
Neuronal polarity is the process in which a neurite rapidly 
grows into an axon, and the remaining neurites differentiate 
into dendrites [1]. Understanding the mechanisms that 
govern cell polarity may be critical for developing strategies 
for treating KLF5b deletion that induces locomotor 
impairments [2], and accelerate retinal ganglion cell (RGC) 
axon regeneration [3,4] and prevent neurodegeneration, such 
as Alzheimer disease [5,6]. Retinal ganglion cells are the 
inner neurons of the retina, and can transmit visual signals 
to the lateral geniculate body. Cell polarity is a prerequisite 
for directed information flux within neuronal networks. Two 
main factors affect the polarity of retinal ganglion cells: 
intrinsic mechanisms [7] and extracellular factors [8].

Semaphorin-3A (Sema3A) is one of the extracellular 
factors that can guide axon growth during the development 
of RGCs [9]. Increased expression of Sema3A results in 
strong axonal inhibition in optic nerve injury [10]. Sema3A 
is expressed in the ganglion cell layer (GCL) of the rat retina, 
and expression of Sema3A has been found to be higher at 
P14 than at birth [11]. At P14, all RGC axons have reached 
their recipient sites [12], and the formation of synapses with 

target neurons is underway [13]. Therefore, we speculated 
that Sema3A may be involved in regulating RGC polarity. 
However, the factors that affect Sema3A expression are 
unknown.

MicroRNA-30b (miR-30b) is a highly conserved small 
RNA molecule involved in many cellular physiologic and 
pathological processes [14-17]. Our previous studies showed 
that the overexpression of miR-30b statistically significantly 
inhibits the protein and gene expression of Sema3A in RGCs 
[18]. Therefore, we speculated that miR-30b may play a 
regulatory role in RGC polarity by inhibiting Sema3A.

To explore the potential functions of Sema3A in 
regulating the polarity of RGCs, we used Fc-Sema3A and 
RNA interference (RNAi) methods to reduce Sema3A 
expression in primary cultured RGCs. Furthermore, we 
investigated the role of miR-30b in affecting the polarity 
of RGCs and its effects on the expression of Sema3A and 
its downstream protein kinase A (PKA)/glycogen synthase 
kinase 3 beta (GSK-3β)/collapsing response mediator protein 
2 (CRMP2) signaling pathway.

METHODS

Animals: Neonatal Sprague-Dawley (SD) rats of either sex 
at P1 were provided by the Animal Experimental Center 
(Institute of Surgery Research, Daping Hospital, Third 
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Purpose: Retinal ganglion cell (RGC) polarity plays an important role in optic nerve regeneration. This study was 
designed to investigate whether semaphorin-3A (Sema3A) is involved in the regulation of RGC polarity and Sema3A 
protein expression.
Methods: Cultured primary RGCs were treated with Fc-Sema3A or Sema3A siRNA or transfected with purified miR-
30b recombinant adenoassociated virus (rAAV). The polarity of the RGCs was observed with immunofluorescence. A 
western blot analysis of phosphorylated protein kinase A (p-PKA), the downstream effector molecule phosphorylated 
glycogen synthase kinase 3 beta (GSK-3β), and collapsing response mediator protein 2 (CRMP2) was performed.
Results: We found that Sema3A could statistically significantly promote dendritic branching while inhibiting the growth 
of axons in RGCs. miR-30b overexpression and Sema3A siRNA could statistically significantly promote the growth 
of axons while inhibiting the growth of dendrites from RGCs. Additionally, miR-30b could restrain the expression of 
Sema3A protein and its downstream PKA/GSK-3β/CRMP2 signaling pathways.
Conclusions: The results indicate that Sema3A promotes dendritic growth and inhibits axonal growth, which is not 
conducive to the early repair of optic nerve injury. The overexpression of miR-30b can overcome this problem, and may 
represent a new target for the treatment of nerve injury and regeneration in the future.
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Military Medical University, Chongqing, China). The Animal 
Research Committee of the Third Military Medical Univer-
sity approved the study protocol.

