting a non-
variational LSTM autoencoder to the data. We then fit a Gaussian
mixture distribution in the latent space of this autoencoder and
use its parameters to initialize the final variational training of
VaDER.

Hyperparameter optimization and choice of number of clusters
We used prediction strength [43] to select suitable values for
VaDER’s hyperparameters. These comprise the following:

* number of layers (for both ADNI and PPMLI: {1, 2})

* number of nodes per hidden layer (for ADNI: {2°, 21, 22, 23,
24,25, 25}; for PPML: {20, 21, 22, 23, 2%, 25, 26, 27})

* learning rate (for both ADNI and PPMIL: {1074, 1073, 1072,
101))

* mini-batch size (for both ADNI and PPMI: {24, 25, 25, 27})
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Hyperparameter optimization was performed via a random
grid search (i.e., by randomly sampling a predefined hyperpa-
rameter grid) with repeated cross-validation (n = 20), using the
reconstruction loss as objective. This was done during the pre-
training phase of VaDER.

After hyperparameter optimization we trained VaDER mod-
els for different numbers of clusters k € {2...15}. For each k, pre-
diction strength was computed by 2-fold cross-validation [43]:
for a given training and test dataset:

1) Train VaDER on the training data (the training data model).
2) Assign clusters to the test data using the training data model.
3) Train VaDER on the test data (the test data model).

4) Assign clusters to the test data using the test data model.

5) Compare the resulting 2 clusterings: for each cluster of the
test data model, compute the fraction of pairs of samples
in that cluster that are also assigned to the same cluster
by the training data model. Prediction strength is defined as
the minimum proportion across all clusters of the test data
model [43].

P

Prediction strength was then compared to an empirical null
distribution of that measure. The null distribution of the pre-
diction strength was computed by randomly permuting the pre-
dicted cluster labels 10° times, then recomputing the prediction
strength, and eventually taking the average of the 10° prediction
strength values. Doing this for all 20 repeats resulted in 20 values
for the eventual null distribution, which were then compared to
20 actual prediction strength values (similarly, 1 for each repeat)
by a paired Wilcoxon rank-sum test.

Overview of data-generating process

To better understand the performance of VaDER we conducted
an extensive simulation study: we simulated multivariate (short)
time series via VAR processes [65] because (i) they can model
the auto-correlation between time points, (ii) they can model the
cross-correlation between variables, and (iii) given a VAR, one
can generate random trajectories from that VAR.

We used mixtures of VAR processes to simulate multivari-
ate time-series data of the same dimensions as the ADNI data:
4 variables measured over 8 time points. Given a clusterability
factor 1, we generated trajectories as follows:

(1) Sample coefficient matrices for 3 VAR(8) processes, by ran-
domly sampling the individual entries of each 4 x 4 matrix
from the uniform distribution %/(—0.1, 0.1). Multiply each of
the matrix entries by A.

(2) Randomly sample 3 additional 4 x 4 matrices from
U(—0.1, 0.1) and multiply each by its own transpose. Let each
of the results correspond to the variance-covariance matrix
of 1 of the 3 VAR(8) processes.

(3) Repeat 10° times:

(1) Randomly select 1 of the 3 VAR(8) processes (with equal
probability).

(2) Generate a random trajectory from the selected VAR(8)
process.

The above generates 1 set of random data. Given a value of
A, the entire sampling process was repeated 100 times, and each
of the 100 datasets was clustered using both VaDER and hierar-
chical clustering.

For computational reasons, hyper-parameters for VaDER
were fixed and not further optimized during our simulation (102

epochs of both pre-training and training, learning rate: 10~4, 2
hidden layers: [36, 4], batch size: 64).

Comparison against hierarchical clustering

We compared VaDER against a conventional hierarchical clus-
tering (complete linkage), in which we flatten the N x M data
matrices of each patient into vectors. We considered 3 distance
measures for these vectors:

® Pearson correlation

® Euclidean distance

® STS distance [40], a distance measure specifically developed
for univariate short time series. The STS distance relies on
the difference between adjacent time points. Here we first
computed the STS distance for each of the different clinical
outcome measures and then summed these up to arrive at
an aggregated STS distance across the M clinical measures.

