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Abstract

Purpose of review: The purpose of this paper was to address how sleep changes with aging, 

with the broader goal of informing how REM sleep and slow wave activity mechanisms interact to 

promote cognitive longevity.

Recent findings: We conducted novel analyses based on the National Sleep Research Resource 

database. Over approximately five years, middle-to-older aged adults, on average, showed 

dramatically worse sleep fragmentation, a steady decrease in slow wave sleep, and yet a small 

increase in REM sleep. Averaging across participants, however, masked a major theme: 

Individuals differ substantially in their longitudinal trajectories for specific components of sleep. 

We considered this individual variability in light of recent theoretical and empirical work that has 

shown disrupted sleep and decreased slow wave activity to impair frontal lobe restoration, 

glymphatic system functioning, and memory consolidation. Based on multiple recent longitudinal 

studies, we contend that preserved or enhanced REM sleep may compensate for otherwise 

disrupted sleep in advancing age.

Summary: The scientific community has often debated whether slow wave activity or REM 

sleep mechanisms are more important to cognitive aging. We propose that a more fruitful approach 

for future work will be to investigate how REM and slow wave processes dynamically interact to 

affect cognitive longevity.
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“Manifestly new, although evanescent combinations, are made during dreaming; 

but I contend that permanent rearrangements (internal evolutions) are made during 

so-called dreamless sleep.”

*Correspondence to Michael Scullin, Ph.D., Baylor University, One Bear Place 97334, Waco, TX, 76798. Phone: 254-710-2251; 
Michael_Scullin@Baylor.edu. 

Conflict of Interest
Michael K. Scullin reports a grant for research on memory and aging by NIH AG053161. Chenlu Gao declares no potential conflicts 
of interest.

Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors.

HHS Public Access
Author manuscript
Curr Sleep Med Rep. Author manuscript; available in PMC 2019 December 01.

Published in final edited form as:
Curr Sleep Med Rep. 2018 December ; 4(4): 284–293. doi:10.1007/s40675-018-0131-6.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



-John Hughlings Jackson, writing 70 years before the 

discovery of sleep stages [1•].

Introduction

With an aging population, increased prevalence of dementia, and rising healthcare costs, 

there has never been more interest in cognitive longevity. The scientific community has for 

decades communicated the importance of exercise and diet to maintaining cognitive 

functioning in older age, but recently, there has been a surge of interest in the role of sleep in 

cognitive health. For example, last year, Bubu et al. concluded that “15% of [Alzheimer’s 

disease] may be prevented should interventions be implemented to reduce sleep problems 

and disorders” [2]. Given such provocative claims, it is no surprise that the general public is 

similarly interested in sleep and cognitive health. When AARP surveyed 3,374 middle-aged 

and older adults, sleep was the number one brain-health topic that adults wanted to learn 

about, with 98% of respondents indicating that they believed sleep to be important to their 

brain health [3].

The purpose of this paper is to address how sleep typically changes with aging by 

conducting novel analyses on the data in the National Sleep Research Resource. We further 

aim to highlight recent advances in the mechanisms by which sleep affects cognitive 

longevity. Whereas the scientific community has debated whether slow wave sleep/activity 

(SWS/SWA) or REM-based mechanisms are more important to cognitive aging, in this 

paper, we argue a counterpoint based on the sequential hypothesis of memory processing: 

Both SWS and REM sleep interact dynamically to affect cognitive functioning with 

advancing age.

Sleep Changes with Aging Are Dynamic When Measured Longitudinally

More than 1,000 papers have been published on how sleep changes with aging [4-6]. In a 

meta-analysis, Ohayon and colleagues [7] evaluated the cross-sectional literature, reporting 

that nearly every measure of polysomnography (PSG) measured sleep steadily worsened 

across adulthood (nonlinear associations were sometimes observed when including 

children). They reported particularly large age-related changes for SWS and sleep 

fragmentation (wake after sleep onset).

