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ABSTRACT

Late embryogenesis abundant (LEA) proteins are found in desiccation-tolerant species from all domains of life. Despite several decades of
investigation, the molecular mechanisms by which LEA proteins confer desiccation tolerance are still unclear. In this study, dielectrophoresis
(DEP) was used to determine the electrical properties of Drosophila melanogaster (Kc167) cells ectopically expressing LEA proteins from
the anhydrobiotic brine shrimp, Artemia franciscana. Dielectrophoresis-based characterization data demonstrate that the expression of two
different LEA proteins, AfrLEA3m and AfrLEA6, increases cytoplasmic conductivity of Kc167 cells to a similar extent above control values.
The impact on cytoplasmic conductivity was surprising, given that the concentration of cytoplasmic ions is much higher than the
concentrations of ectopically expressed proteins. The DEP data also supported previously reported data suggesting that AfrLEA3m can
interact directly with membranes during water stress. This hypothesis was strengthened using scanning electron microscopy, where cells
expressing AfrLEA3m were found to retain more circular morphology during desiccation, while control cells exhibited a larger variety of
shapes in the desiccated state. These data demonstrate that DEP can be a powerful tool to investigate the role of LEA proteins in desiccation
tolerance and may allow to characterize protein-membrane interactions in vivo, when direct observations are challenging.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5126810

I. INTRODUCTION

Anhydrobiosis, or “life without water,” is a remarkable state of
life where an organism has lost virtually all cellular water but is
able to resume its life cycle upon rehydration. Understanding the
molecular mechanism governing anhydrobiosis may lead to profound
advances in engineering crop-desiccation tolerance and the ability to
store biomedical relevant cell and tissue samples in the desiccated
state as an alternative to cryopreservation. Anhydrobiosis-related
intrinsically disordered (ARID) proteins are found in all known
anhydrobiotic species, spanning all domains of life, and have been
linked to the successful entry and exit from anhydrobiosis, but
the molecular mechanisms underlying this phenomenon remain
enigmatic.

The ability to enter and exit anhydrobiosis relies on an array
of molecular mechanisms designed to repair and protect various
cellular structures and macromolecules (e.g., DNA, RNA, proteins,

membranes, etc.). Common anhydrobiotic strategies observed in
animals include the accumulation of protective osmolytes, particu-
larly trehalose, as well as the expression of a variety of ARID pro-
teins including late embryogenesis abundant (LEA) proteins1,2 and
tardigrade-specific intrinsically disordered proteins (TDPs). LEA
proteins were originally discovered in plants and predominantly
occur in the late embryogenesis stage of orthodox seeds but were
later also found in other plant tissues and in anhydrobiotic
animals.3 Several sequence-based grouping methods for LEA pro-
teins have been described, and this work will adapt the grouping
scheme proposed by Tunnacliffe and Wise as a means to classify
and organize groups of LEA proteins.4

This study focuses on two different LEA proteins from A.
franciscana, AfrLEA3m and AfrLEA6, group 3 and 6 LEA proteins,
respectively. While AfrLEA3m is a mitochondrial-targeted protein,
it was shown to protect artificial membranes with a composition
similar to the inner leaflet (i.e., inner side) of the plasma
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membrane with the same efficacy as it protected artificial mem-
branes with lipid composition mimicking the inner mitochondrial
membrane.5–7 Since the vast majority of mitochondrial proteins,
including AfrLEA3m, are synthesized in the cytoplasm of the cell, it
seems plausible that AfrLEA3m before its transport into the mito-
chondrial matrix could aid in protecting the plasma membrane
during desiccation. While bioinformatic data suggest that AfrLEA3m
can form amphipathic α-helices during water stress to integrate into
membranes, it remains experimentally undetermined if AfrLEA3m
can directly or indirectly interact with membranes during water
stress.8 In contrast, AfrLEA6 localizes to the cytoplasm as judged by
bioinformatics and confirmed by ectopic expression in Kc167 cells
(data not shown).9 While group 3 LEA proteins are commonly
found in anhydrobiotic animals, A. franciscana is the only known
anhydrobiotic animal to express a group 6 LEA protein, making it
an interesting target for further study. Furthermore, bioinformatics
does not suggest that AfrLEA6 can fold into amphipathic α-helices
during water stress, making it a good candidate for comparison to
AfrLEA3m.