Additionally, we compared VaDER against hierarchical clus-
tering using 2 distance measures specifically designed for mul-
tivariate time series:

e MD-DTW [38]
* Fast GAK [39]

Given that VaDER is non-deterministic, we ran 100 repli-
cates for each (simulated/benchmark) dataset and determined
the consensus clustering by hierarchically clustering a consen-
sus matrix listing, for each pair of samples, how often these 2
samples were clustered together across the 100 replicates.

Simulating missing data

To test the ability of VaDER to deal with missing data we per-
formed a separate set of simulations: Let L be the number of pa-
tients in our dataset and x' € RN*M a single patient trajectory (I €
1...L), where N is the number of time points and M is the num-
ber of measured features. MCAR were simulated by an individual
entry x| j to missing with probability 6.

MNAR was simulated by letting the probability of a missing
value for entry x! j depend on time. More specifically, each indi-
vidual entry x; was set to missing with probability 1/(1 + elo~'/),
where iy = (1 + N)/2 and k was varied to result in different over-
all missingness fractions 6.

To compare VADER’s implicit imputation with pre-
imputation, missing values generated using the above approach
were additionally imputed using mean substitution: each
missing value was substituted with the average conditioned on
the relevant time point and variable.

Given that VaDER is non-deterministic, we ran 20 replicates
for each (simulated/benchmark) dataset and determined the
consensus clustering by hierarchically clustering a consensus
matrix listing, for each pair of samples, how often these 2 sam-
ples were clustered together across the 20 replicates. Confidence
intervals were determined by repeating the aforementioned pro-
cedure 100 times (simulation experiments) or 5 times (bench-
mark experiments) with newly generated missingness patterns
(simulation/benchmark experiments) and/or data (simulation
experiments).

Estimating clustering performance

For the simulation and benchmark datasets, the number of clus-
ters is a priori known. Hence, an intuitive measure of compar-
ing the performance between the different algorithms is cluster
purity [37]. Cluster purity can be interpreted as the fraction of
correctly clustered samples and is calculated as follows:



(1) For each cluster, count the number of samples from the ma-
jority class in that cluster.

(2) Sum the above counts.

(3) Divide by the total number of samples.

For the ADNI and PPMI data, the number of clusters is not a
priori known. Hence, performance was recorded using the ad-
justed Rand index [66, 67] for different values of 1 in the interval
[0.001, 0.25]. For . Z 0.25, generating coefficient matrices that
lead to stable VARs becomes very difficult.

We collected a wide range of additional variables from ADNI
and PPMI and assessed the association of the identified patient
subgroups with a given variable by multinomial logistic regres-
sion. For any baseline variable x, we first fitted the following full
model:

subgroup ~ x + confounders. (6)
Each of these full models was then compared to a null model:
subgroup ~ confounders 7)

by means of a likelihood ratio test.
For any longitudinal variable x measured at time points t, we
first fitted the following multinomial logistic regression model:

subgroup ~ x +t + x *x t + confounders. (8)
We tested this model against the null model:
subgroup ~ confounders 9)

by performing a likelihood ratio test and applying a false dis-
covery rate correction for multiple testing. If the above test was
found to be significant (q < 0.05), we tested the effects of the
individual terms x * t, X, and t against the same null model
above.

Confounders considered were age, education, and sex but
were only included when univariate results were significantly
associated with subgroup. For ADNI, this was only age (P =
0.0029, ANOVA F-test). For PPMI, this was only sex (P = 0.0017,
x? test).

In the post hoc analysis, only complete cases were included;
i.e., patients with missing values were ignored.

A complete implementation of VaDER in Python/Tensorflow: ht
tps://github.com/johanndejong/VaDER.

An R-package for streamlining the processing of PPMI data: http
s://github.com/patzaw/PPMI-R-package-generator.