What is striking from Ohayon and colleagues’ [7] meta-analysis, and from the sleep and 

aging literature in general, is how few studies have longitudinally assessed changes in PSG-

defined features of sleep (there are several longitudinal studies that only used self-report 

sleep scales). Due to the costs of PSG and the difficulty of longitudinal assessments, almost 

all such studies have used small sample sizes. The now publicly available National Sleep 

Research Resource offers a solution [8, 9•] by including data from thousands of participants 

who underwent longitudinal PSG assessment in the Sleep Heart Health Study [10]. The 

traditional analytical approach has been to average sleep parameters for each age group at 

each time point; our goal was to re-analyze and plot individual trajectories to inform inter- 

and intra-individual variability in how aging impacts sleep.
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The Sleep Heart Health Study was a multi-center, longitudinal study with Wave 1 data 

collection occurring from 1995 to 1998 and Wave 2 data collection occurring from 2001 to 

2003 [10]. Participants who were 40 years and older, without any history of treatment for 

sleep-disordered breathing were eligible for completing one night of in-home PSG at both 

visits. In addition to the numerous measures to assess sleep-disordered breathing, the 

montage included C3/A2 and C4/A1 EEG to score sleep stages (note that AASM later 

recommended including F3 and F4). Figure 1 displays the major results from the 2,643 

participants who completed the second visit at least 4 years after the first visit (Mage = 62.34 

± 10.41 at visit 1, Mage = 67.56 at visit 2, 53.76% Female, 87.25% White).

All of the cross-sectional data from the Sleep Heart Health Study converged with Ohayon et 

al.’s [7] meta-analytic findings of chronological age being cross-sectionally associated with 

worse sleep. The pre-to-post longitudinal data showed a different story. Not only was there 

far more inter-individual and intra-individual variability than can be captured in a meta-

analysis, but participants gained an average of 4.6 minutes of sleep in the five years between 

PSG assessments (Figure 1a). The gain in total sleep time was offset, however, by the 

severity of sleep fragmentation (Figure 1b). After five years, 31.4% of adults had doubled 

the amount of time they spent awake at night, with the largest increase being in adults 60 

years old and older. By age 80, a WASO of more than 100 minutes per night was very 

common (50.5% of participants). These longitudinal findings indicated a more severe 

increase in WASO than cross-sectional studies observed.

If sleep fragmentation increased more than total sleep time, then the prediction should be 

that sleep architecture is profoundly impacted. Figure 2 disfavored that notion. While the 

changes in sleep architecture were statistically significant (all ps < .001), the intra-individual 

variability rendered the average changes to be hardly visible to the eye, even for the expected 

decrease in SWS duration (6 minute, or 9%, average decrease; Figure 1c). For REM sleep, 

there was actually a 3 minute increase from Visit 1 to Visit 2, which was contrary to 

expectations from cross-sectional analyses, which are most typical in the literature (Figure 

1d). One potential concern is that the longitudinal increase in REM simply reflected a “first 

night effect,” even though the assessments were five years apart [11]. However, two 

hallmarks of the first night effect—greater fragmentation and delayed REM latency on Night 

1 [11]—were opposite of what we observed in our analyses (on Night 2, there were 22 more 

minutes of WASO and REM was delayed by 12 more minutes than Night 1). Lastly, we 

examined whether participants who showed a decline in SWS were also likely to show a 

decline in REM. Interestingly, there was only a weak association between the amount of 

change in REM sleep and change in SWS (R2 = .04; Figure 2).

There are three take-home messages here. First, when looking at data averaged across 

individuals, the Sleep Heart Health Study [10] data converged with most “textbook” sleep 

knowledge: With increasing age, sleep tends to worsen, with the largest impact on measures 

of sleep fragmentation and sleep depth. Second, and much more importantly, averaging 

across individuals to determine how aging affects sleep is imprecise at-best, and misleading 

at-worst because of the substantial individual variability in longitudinal trajectories. Some 

adults’ sleep worsens dramatically, yet many adults’ sleep remains stable or even improves. 