AC-electrokinetic based techniques such as dielectrophoresis,10–15

electrorotation (eROT),16–19 and electrochemical impedance spec-
troscopy (EIS)20–23 have been used to investigate and analyze the
properties of biological systems. DEP measures electrical properties
by applying a nonuniform electric field to a liquid media of a
known conductivity containing suspension of cells.24–27 The non-
uniform electrical field will induce a dipole within each cell; the
induced translation of each cell in the electrical field depends on
their phenotype, i.e., permittivity and conductance properties of
the membrane and the cytoplasm as well as the conductivity of the
solution. In this study, dielectrophoresis was used to gain insights
into the molecular mechanisms of cellular protection during water
stress conferred by AfrLEA3m and AfrLEA6, two LEA proteins
from the anhydrobiotic brine shrimp, Artemia franciscana.
Extracted DEP-based characterization data in this study demon-
strate that the expression of LEA proteins from A. franciscana in
desiccation sensitive cells from the fruit fly D. melanogaster has a
pronounced impact on cytoplasmic conductivity and membrane
capacitance. These results show that DEP can offer a novel
approach to gain insights into the molecular mechanisms of protec-
tions this elusive class of proteins offers during anhyrdobiosis.

II. METHODS

A. Cells, culture, and transfections

Kc167 cells were purchased from the Drosophila Genomics
Research Center (DGRC; Bloomington, IN). Cells were cultured on
100 or 60 mm cell culture-treated dishes (Corning Incorporated,
Corning NY) in Schneider’s media (Caisson, USA) supplemented
with 10% heat-inactivated fetal bovine serum (FBS) (Atlanta
Biologicals, Lawrenceville, GA). Transfections were performed as
previously described with the exception that Schneider’s media was
used in place of M3+BPYE medium and that 2.0 mg/ml G418
(ultrapure; VWR International) was used to select transfected cells
and to generate and maintain stable cell lines.7 The pAc5-STABLE2-neo
vector was acquired from Addgene (Cambridge, MA). For addi-
tional information on the pAc5-STABLE2-neo vector, please see the
Results and Discussions and Ref. 28. Immunoblotting with primary

antibodies (Aves Labs Inc., Tigard, OR) raised against AfrLEA6 or
AfrLEA3m was performed on all cell lines to confirm transgenic
protein expression9,29 (Fig. 1).

SDS-PAGE and Western blot analyses were performed as pre-
viously described.7 However, primary polyclonal antibodies raised
against purified AfrLEA6 and AfrLEA3m (Aves Labs Inc., Tigard,
OR; 1:5000 dilution) and HRP-linked goat antihen secondary anti-
bodies (Aves Labs Inc., Tigard, OR; 1:5000 dilution) were used for
detection.

B. SEM imaging

Kc167 cells were plated onto an aluminum SEM stage at a
concentration of 2� 106 cells/ml. The cells were allowed to attach
to the stage for 1 h in a humidified chamber at 25 �C. Culture
media was removed, and cells were then dried overnight at 10%
relative humidity. The dried samples were sputter coated with an
18 nm film of gold and palladium and examined using a Zeiss
Supra 35 VP scanning electron microscope with an electron high
tension voltage of 15–20 kV.

C. Dielectrophoresis

To collect cells and remove cell-culture medium, Kc167 cells
were centrifuged at 400 g for 2 min at room temperature. The cellu-
lar pellets were resuspended in 10ml of medium consisting of 85 g/l
sucrose plus 3 g/l glucose, 11 mg/l CaCl2, and 24 mg/l MgCl2,
�360 mOsmol/kg. In experiments using hypertonic media, the
osmolarity was brought to �560 and �760 mOsmol/kg with an
additional 200 and 400 mM sucrose, respectively. To ensure com-
plete removal of cell-culture medium, Kc167 cells were pelleted again
and the final resuspension volume was approximately 1 ml. The final
conductivity of the medium was adjusted to 5mS/m using phosphate
buffered saline (PBS) and the desired conductivity was verified with
a conductivity meter (HORIBA Ltd., Koyoto, Japan). The number
of cells was enumerated using a hemocytometer and adjusted to