Cell culture: RGCs were purified from SD rats at P1 by 
immunopanning, and subsequently cultured on six-well 
bottomed plates or 24-well bottomed plates coated with poly-
D-lysine (0.1 mg/ml, molecular weight 30,000–70,000; Sigma 
Aldrich, St. Louis, MO) as previously described [18]. The cell 
density was adjusted to 1.5–2.0 × 105 cells. The Fc-Sema3A 
chimera (0.5  μg/ml or 1  μg/ml, 5926-S3–025/CF; R&D 
Systems, Minneapolis, MN), which has the ability to cause 
the collapse of chick embryonic dorsal root ganglia neuron 
growth cones, was used to treat the cultured RGCs at 8 h after 
plating, and the cells were fixed with warm formaldehyde 
after 72 h of culture.

Virus production and siRNA transfection: Recombinant 
adenoassociated virus (rAAV)-miR-30b mimic (5′-UCG ACU 

CAC AUC CUA CAA AUG U-3′), rAAV-miR-30b inhibitor 
(5′-AGC UGA GUG UAG GAU GUU UAC A-3′), and 
rAAV-miRNA control (NC) were synthesized by RiboBio 
Co. (Guangzhou, China) and purchased from SBO Medical 
Biotechnology Co. (Shanghai, China) as described in our 
previous study [18]. The rAAV-miR-30b mimic (1.0 × 1010 vg), 
rAAV-miR-30b inhibitor (1.0 × 1010 vg), or rAAV-miRNA NC 
(1.0 × 1010 vg) was added to the cultured RGCs at 12 h post-
plating. We used the Sema3A small interfering RNA (siRNA) 
sequence screened by previous experiments [18]. An siRNA 
duplex targeting Sema3A, 5′-GCA AUG GAG CUU UCU 
ACU A-dTdT-3′, was used, with BLAST analysis revealing 
that this sequence exhibited no homology to any rat genes 
other than Sema3A [18]. The Sema3A siRNA and control 
Sema3A were transiently transfected into RGCs at 12 h after 
incubation using Lipofectamine 2000 (Invitrogen, Shanghai, 
China) according to the manufacturer’s instructions. The cells 
were subsequently examined at 120 h after transfection.

Figure 1. The effects of exogenous Sema3A on axon and dendrite differentiation in RGCs. A: Fc-Sema3A (0.5 μg/ml) treatment for 72 h 
promoted the formation of RGC dendrites and inhibited axon growth, as demonstrated by immunostaining for neurites and dendrites with 
III-tubulin and the dendrite marker MAP2 antibodies, respectively. Filled and empty arrows denote axons and dendrites, respectively. The 
scale bar is 40 μm. B: The lengths of the longest axon and dendrite per RGC were measured after culture in Fc-Sema3A (0.5 μg/ml) after 
72 h (mean±SD; 40-53 cells per treatment). C, D: The numbers of RGCs with different numbers of axons and dendrites were measured 
following treatment with Fc-Sema3A (1 μg/ml or 0.5 μg/ml) after 72 h. E: The percentage of bipolar cells was measured following treatment 
with Fc-Sema3A (1 μg/ml) after 72 h (41-53 cells per treatment). *p<0.05, **p<0.01.
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Immunocytochemistry: Cultured RGCs (4% paraformalde-
hyde) were washed twice with PBS (1X; 120 mM NaCl, 20 
mM KCL, 10 mM NaPO4, 5 mM KPO4, pH 7.4) and permea-
bilized for 5 min using 1% Triton X-100/PBS. The cells were 
stained with the neuronal marker III-tubulin (1:500, ab78078; 
Abcam, Cambridge, MA) and the dendrite marker MAP2 
(1:800, ab5392, Abcam) for morphological assessment, and 
CRMP-2 (T524; 1:500, #9397; Cell Signaling Technology, 
Inc., ZeHeng, Danvers, MA) for CRMP-2 phosphorylation 
assessment.

Neuronal morphology analysis: Postnatal RGCs were 
cultured and coimmunostained for the neuronal marker III-
tubulin and the dendrite marker MAP2 as described above. 
The dendrite was identified by colocalization of the neuronal 
marker III-tubulin and the dendrite marker MAP2. The axon 
was clearly identifiable by the lack of the dendrite marker 
MAP2.

Similar to those described in rat hippocampal cells [19], 
RGCs exhibit four stages of polarization [7]. In addition, 
Stage 4 usually appears in RGC culture as one long axon-like 
neurite and a few short, branching neurites [7]. Therefore, we 

defined cells as polarized if at least one long axon-like neurite 
and a few short, branching neurites were present.