Other code used for generating results presented in this article:
https://github.com/johanndejong/VaDER_supporting_code.
Snapshots of all the above code and other supporting data are
also available in the GigaScience database, GigaDB [68].

Supplementary information: Supplementary Methods and Re-
sults are available via the additional file associated with this ar-
ticle.

Supplementary Figure S1 Multivariate short time series data
simulated using vector autoregressive processes, for 4 variables,
8 time points and 3 clusters, and different levels of the similarity
parameter A.

Supplementary Figure S2 ADNI: prediction strength of VaDER for
each k (blue) and the corresponding permutation-based null dis-
tribution.

Supplementary Figure S3 ADNI: associations of the VaDER clus-
tering with a wide range of other baseline data available from
ADNI.

Supplementary Figure S4 ADNI: associations of the VaDER clus-
tering with a wide range of other baseline data available from
ADNI.

Supplementary Figure S5 ADNI: associations of the VaDER clus-
tering with a wide range of other baseline data available from
ADNI.

Supplementary Figure S6 ADNI: associations of the VaDER clus-
tering with a wide range of other baseline data available from
ADNI.

Supplementary Figure S7 ADNI: associations of the VaDER clus-
tering with a wide range of other baseline data available from
ADNI.

Supplementary Figure S8 ADNI: associations of the VaDER clus-
tering with a wide range of other longitudinal data available
from ADNI.

Supplementary Figure S9 PPMI: prediction strength of VaDER for
each k (blue) and the corresponding permutation-based null dis-
tribution.

Supplementary Figure S10 PPMI: associations of the VaDER clus-
tering with a wide range of other baseline data available from
PPMIL

Supplementary Figure S11 PPMI: associations of the VaDER clus-
tering with a wide range of other baseline data available from
PPMI.

Supplementary Figure S12 PPMI: associations of the VaDER clus-
tering with a wide range of other baseline data available from
PPMIL.

Supplementary Figure S13 PPMI: associations of the VaDER clus-
tering with a wide range of other longitudinal data available
from PPMI.

Supplementary Figure S14 PPMI: associations of the VaDER clus-
tering with a wide range of other longitudinal data available
from PPMIL

Supplementary Figure S15 PPMI: associations of the VaDER clus-
tering with a wide range of other longitudinal data available
from PPMIL

AD: Alzheimer disease; ADAS-13: Alzheimer Disease Assess-
ment Scale; ADNI: Alzheimer’s Disease Neuroimaging Initia-
tive; ANOVA: analysis of variance; CDRSB: Clinical Dementia
Rating Sum of Box Score; ESS: Epworth Sleepiness Scale; FAQ:
Functional Activities Questionnaire; GAK: Global Alignment Ker-
nels; LSTM: long short-term memory; MAR: missing at ran-
dom; MCAR: missing completely at random; MD-DTW: multi-
dimensional dynamic time warping; MMSE: Mini-Mental State
Examination; MNAR: missing not at random; MRI: magnetic


https://github.com/johanndejong/VaDER
https://github.com/patzaw/PPMI-R-package-generator
https://github.com/johanndejong/VaDER_supporting_code

resonance imaging; PD: Parkinson disease; PIGD: postural insta-
bility and gait disturbance; PPMI: Parkinson’s Progression Mark-
ers Initiative; RBD: REM sleep behavior disorder; SCOPA: Scales
for Outcomes in Parkinson’s Disease; STS distance: short-time-
series distance; TD: tremor dominance; UPDRS: Unified Parkin-
son’s Disease Rating Scale; UPDRS1: Unified Parkinson’s Disease
Rating Scale, Part 1; UPDRS2: Unified Parkinson’s Disease Rat-
ing Scale, Part 2; UPDRS3: Unified Parkinson’s Disease Rating
Scale, Part 3; UCIL: University of California Irvine Machine Learn-
ing Repository; UEA/UCR: University of East Anglia/University of
California, Riverside Time-Series Classification Archive; VaDE:
variational deep embedding; VaDER: variational deep embed-
ding with recurrence; VAR: vector autoregression; VCF: variant
call format.
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