FIG. 1. Immunoblots confirming expression of (a) AfrLEA3m (�31 kDa6) in
Kc167 cells. Several possible higher-order structures were also identified (#)
as well as breakdown products (�). Blotting results for vector control cells (VC)
stably transfected with the expression vector but lacking inserted LEA proteins
are shown for comparison. (b) AfrLEA6 expression in Kc167 cells. The apparent
Mw was about 8 kDa larger than expected (�27 kDa9). The increased apparent
Mw might be related to post-translational modification and the known behavior
of some LEA proteins to migrate slower during SDS-PAGE than most non-LEA
proteins. One higher-order structure was also identified (#).
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approximately 5–8� 106 cells/ml (+10 %) for the DEP measure-
ment. In general, one sample of 5 ml of cells, nbio, in suspension can
provide, on average, approximately 10–12 technical repeats, ntec, of
data sets with a total number of trials, n ¼ nbio � ntec. The 3DEP
(Deptech, Ringmer, UK) platform was used to study the electrical
properties of the cell. The experimental setup and electrode arrange-
ment were used as described by Labeed et al.30 To operate the instru-
ment, cells are injected inside a microchip containing 20 microwells
(3DEP 806), consisting of layers of embedded electrodes. Next, the
chip is mounted on a camera setup where a light beam is directed
from the top of the chip. An AC signal of 10 Vpp and frequencies
between 3 kHz and 40MHz (at 5 frequencies per decade) are applied
to all microwells simultaneously and the intensity of light passing
through the microwells is then recorded concurrently. The intensity
of light changes depending on the movement of the cells by the DEP
force, FDEP, exerted on them is

FDEP ¼ 2πεsr
3<[Fcm(ω)]∇E2: (1)

FDEP is the force exerted on a particle of radius r in a medium of
permittivity εs within an electric field, E. The dielectric properties of
the cell govern its movement within the nonuniform electric field. A
single shell model was used which approximates cells as spheres of
the cytoplasm of conductivity, σc, and permittivity, εc, surrounded
by a membrane of conductivity, σmem, and permittivity, εmem, sus-
pended in a medium of conductivity, σs, and permittivity, εs. This
simplified model offers a solvable number of parameters for a DEP
spectrum, which is related to the data output of the 3DEP platform.
This is represented by the Clausius-Mossotti factor, Fcm(ω), which is
a function of frequency, conductance, and permittivities of cell cyto-
plasm, membrane, and suspending media, thus

FcmðωÞ ¼ ε�cell � ε�s
ε�cell þ 2ε�s

� �
; (2)

ε*cell ¼ ε*s

r
r � d

� �2 þ 2
ε*c � ε*mem

ε*c þ 2ε*mem

r
r � d

� �3 � ε*c � ε*mem

ε*c þ 2ε*mem

, (3)

where ε*cell is the effective complex permittivity of the cell, with r and
d being the radius of the cell and membrane thickness (d=10 nm),
respectively. ε* ¼ ε� jσ=ω represents the complex permittivity
and is a function of the permittivity ε, conductivity σ, and angular
frequency of the electric field ω. Hence, based on the sign of
<[Fcm(ω)], cells will experience either a negative dielectrophoresis
(nDEP) or a positive (pDEP) force. Cells experiencing an nDEP
force will be centered in the middle of the microwell where they
will be blocking the light (i.e., repelled to field minima). Conversely,
the cells experiencing a pDEP force will be attracted toward the
perimeter of the microwell, and more light will pass through the
center of the microwells (i.e., attracted to field maxima).

Light intensity, in each microwell, was measured for 30 s sweep-
ing a frequency range from 3 kHz to 40MHz. The light intensity vs
frequency spectrum generated was next fitted by an iterative least

square method30 to Eqs. (1)–(3) to yield individual values of mem-
brane and cytoplasmic conductivity as well as specific membrane
capacitance, c ¼ εmem=d. 3DEP light intensity bands from 4 to 9,
from the platform spectrum output, were only selected for each
experiment to be fitted, resulting in a better DEP spectrum fitting
correlation coefficient R . 0:97 (Fig. 2). Cells were measured imme-
diately (,17 min) after being suspended into the DEP media to