Compared to consensus standards [12], many older adults maintained adequate or even 
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optimal levels of SWS and REM sleep. Third, the weak association between the degree of 

loss of SWS and REM sleep over time raises intriguing possibilities. For example, some 

older adults may show resilience to the loss of SWS by compensating for the loss with 

increased REM sleep. From this view, some of the functions of SWS might be transferred to, 

or partially compensated by, processes during REM sleep.

In the following sections, we consider the implications of inter- and intra-individual 

variability in sleep for neurocognitive processes in aging adults. There are at least three 

pathways by which sleep disturbances with increasing age could accelerate cognitive aging: 

glymphatic metabolite clearance, frontal/executive restoration, and memory consolidation.

Mechanism 1: Glymphatic System Functioning

One mechanism by which sleep should be critical to cognitive aging is via glymphatic 

system functioning [13]. The glymphatic system is a waste clearance system that uses 

astroglial cells and increased cerebrospinal fluid (CSF) flow to remove metabolites such as 

amyloid beta with the purpose of minimizing neurotoxicity. The glymphatic system is 

suppressed during wakefulness, and turned on during sleep [14], perhaps specifically during 

SWS [13]. Aged mice show an 80% reduction in glymphatic function relative to young mice 

[15], and a mice model of Alzheimer’s disease showed glymphatic impairments even prior 

to significant amyloid beta accumulations [16].

In human studies, the connection between sleep, aging, and amyloid levels has mostly been 

correlational [17-21], with three recent exceptions [22•, 23, 24]. Ju and colleagues [22•] had 

17 middle-aged and older adults undergo multiple overnight PSG recordings with morning 

lumbar punctures. On the experimental night, they delivered tones through earphones to 

wake the participant whenever the EEG spectral power exceeded 100 μV2 in the 0.5-4.0 Hz 

frequency band; thus, this procedure targets disrupting SWA. During the control night, 

participants wore earphones but did not deliver sleep-disrupting tones. The sleep-disrupting 

tones severely reduced both SWS and REM sleep during the experimental night, but there 

were no significant changes in CSF amyloid-β40 levels relative to the control night. One 

possible explanation is that the study was underpowered to detect a main effect on CSF 

amyloidβ40 levels, because the researchers identified a large association between the extent 

of change in amyloidβ40 in relation to the extent of change in delta spectral power.

To further test whether altered sleep and SWS affects amyloid production or clearance, 

Lucey and colleagues [23] sampled CSF every two hours for 36 hours across three 

conditions. Eight middle-aged to older adults underwent this intensive procedure during 

periods of total sleep deprivation, normal sleep, or SWS-enhanced sleep (via sodium 

oxybate). Total sleep deprivation increased amyloid production by 25-30%. However, even 

though they pharmacologically increased SWS from 14.2 min (normal sleep) to 69.3 min 

(sodium oxybate), it had no effect on amyloid production or clearance.

Based on the Ju et al. [22•] and Lucey et al.’s [23] experimental findings, SWS probably 

does not account for glymphatic clearance of amyloid in human adults, at least not by itself. 

Researchers should address whether the increased stress, which is common in studies of 
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sleep deprivation/disruption, explains alterations in amyloid [25]. Subjective moodiness has 

already been implicated in an experimental sleep deprivation and PET amyloid 

neuroimaging study at the National Institutes of Health [24]. In 20 cognitively normal adults 

(ages 22-72), a night of total sleep deprivation caused an increase in amyloid beta burden in 

the hippocampus and thalamus. The amount of increase in amyloid beta burden was strongly 

associated with the amount of increase in moodiness. If the role of stress can be successfully 

addressed, then based on the clear effects of total sleep deprivation (cf. nonconclusive effects 

of selective sleep deprivation), another fruitful approach may be to investigate how SWS and 

REM sleep interact dynamically in determining glymphatic and cognitive functioning.