The length of the longest axon or dendrite was quantified 
in all polarized cells at 72, 120, and 128 h. All images were 
collected under a 20X objective or 40X objective. For anal-
ysis of neuronal polarization, the cells were categorized as 
bipolar (single or double morphology) or multipolar (multiple 
morphology). To analyze the axon or dendrite branch residing 
at the cell, the total axon or dendrite branch number was 
quantified. All results were quantified using Image-Pro Plus 
6.0 software (Media Cybemetics, Rockville, MD). Each 
experiment tested each condition in triplicate plates.

Western blot assays: At 8 h or 12 h after synchronization 
with Dulbecco’s modified Eagle’s medium (DMEM)/0.4% 
fetal bovine serum (FBS), the RGCs were left untreated or 
were treated with Fc-Sema3A (1 μg/ml) or transfected with 
rAAV-miR-30b mimic, rAAV-miR-30b inhibitor, rAAV-
miRNA NC, and Sema3A siRNA for the times indicated. 
Whole-cell lysates were collected with M-PERTM protein 
extraction reagent (Thermo Fisher Scientific, Shanghai, 
China) containing a protease- phosphatase inhibitor lysis 
buffer (Pierce, Rockford, IL) to detect Sema3A (1:500; Santa 

Figure 2. Changes in Sema3A protein content in each group. A: WB showing Sema3A expression in RGCs cultured for 3 d, 7 d, or 10 d. 
B: The expression of Sema3A in cultured RGCs transfected with miR-30b mimic, inhibitor, miRNA NC, or Sema3A siRNA at 120-140 h 
(n=3). *p<0.05 compared to control siRNA.
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Cruz Biotechnology, Inc., Santa Cruz, CA), phosphorylated 
GSK-3β (S9; 1:1,000, #9323; Cell Signaling Technology, Inc.), 
the activation of PKA (1:500, sc-32968; Santa Cruz Biotech-
nology, Inc.), and phosphorylated CRMP2 (T514). Equal 
amounts of protein were separated with sodium dodecyl 
sulfate–polyacrylamide gel electrophoresis (SDS–PAGE; 
10% gels) and transferred to immobilon-P polyvinylidene 
difluoride (PVDF) membranes (Millipore, Billerica, MA). 
The expression of tubulin or nonphosphorylated PKA in each 
sample was also detected to confirm equal protein loading. 
The experiments were repeated at least three times.

Statistical analysis: SPSS 13.0 (IBM, Armonk, NY) software 
was used for statistical analysis. The results are expressed as 
the mean ± standard error of the mean (SEM). Two-group 
statistical analyses were performed using Student t tests. 
Multiple-group statistical analyses were performed using 
one-way ANOVA (ANOVA) followed by least statistically 
significant difference post hoc tests. Intergroup compari-
sons of axon or dendrite branch measurements in cells were 
performed using nonparametric tests (Kruskal–Wallis tests) 
followed by Mann–Whitney tests (for two samples). Correla-
tion analysis was used to study the relationship between axon 

length and dendrite length. A p value of less than 0.05 was 
considered statistically significant.

RESULTS

Sema3A polarizes axon and dendrite formation in RGCs: To 
determine whether the Sema3A protein affects the polarity of 
RGCs, we added Fc-Sema3A (0.5 µg/l or 1 µg/l) to cultures 
of postnatal RGCs for 72 h; then, the RGCs were fixed and 
permeabilized. Colocalization of MAP2 with the neuronal 
marker III-tubulin identified dendrites. The axon was clearly 
identifiable by the lack of the dendrite marker MAP2 (Figure 
1A). The analysis of the length of the longest axon and 
dendrite on each neuron in response to 0.5 µg/l Fc-Sema3A 
revealed that relative to the control treatment, Sema3A statis-
tically significantly inhibited axon growth but did not affect 
the length of the dendrites (Figure 1B). However, at 1 µg/l, we 
found that Sema3A greatly increased the number of dendritic 
branches (Figure 1C). The Fc-Sema3A concentration did not 
affect the number of RGC axons (Figure 1D). To determine 
whether Sema3A was able to induce bipolarity in RGCs, we 
determined the percentage of bipolar cells. We found that 

Figure 3. Changes in RGC axons and dendrites after transfection with Sema3A siRNA. A: Treatment with siRNA Sema3A and control siRNA 
for 120 h promoted the growth of RGC axons and inhibited the growth of dendrites. Scale bar, 40 μm. B: The longest axon and dendrite per 
RGC were measured after transfection with Sema3A siRNA at 120 h of culture. C: The percentage of bipolar cells was measured in Sema3A 
siRNA-treated RGCs after 120 h (mean ± SD; 37-71 cells per treatment, *p<0.05 compared to control siRNA).
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1 µg/l Fc-Sema3A did not statistically significantly induce 
bipolarity in the RGCs (Figure 1E).