FIG. 2. Dielectrophoretic properties of Kc167 cells. Comparison of DEP spectra
produced from suspending cells in isotonic media (�360 mOsmol/kg; blue) and
hypertonic media (�760 mOsmol/kg; red) for (a) Kc167 vector control (VC)
cells averaged DEP spectra (n ¼ 68 and n ¼ 61). (b) Kc167 cells expressing
the AfrLEA3m protein averaged DEP spectra (n ¼ 72 and n ¼ 58). (c) Kc167
cells expressing the AfrLEA6 protein averaged DEP spectra (n ¼ 72 and
n ¼ 57). The solid line curves are fits of Eqs. (1)–(3), see Sec. II. The y-axis
relative polarizability is a function of the [Fcm(ω)] factor with positive values
equivalent to pDEP and negative values equivalent to nDEP. The respective cor-
relation coefficient, R, values for all fitted curves were R . 0:97.
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minimize artifacts due to cell stress by the nonphysiological ion com-
position of the medium. The time to collect and characterize approxi-
mately 10–13 samples using the 3DEP platform takes only 15–17 min.
To investigate the effect of the DEP buffer on cell viability and poten-
tially changes in the measured parameters, we studied Kc167 cells’ via-
bility in isotonic and hyperosmotic DEP media for up to 1 h. No
significant changes in cell viability were found for up to 30min and all

other experiments were completed in under 20min (+SD; P . 0:05;
one-way ANOVA, Fig. 3). Furthermore, no significant changes in the
resultant DEP spectrum of Kc167 cells characterized within 30min
was observed (+SD; P . 0:05; one-way ANOVA, Fig. 3).

III. RESULTS AND DISCUSSIONS

In this study, a detailed characterization of the electrical prop-
erties of Kc167 cells from D. melanogaster and the changes that
occur in these properties in response to acute osmotic stresses have
been achieved. Using ectopic protein-expression models, modula-
tions in the osmotic-stress response could be correlated to molecu-
lar mechanisms of cellular protection conferred by two LEA
proteins that ameliorate water-stress damage in the anhydrobiotic
embryos of A. franciscana.31 Previous studies conducted with artifi-
cial liposomes have indicated that AfrLEA3m can directly interact
with phospholipid bilayers during severe water stress.5 Based on
these data, it was hypothesized that the specific membrane capaci-
tance of Kc167 cells expressing AfrLEA3m will increase during
water stress and that the specific membrane conductance be unal-
tered if AfrLEA3m was indeed interacting directly with the plasma
membrane during moderate osmotic stress (�760 mOsmol/kg). To
test this hypothesis, a dielectrophoresis-based platform was used to
characterize the cytoplasmic conductivity, the specific membrane
capacitance, and the specific membrane conductance of cells in iso-
tonic sucrose medium (�360 mOsmol/kg) with a low ionic
strength (,6:5 S/m), and hypertonic media of either 560 or
760 mOsmol/kg adjusted by addition of sucrose to reach the

FIG. 3. Viability of nontransfected controls (NTC), vector controls (VC), and
AfrLEA3m expressing (LEA3m) of Kc167 cells is significantly reduced when incu-
bated for up to 60 min in low ionic strength (,6:5 S/m) isotonic sucrose medium
(�360 mOsmol/kg). White bars represent 0 min incubation, gray bars represent
30 min incubation, and black bars represent 60 min incubation. Letters denote sig-
nificance (i.e., “A” and “B” are significantly different from one another, but neither
are significantly different from “A, B”) (+SD; P , 0:05; one-way ANOVA).

TABLE I. Extracted cellular electrical constants (cytoplasm conductivity, S/m; specific membrane capacitance, mF/m2; and conductance, S/m2) of Kc167 cells.

Isotonic sucrose/glucose Hypertonic sucrose/glucose Hypertonic sucrose/glucose
medium + CaCl2 and MgCl2 medium (+200mM sucrose) medium (+400mM sucrose)

(360 mOsmol/kg) (560 mOsmol/kg) (760 mOsmol/kg)