Mechanism 2: Frontal Restoration and Executive Function

A second mechanism by which poor sleep may affect cognitive aging is through restoration 

of frontal lobe and attention/executive functioning. In healthy young adults, a night of total 

sleep deprivation impairs frontoparietal network functioning and default mode network 

connectivity [26]. Studies of sleep, neuroimaging, and aging are covered elsewhere in this 

issue [27], but briefly, numerous studies now indicate that self-reported sleep quality and 

quantity are associated with faster cortical thinning with aging [28]. One line of thinking is 

that SWS and/or REM sleep are needed to restore the functioning of the frontal and medial 

temporal lobe regions on a nightly basis [29, 30]. Thus, if one sleeps poorly across their 

lifespan, then that may have cumulative negative effects on tests of attention, memory 

encoding/retrieval, and/or executive function.

Poor sleep patterns are associated with worse performance on tests of attention and 

executive function in cross-sectional studies that included broad age ranges or clinical 

groups [6]. For example, Dijk and colleagues [31] conducted PSG recordings in 206 healthy 

adults ages 20-84 years old who performed several tests of attention, processing speed, and 

executive function. After controlling for demographic variables, SWS was associated with 

processing speed, whereas REM sleep and measures of sleep fragmentation (e.g., 

awakenings, sleep efficiency) were significantly related to measures of executive 

functioning. Moreover, in the HypnoLaus study that compared 289 cognitively healthy 

adults to 291 adults with mild cognitive impairment or dementia, nearly every measure of 

PSG-defined poor sleep (i.e., increased stage 1 sleep and WASO; and decreased SWS, REM, 

and sleep efficiency) was associated with poorer cognitive functioning as determined by a 

neuropsychological test battery [32].

The most striking evidence for PSG measures predicting cognitive decline arises from three 

recent longitudinal studies. First, in the Osteoporotic Fractures in Men Study (MrOS)[33], 

more than two thousand community-dwelling older men underwent PSG recording at home. 

Greater time spent in N1, and shorter REM duration, were predictive over 3.4 years of faster 

decline on the mini mental state examination (MMSE) and Trail Making Test Part B. 

Second, similar findings emerged in the Framingham Heart Study that included 321 older 

participants who underwent PSG recording at home and repeated MMSE testing [34•]. 

Greater wake after sleep onset and shorter REM duration were predictive of cognitive 

decline 12 years later. Third, in the Study of Oseoporotic Fractures [35], researchers 

conducted quantitative EEG analyses on women who developed mild cognitive impairment 
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or dementia five years later (n = 85) versus those who remained cognitively healthy (n = 85). 

Surprisingly, greater cognitive decline on the MMSE was associated with greater baseline 

SWA (see also [36]). However, consistent with the MrOS and Framingham Heart Study, 

greater sleep fragmentation (i.e., greater alpha power during both NREM and REM sleep) 

was strongly predictive of later cognitive decline (see also [37]).

Despite several reported correlations between cognitive decline and sleep fragmentation, we 

would be remiss if we did not also call attention to the UK Biobank study’s findings. Kyle et 

al. [38•] analyzed data from 477,529 middle-aged and older adults who performed five 

cognitive tasks assessing processing speed, short term memory, prospective memory, and 

reasoning. Participants also answered questions about their total sleep time and whether they 

had difficulty falling asleep or staying asleep. In initial analyses, they observed worse 

performance on all five cognitive tasks in participants who slept fewer than 7 hours, just as 

the field predicted (presumably, participants who sleep <7 hours should have less REM 

sleep). Surprisingly, however, after adjusting for demographic and health variables, 

participants who reported difficulty falling asleep or staying asleep showed significantly 

better processing speed, short term memory, and prospective memory than those who did not 

report sleep difficulties. Thus, within a single, large-sample study, poor sleep could be 

interpreted as leading to worse cognition or better cognition in older adults.

