Skip to main content
. Author manuscript; available in PMC: 2019 Nov 15.
Published in final edited form as: Invest Ophthalmol Vis Sci. 2003 Apr 1;44(4):1464–1469. doi: 10.1167/iovs.02-0234

Table 2. Predicting Weight from Height Using a Spline Regression Model in the Log Scale.

Model Variable Parameter Estimate* 95% CI P R2
General Intercept 2.8286 (2.8230, 2.8334)
Log (height/110) (height <110 cm) 1.5643 (1.5440, 1.5844) <0.0001 0.944
Log (height/110) (height ≥110 cm) 2.3828 (2.3499, 2.4157) <0.0001
Adding Country-Specific Parameters Intercept 2.8282 (2.8220, 2.8343)
Log (height/110) (height <110 cm) 1.5708 (1.5511, 1.5905) <0.0001 0.947
Log (height/110) (height ≥110 cm)   2.45935 (2.4099, 2.5088) <0.0001
Malakal, Sudan −0.11683 (−0.1292, −0.1045) <0.0001
Daboya, Ghana   0.00548 (−0.0102, 0.0211)   0.48
Jareng, The Gambia −0.00690 (−0.1600, 0.0022)   0.13
Kongwa, Tanzania   0.01438 (0.0071, 0.0217)   0.0001
*

log (weight) = α + β log (height/110).

Reference Rombo, Tanzania.