Cytoplasm conductivity (S/m)
Kc167 vector control (VC) 0.152 ± 0.016 (n = 68) 0.192 ± 0.009a (n = 62) 0.189 ± 0.012a (n = 61)
Nontransfected control 0.162 ± 0.014 (n = 18)
VC-dead 0.032 ± 0.002b (n = 7)
AfrLEA3m 0.215 ± 0.018b (n = 72) 0.172 ± 0.007a,b (n = 63) 0.139 ± 0.014a,b (n = 58)
AfrLEA6 0.23 ± 0.0186b (n = 72) 0.188 ± 0.0163a (n = 61) 0.126 ± 0.015a,b (n = 57)
Specific membrane capacitance (mF/m2)
Kc167 vector control (VC) 10 ± 1.6 (n = 68) 11.4 ± 1.18 (n = 62) 12.6 ± 1.3 (n = 61)
Nontransfected control 10.5 ± 1.6 (n = 18)
VC-dead 2.7 ± 0.06b (n = 7)
AfrLEA3m 9.8 ± 1.2 (n = 72) 14.7 ± 1.6a,b (n = 63) 14.2 ± 0.8a,b (n = 58)
AfrLEA6 11.8 ± 1.8 (n = 72) 12.4 ± 1.53 (n = 61) 15.0 ± 3.0 (n = 57)
Specific membrane conductance (S/m2)
Kc167 vector control (VC) 793 ± 63 (n = 68) 1114 ± 80a (n = 62) 1129 ± 132a (n = 61)
Nontransfected control 812 ± 38 (n = 18)
VC-Dead 503 ± 43b (n = 7)
AfrLEA3m 758 ± 75 (n = 72) 878 ± 73b (n = 63) 915 ± 73a,b (n = 58)
AfrLEA6 710 ± 42 (n = 72) 956 ± 62a,b (n = 61) 1050 ± 110a (n = 57)
Cell diameter (μm) 10 ± 0.23 (n = 7) 9.2 ± 0.31 (n = 10) 8.9 ± 0.21 (n = 10)

aValues differ significantly from the corresponding isotonic medium (one-way ANOVA; P < 0.05), total number of trials, n = nbio (∼ 5–6) × ntec(∼ 10–12).
bValues differ significantly from the corresponding control (one-way ANOVA; P < 0.05), total number of trials, n = nbio (∼ 5–6) × ntec(∼ 10–12).
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desired osmolarity, to mimic water stress (Table I). The low ionic
strength of the media was required to create a significant difference
between media conductivity and that of the cytoplasm and mem-
brane, thereby increasing the resolution of DEP measurements
[Eq. (2)], hence, achieving better resolution. Conversely, relatively
high media conductivity (�100 mS/m) will compromise the reli-
ability of the DEP measurements by introducing other electroki-
netic effects (e.g., Joule heating32). However, these DEP-compatible
media may negatively impact cell viability over time, since the cells
are deprived of several important components normally found in
insect cell-culture media (e.g., monovalent ions, sugars, and amino
acids). Not surprisingly, a significant decrease in the values of all
three fitted parameters (cytoplasmic conductivity, the specific
membrane capacitance, and the specific membrane conductance)
was observed for control cells incubated in isotonic sucrose media
for �16 h, where 100% of cells showed a collapse in membrane
integrity (Table I, VC-Dead). Furthermore, the viability of cells in
isotonic sucrose media was also significantly reduced after only
60 min of incubation for nontransfected control and vector control
cells, indicating the time-sensitivity of the measurements (Fig. 3).
However, there was no significant reduction in viability for up to
30 min of incubation for any cell line in all DEP media employed.
Based on these data, all other measurements were completed
within ,18 min to avoid artifacts caused by cell death. There was
no significant difference observed in any fitted values between non-
transfected control cells and vector control cells demonstrating that
the expression of transgenic genes such as the aminoglycoside
30-phosphotransferase to confer G418 resistance does not per se
change the electrical properties of cells (Table I).

Interestingly, there was an �41% and �51% increase in the
cytoplasmic conductivity of cells expressing AfrLEA3m and AfrLEA6,
respectively, over vector controls under isotonic media conditions.
The impact on cytoplasmic conductivity was surprising, given that
the concentration of cytoplasmic ions is much higher than the con-
centrations of ectopically expressed proteins. Cytoplasmic conductiv-
ity is assumed to be primarily affected by the intracellular [Kþ] and,
to a lesser amount [Cl� ], given their relatively high concentrations
compared to other ions, charged molecules, and macromolecules.
The specific membrane capacitance (i.e., the capacitance of the mem-
brane normalized to the unit cell cross section and membrane area),
is defined here as the ability of a membrane to hold an electric
charge. By treating the membrane as a dielectric slab, with a relative
permittivity (εr), that is flanked by two parallel plate electrodes that
are distance (d) apart, each with an area (A), and a dielectric constant
(ε0), gives rise to the equation Cmem = (εr)(ε0)/(d) (Farad per unit
area). In reference to the cell, changes in the specific membrane
capacitance can be affected by the dielectric constant, εmem (deter-
mined by the composition of the membrane), the area of the mem-
brane (i.e., morphology), and the thickness of the plasma membrane
(particularly within the insulating hydrophobic tail region).33 The
specific membrane conductivity is simply the ability of an electric
current to pass through the membrane and was generally thought to
be primarily impacted by membrane thickness, gating state of ion
channels, and area.34 However, recent data have shown that an
increase in ion efflux or influx can increase the specific membrane
conductivity and concurrently decrease cytoplasmic conductivity,
while both membrane thickness and area remain unchanged.35 In the