As we have noted in the past [6], a major challenge for the field is to account for the scores 

of null and unexpectedly negative associations between sleep and behavioral cognitive 

outcomes, with the complexity of findings possibly rising with advancing age. A potentially 

fruitful direction for the field emerges from the idea that sleep-based physiological processes 

do not decline uniformly, but instead change dynamically ,with aging (Figure 2). Based on 

this idea, the variability in the literature may reflect that individual studies vary in whether 

they have a disproportionately large (or small) number of older adults who show effective 

(or ineffective) REM compensation in the presence of declining SWS.

Mechanism 3: Memory Consolidation

A third mechanism by which poor sleep may affect cognitive aging is through memory 

consolidation. Studies have repeatedly shown that sleep promotes memory consolidation in 

healthy young adults [39]. Many of these studies have emphasized the memory role of SWS 

[40], with a focus on slow oscillations and spindle activity [5].

Disruptions of memory consolidation may be evident as early as middle age [41]. For 

example, Spencer and colleagues [42] asked 20 young adults (18-30 years old) and 20 

middle-aged adults (35-50 years) to encode emotionally negative and emotionally neutral 

pictures. After a 12-hour daytime wake retention interval or a 12-hour nocturnal sleep 

retention interval, participants completed recognition tests. The young adults who slept 

performed better than the young adults who did not sleep, whereas middle-aged adults who 

slept performed similarly to those in the wake group (regardless of memory valence). On the 

contrary, Payne and colleagues [43] argued that the ability to consolidate emotional memory 

does not deteriorate by middle age. They had young adults (18-39 years old) and middle-

aged adults (40-64 years old) encode 100 scenes with emotionally neutral or negative objects 
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placed on neutral backgrounds. Participants then took a nap or stayed awake. In both age 

groups, a nap immediately following encoding led to significantly better retention of 

emotional objects at the expense of retention of neutral background scenes. A possible, but 

admittedly not fully satisfying, explanation of these mixed findings is that in middle-age, 

memory consolidation starts to decline in only some individuals.

In older adults (e.g., ages 60 and beyond), researchers often observe a substantial reduction 

in memory consolidation [44-47]. Recent studies have shown that older adults are less likely 

than young adults to consolidate memories in the directed forgetting task [48], a vocabulary 

learning task [49], the knowledge-insight number reduction task [50], and a motor-memory 

finger sequence task [51]. Interestingly, however, a meta-analysis found that the age-related 

decline in memory consolidation was larger for declarative/episodic memory consolidation 

than for non-declarative/procedural memory consolidation [39]. Given this seeming 

dissociation, it becomes conceptually important to determine whether what is being 

interpreted as a memory-consolidation deficit can be more parsimoniously explained by 

older adults’ difficulty with encoding new declarative memories and retrieving those 

declarative memories. Because memory consolidation is always measured by a retrieval test, 

consolidation processes will always be somewhat conflated with encoding and retrieval 

processes, and in implicit memory the attentional demands of encoding and retrieval are 

much lower for older adults [52].

If one must infer memory consolidation from a test of memory retrieval, then it becomes 

important to connect sleep architecture to memory task performance if one is to conclude 

that memory consolidation is sleep-dependent. This has not always been easy to show. For 

example, in a study of nearly one thousand participants, there were no significant 

correlations between PSG measures and memory consolidation for pictorial stimuli [53], and 

behavioral evidence for a decline in memory consolidation has been observed without any 

observed age-related reductions in SWS or REM sleep duration [42].

Quantitative EEG analysis may offer a solution [5]. Rather than counting how much time an 

individual spends in the four sleep stages, fast Fourier transform and automated spindle 

detectors can assist in identifying the microevents within sleep stages that are hypothesized 

to represent memory reactivation and consolidation. One candidate microevent is the 

coupling between slow-wave oscillations and sleep spindles during NREM sleep [54, 55]. 

Walker and colleagues [56] found that when a sleep spindle occurred close to the slow 

oscillation up-state peak, memory consolidation was promoted, but that older adults 

experience impairments in slow oscillation-spindle coupling, with the degree of impairment 

predicting lower memory consolidation. Such age-related changes have been associated with 

a reduction in gray matter in the hippocampus and medial prefrontal cortex [28, 56, 57]. The 

unresolved, “million dollar question,” is whether sleep micro- and macro-architecture 

determine how well the brain/cognition are preserved in older age, or instead, whether brain/

cognition preservation determines how well sleep quality/depth are preserved.