The results above showed that the presence of Sema3A 
strongly inhibited RGC axon growth and promoted dendrite 
branching, raising the question of whether the inhibition of 
Sema3A expression influences RGC polarity. To address this 
question, we examined cultured RGCs at three time points (3, 
7, and 10 days), and found that Sema3A expression increased 
with time (Figure 2A). Then, we cultured RGCs transfected 
with Sema3A siRNA [18] for 120–140 h. We found that 
Sema3A expression was statistically significantly decreased 
in the cells transfected with Sema3A siRNA relative to the 
expression observed in the control cells (Figure 2B). Then, we 
measured the lengths of the longest axon and dendrite of each 
neuron after 120 h. We found that cultured RGCs treated with 
Sema3A siRNA produced longer axons and shorter dendrites, 
on average, than did controls (Figure 3A,B). In addition, we 

found that in the Sema3A siRNA-treated RGCs, the number 
of bipolar cells was statistically significantly decreased 
compared to that in the control cells, whereas the number of 
multipolar cells was strongly increased (Figure 3C). Taken 
together, these results show that Sema3A is potentially 
involved in the regulation of neuronal polarity in RGCs.

Altered RGC polarity after miR-30b transfection: Our 
previous studies showed that miR-30b can inhibit Sema3A 
expression in RGCs [18], which is similar to the present result 
(Figure 2B). To determine whether miR-30b can regulate the 
polarity of RGCs, we measured the total lengths of the axons 
and dendrites of each neuron transfected with miR-30b mimic, 
inhibitor, or NC. We found that miR-30b mimic transfection 
statistically significantly promoted axon growth (Figure 
4A,B) and inhibited the number of dendritic branches (Figure 
4C). The change in concentration of miR-30b did not affect 
the number of RGC axons (Figure 4D). We next determined 

Figure 4. miR-30b mimic modulates the axon and dendrite attributes of RGCs. RGCs transfected with miR-30b mimic, inhibitor, or miRNA 
NC were challenged with rAAV. A: Immunostaining of RGC cultured with miR-30b mimic and miRNA NC for 120 h. Scale bar, 20 μm. 
(mean ± SD; 44-45 cells per treatment; *p<0.05, compared to miRNA NC; #p<0.05, compared to the alternative dose). B: The longest axon 
and dendrite per RGC were measured after culture of postnatal RGCs after 120 h (mean ± SD; n=3 cultures; 44-45 cells per treatment; 
*p<0.05 compared to miRNA NC; #p<0.05, compared to the alternative dose). C, D: The numbers of cells of different numbers of axons and 
dendrites were measured in RGCs transfected with miR-30b mimic, inhibitor, or miRNA NC after 120 h (44-45 cells per treatment, *p<0.05). 
E: The percentage of bipolar cells was measured in RGCs transfected with miR-30b mimic, inhibitor, or miRNA NC after 120 h (95-85 
cells per treatment). F: Correlations between average axon length and average dendrite length of RGCs (44-45 cells per treatment, *p<0.05).
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the percentage of bipolar cells, and found that miR-30b mimic 
transfection statistically significantly induced bipolarity in 
RGCs (Figure 4E). To determine the relationship between the 
axon length and dendrite length, we analyzed the average 
axon length and the average dendrite length of individual 
cells in each treatment group. We found a negative correla-
tion between the axon length and the dendrite length under 
miR-30b overexpression (Figure 4F). These results showed 
that miR-30b is involved in the regulation of RGC polarity.