absence of ion-channel involvement, any increase in membrane
thickness should decrease both the membrane conductance and the
capacitance, while an increase in the membrane area should increase
both values.24 It was hypothesized that AfrLEA3m would interact
with the inner leaflet of the plasma membrane during acute osmotic
stress. Bioinformatic analysis predicts that AfrLEA3m folds into
amphipathic α-helices during water stress, whereas AfrLEA6 does
not.8 Amphipathic α-helices are often associated with membrane
interactions (i.e., a protein would be able to interact with charged
phospholipid head groups, as well as their hydrophobic tail region).
This may cause a change in its dielectric constant, εmem, while not
significantly impacting the membrane thickness and area (i.e., the
specific membrane capacitance increases, while the specific mem-
brane conductance would remain constant). In contrast, AfrLEA6
was hypothesized to not interact with the inner leaflet of the plasma
membrane, thereby any change (positive or negative) observed in the
specific membrane conductance may lead to changes in the specific
membrane capacitance.

Data in Table I show that the specific membrane conductance
and capacitance were unaffected by the ectopic expression of either
AfrLEA3m or AfrLEA6. The effect of both proteins on cytoplasmic
conductivity could be mediated by direct or indirect interactions
with ion channels causing an influx of monovalent ions (i.e.,
increasing the concentration of a simple electrolyte such as Kþ or
Naþ will theoretically increase the cytoplasmic conductivity). In
the case of red blood cells, however, the specific membrane conduc-
tivity and cytoplasmic conductivity move in antiphase with rhyth-
mic efflux of Kþ ions.35 The lack of Kþ and Naþ in the employed
DEP media and the presence of only minor amounts of divalent
ions make a mechanism based on ion influx highly unlikely.

An alternative mechanism might be that, due to the highly
hydrophilic and charged nature of AfrLEA3m and AfrLEA6, the
mobility of monovalent ions surrounding AfrLEA3m and AfrLEA6
is effectively higher than for VC cells, without actually changing
ion concentration. This may increase the molar conductivity of the
cytoplasm. Molar conductivity (Λm) is defined as the relationship
between electrolyte concentration (c) and conductivity (κ). In the
equation (Λm) ¼ (κ)=(c), any increase in electrolyte concentration
will decrease molar conductivity.33 This is due to an increase in
drag force being placed on a given diffusing ion as the concentra-
tion of ions of an opposite charge increases (i.e., Debye-Huckel
theory). If the equation is written instead as κ ¼ (Λm)(c), then it
becomes clear that an increase in molar conductivity at a constant
ion concentration will increase cytoplasmic conductivity. This alter-
native mechanism is supported by molecular dynamics simulations
of polyelectrolytes (highly charged polymers) and simple electro-
lytes, where increasing the concentration of polyelectrolytes
increased the dispersion of ions around the polymers and thereby
increased the molar conductivity of the ions.33 In addition, the
cytoplasmic conductivity of cells expressing AfrLEA3m or AfrLEA6
progressively decreases as the cells were exposed to hypertonic solu-
tions (Table I). This is in stark contrast to vector control cells,
which displayed a cytoplasmic conductivity that progressively
increased when exposed to increasingly hypertonic solutions. In the
case where the electrolyte concentrations are increasing, as would
be the case when osmotically active water is being pulled out of the
cell due to hypertonic stress, conductivity should decrease if molar

Biomicrofluidics ARTICLE scitation.org/journal/bmf

Biomicrofluidics 13, 064113 (2019); doi: 10.1063/1.5126810 13, 064113-5

Published under license by AIP Publishing.