To causally test if SWS or REM processes determine memory functioning, researchers have 

experimentally augmented these sleep processes and tested memory outcomes in older 

adults. One trial of cholinesterase inhibitors increased both REM sleep and memory 
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functioning in older adults [58•]. To our knowledge, there have been no replications of this 

important work. Instead, the majority of recent work has focused on enhancing SWA [59]. 

For example, Ladenbauer and colleagues [60, 61] applied transcranial slow oscillatory 

stimulation (so-tDCS) during an afternoon nap in 18 healthy older adults and 16 mild 

cognitive impairment patients, with a sham-control nap cross-over design. The so-tDCS 

increased slow oscillations and fast spindle activity and boosted retention of pictures 

encoded before the nap (but not word pairs). Similar positive findings have been reported for 

verbal memory retention following so-tDCS in 19 older adults [62] and acoustic stimulation 

of slow oscillations in 13 older adults [63]. These positive observations notwithstanding, 

limitations of this literature include the studies excluding 23-45% of recruited participants 

from analyses and a lack of memory correlations with spindles and SWA (except for [63]). 

Furthermore, one must consider that attempts to improve memory functioning in older adults 

via nocturnal sleep tDCS stimulation and targeted memory reactivation have not been 

successful [49, 64, 65]. Therefore, at present, we cannot definitively conclude that sleep-

specific processes were the mechanisms of action for memory improvements in the napping 

studies [66, 67]. Our interpretation of the literature on sleep interventions for cognitive aging 

is that either 1) the methodologies have not been perfected to yield consistently positive 

outcomes, 2) sleep processes are not a viable target for enhancing cognition in older age, or 

3) existing interventions have limited themselves by solely targeting SWA mechanisms or 

solely targeting REM mechanisms. We again point to the data in Figure 2 that many older 

adults appear to show REM sleep compensation in the midst of declining SWS, and future 

interventions might target that compensatory response with the goal of promoting cognitive 

longevity.

SWS and REM Sleep “Sequential” Dynamics

Several fundamentals of sleep make it difficult to pinpoint how any individual sleep process 

relates to cognitive aging. For example, many aspects of sleep are intercorrelated [68-69]. 

Moreover, sleep stages repeatedly cycle, with the amplitude, duration, and frequency of 

sleep events changing across the night. Furthermore, even though sleep clearly changes 

across the lifespan, the longitudinal changes in sleep are sometimes nonlinear and deficits in 

one component of sleep (e.g., SWS) may co-occur with augmentation of other components 

of sleep (e.g., REM; Figure 2). We theorize that these “dynamic” hallmarks of sleep are 

important for understanding the role of sleep in cognitive functioning. But, we are certainly 

not the first to note this possibility. This line of reasoning dates back at least to the 19th 

century writings of John Hughlings Jackson [1•] and John Addington Symonds [70], as 

illustrated by the quote in the introduction section. Their early observations that “dream 

sleep” and “dreamless sleep” have interactive cognitive functions are remarkable when 

considering that at the time of their writings there were no published empirical studies on 

human memory [71], and REM sleep would not be discovered until the next century [72].

Jackson’s theory [1•], when viewed through the lens of contemporary cognitive 

neuroscience, was that individual memories are strengthened during N3, with additional 

cognitive associations being formed and integrated during REM sleep. A related view is 

Giuditta’s sequential hypothesis [73, 74], which argued that SWS first weakens memories 

encoded while awake, which he called a “cleaning operation” to remove irrelevant 
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information. Then, during REM sleep, he hypothesized that the retained memories were 

integrated into associative networks. Llewelyn and Hobson [75] similarly contend that 

during NREM sleep, certain memories are selectively reactivated, and then, if the memory 

has particular survival or other future relevance, then it undergoes a preplay process during 

REM sleep.