The expression of the PKA/GSK-3β/CRMP2 signaling 
pathway was altered in the miR-30b and Sema3A groups: 
The results above confirmed that miR-30b participates in the 
regulation of RGC polarity. Next, we used western blot assays 
to investigate whether miR-30b can be exerted by inhibiting 
the PKA/GSK-3β/CRMP2 signaling pathway, which is 
regulated by Sema3A. We found that the phosphorylated 
PKA (p-PKA) and GSK-3β (S9) levels were statistically 

significantly decreased in Fc-Sema3A (1 µg/l), whereas the 
p-PKA and GSK-3β (S9) levels were statistically significantly 
increased in the miR-30b-overexpressing cells (Figure 5A). 
CRMP2, a downstream effector of Sema3A, can regulate 
the stability of cytoskeletal proteins. Analysis of CRMP2 
(T514) showed that the stability of CRMP2 was inhibited, 
and that the cytoskeleton stability was destroyed. In addi-
tion, we found that CRMP2 (T514) was increased statistically 
significantly in Sema3A-overexpressing cells, but decreased 
statistically significantly in miR-30b-overexpressing cells 
(Figure 5B).

DISCUSSION

Previous studies have demonstrated that in the zebrafish and 
mouse, RGCs directly inherit bipolar characteristics from 
their neuroepithelial progenitor cells [7,20,21], and that RGCs 
exhibit various neuronal polarity forms, such as multipolarity, 

Figure 5. Differences in p-PKA, GSK-3β (S9), and CRMP2 (T514) expression among the control, miR-30b mimic, Fc-Sema3A, and 
miRNA NC groups. A: WB showing p-PKA, GSK-3β (S9), and CRMP (T514) expression after transfection with miR-30b mimic or 1μg/
mL Fc-Sema3A. B: Fluorescence intensity of CRMP2 (T514) in the different groups after 60 h of culture (n=3 cultures; p<0.05, **P<0.01 
compared to miRNA NC or control; #p<0.05, ##p<0.01 compared to the alternative dose).
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in vitro [7]. These observations indicate that the polarity of 
RGCs is determined not only by the neuroepithelial progen-
itor cells but also by extracellular factors. In this study, we 
examined the role of Sema3A in polarizing axon or dendrite 
differentiation in cultured RGCs. We found that Sema3A 
inhibited axon growth while promoting dendrite growth. 
This result is similar to that of Shelly et al.’s study, although 
the researchers in that study used the stripped plating to 
more directly reveal the phenomenon [22]. An in vitro study 
showed that rat RGC axons are repulsed by Sema5A but not 
by Sema3A [23]; however, this study investigated cultured P8 
RGCs rather than postnatal RGCs. We found that the bipo-
larity of RGCs was statistically significantly decreased after 
the Sema3A inhibition, suggesting that a certain concentra-
tion of Sema3A is conducive to maintaining RGC bipolarity. 
Consistent with our findings, Sema3A has been shown to 
regulate the dorsal root ganglion (DRG) neuronal polarity of 
axons and apical dendrites [24]. These findings suggest that 
Sema3A may regulate neuronal polarity.

Sema3A repulses axons through the coreceptor protein 
neuropilin-1 (NRP1) and plexinAs (PlexAs) [25]. It has 
recently been demonstrated that plexins are phosphorylated 
by the cAMP-dependent PKA and inhibit PKA activity [26]. 
We found that increased Sema3A expression inhibited PKA 
phosphorylation and resulted in axon inhibition, consistent 
with a previous study [27]. We found the Sema3A inhibited 
GSK-3β activity. Consistent with our results, Sema3A has 
been shown to inhibit GSK-3β activity in hippocampal cells 
[28]. In addition, we found that Sema3A promoted the phos-
phorylation and inactivation of CRMP-2 in RGCs, which is 
consistent with the observation that Sema3A regulates PKA/
GSK3β/CRMP2 phosphorylation [29-31].

Sema3A expression changes under optic nerve injury and 
during development [32], but how Sema3A expression is regu-
lated remains unclear. We found that miR-30b and Sema3A 
siRNA not only promote the growth of RGC cell axons 
but also inhibit Sema3A protein expression and the down-
stream PKA/GSK-3Β/CRMP2 signaling pathway. However, 
a slightly different effect was observed in the dendrite as 
follows: miR-30b decreased the number of dendrites, while 
Sema3A siRNA inhibited the length of the dendrites. The 
reason for this difference may be that miR-30b affects other 
molecules. In the world, these findings suggest that miR-30b 
may regulate RGC polarity by inhibiting Sema3A expression.

This study showed that Sema3A and miR-30b are 
involved in the regulation of RGC polarity. This regula-
tion may be achieved through Sema3A and its downstream 
signaling pathway. The results suggest that regulating the 

level of Sema3A may be a target for altering RGC polarity in 
the future, and a potential therapeutic tool.
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