Though two-stage, sequential theories of sleep-based cognitive processing have long existed, 

most work on sleep and cognitive aging has taken the approach that either-SWA-or-REM 

promote glymphatic, frontal restoration, and memory consolidation functioning with aging. 

We view the recent literature as indicating that both REM and SWA contribute to cognitive 

outcomes in older adults. Experimental sleep studies that reliably altered amyloid outcomes 

did so by disrupting both SWS and REM sleep [23, 24]. Cross-sectional studies that related 

PSG variables to attention/executive function often identified roles for both SWS and REM 

sleep [31]. Longitudinal PSG studies have typically identified roles for both REM sleep and 

NREM sleep fragmentation (and, less commonly, for SWS [76]). Experiments that aimed to 

increase memory consolidation were sometimes effective when enhancing SWA, though the 

most effective intervention augmented both REM and SWA [77]. What is critically missing 

from this literature is work that targets how compensatory dynamics of SWS and REM 

impact cognitive longevity.

Conclusions

Outside of Alzheimer’s disease drug discovery [78], sleep is at the forefront of public and 

scientific interest in cognitive longevity. Over the last five years, we have learned that 1) 

sleep is important to glymphatic functioning, but that glymphatic function is impaired with 

aging; 2) sleep is important to frontal lobe functioning, and adults with sleep fragmentation 

and minimal REM sleep typically show faster attention/executive function declines; and 3) 

sleep is important to memory consolidation, but older adults tend to show minimal or no 

evidence for sleep-dependent memory consolidation. What the field has not yet definitively 

addressed is the provocative idea that Alzheimer’s disease or normal age-related cognitive 

decline can be prevented or slowed by implementing sleep interventions [2, 3]. The existing 

evidence for improving glymphatic, memory consolidation, and overall cognitive 

functioning with hypnotic medications, transcranial direct current stimulation, and targeted 

memory reactivation are mixed.

The field needs large, multisite, pre-registered randomized controlled trials to inform 

whether improving sleep improves cognitive longevity. Our theoretical perspective is that 

any interventions that focus solely on SWS, solely on REM sleep, or solely on sleep 

fragmentation will continue to produce modest or null results. Building on the theoretical 

view that SWS and REM sleep interact dynamically to preserve cognitive health, future 

intervention studies should target multiple sleep mechanisms simultaneously.
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Figure 1. Longitudinal Changes in Total Sleep Time (A), Wake After Sleep Onset (B), Slow Wave 
Sleep (C) and REM sleep (D) in the Sleep Heart Health Study.
Each line represents one participant’s change in sleep from visit 1 to visit 2. The pre-to-post 

increase in total sleep time was significant but small, t(2642) = 3.12, p = .002, d = 0.06, 

whereas the increase in wake after sleep onset was large, t(2642) = 20.63, p < .001, d = 0.40. 
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SWS declined over time by 9.0%, t(2642) = 8.51, p < .001, d = 0.17, whereas REM sleep 

actually increased over time by 3.6%, t(2642) = 3.99, p < .001, d = 0.08 (greater age at visits 

1 and 2 was cross-sectionally associated with decreased REM, rs = −.220 and −.295).
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Figure 2. Novel Analyses of the Changes in SWS and REM Sleep in the Sleep Heart Health 
Study.
Difference scores represent how much SWS and REM sleep were lost over approximately 5 

years, with the correlation of loss being significant, but modest in size (r = .20, p < .001, R2 

= .04). The effect size remained the same (r = .20) when controlling for chronological age. 

Highlighted in green are individuals whose SWS declined, but who showed an increase in 

REM sleep, which we theorize reflects compensation and should promote cognitive 

preservation. Highlighted in red are individuals who showed declining SWS, without any 

REM compensation, which we theorize should lead to cognitive decline and dementia. 

Increased SWS in the presence of increased/decreased REM is likely also relevant, and 

perhaps reflecting increases/decreases in exercise, diet, social/cognitive engagement, or 

other resiliency factors [79].
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