https://aip.scitation.org/journal/bmf


conductivity decreases. However, the equation κ ¼ (Λm)(c) does
demonstrate that increasing ion concentrations in a cell should
increase the conductivity of the cytoplasm. However, this assumes
that the decrease in molar conductivity is sufficiently outweighed
by the increase in electrolyte concentrations. This can be observed
in vector control cells under osmotic stress, where a decrease in cell
volume leads to a subsequent increase in intracellular ion concen-
trations and cytoplasmic conductivity. In the case of cells express-
ing AfrLEA3m and AfrLEA6, the observed decrease in cytoplasmic
conductivity during hyperosmotic stress may be a result of a
decrease in molar conductivity outweighing the increase in electro-
lyte concentration, leading to a net loss in cytoplasmic conductivity
[i.e., in κ ¼ (Λm)(c), the decrease in (Λ) outweighs the increase in
(c) and leads to a reduction in (κ)]. These data suggest that, under
isotonic conditions, LEA proteins are unentangled and increase the
cytoplasmic conductivity by behaving as typical polyelectrolytes,
thereby increasing cytoplasmic ion diffusivity.36 During osmotic
stress, the decrease in cellular volume may be sufficient to concen-
trate LEA proteins enough to shift their dynamics from a semidi-
lute, unentangled regime to an entangled regime. Under entangled
conditions, the effect of LEA proteins on ion diffusivity may be
negated.36,37

When Kc167 cells were challenged with hyperosmotic stress
(�570 and 760 mOsmol/kg), cells expressing AfrLEA3m experi-
enced a sharp increase in specific membrane capacitance (�56%).
However, specific membrane conductance did not significantly
change when cells expressing AfrLEA3m were challenged with a
moderate hypertonic stress of 570 mOsmol/kg. In the case of the
osmotically stressed cells, the radius decreases by approximately
(�11%) and, in turn, should increase the specific membrane capac-
itance by (�11%). However, this increase does not sufficiently
explain the observed (�56%) increase in specific membrane capaci-
tance. No apparent differences in cell morphology (aside from
reported changes in cell diameter; Table I) were observed when
cells were subjected to severe osmotic stress (�760 mOsmol/kg)
and imaged with confocal microscopy (data not shown).

Further analysis of the data relies on two assumptions; first,
the effective area of the membrane surface is changing, hence
changing the capacitance of the membrane (Cmem ¼ fε0εr=d),
where f membrane topography parameter that represents the ratio
of the actual membrane area of the cell to the membrane area
(4πR2) that would form a perfectly smooth and spherical covering
of the cytoplasm and it is proportional to the “roughness” of the
membrane surface. Furthermore, cells subjected to the hypertonic
media would shrink them causing the membrane to wrinkle
leading to an increase in f (� 1:5) and therefore Cm.

24,38 Similar
results were observed for salivary gland cells (Drosophila,
Chironomids, and Sciarids), where f ranged from 160 to 830.39

Furthermore, the change in the membrane effective area is further
proved by the data reporting a decrease in membrane capacitance
of cells suspended in hypotonic media due to cell swelling and the
opposite effect when suspended in hypertonic media.38,40–42

However, it is also noted that this increase in Cmem, for Kc167 cells
expressing either AfrLEA3m or AfrLEA6 suspended in 760
mOsmol/kg, does not mean the formation of blebs or shriveling of
the membrane, as there was no indication of apoptosis or necrosis
of the cells.43,44 These data were supplemented with SEM imaging.

After complete desiccation for 18–24 h, cells expressing AfrLEA3m
retained a more circular morphology than vector control cells,
which displayed a variety of shapes and sizes [Figs. 4(a) and 4(b)].
In addition, cells expressing AfrLEA3m often displayed relatively
large porelike structures that were never observed in vector control
cells [Figs. 4(c) and 4(d)]. These porelike structures may be stress
points where the membrane begun ripping apart but complete lysis
was stopped due to the presence of AfrLEA3m. Indeed, vector
control cells can often be seen with large tears that allows for the
cytoplasm to leak out while desiccation is still occurring. Data in
Table I show no significant difference in the membrane conduc-
tance of Kc167 cells expressing AfrLEA3m, indicating that the cell
membrane is intact, and cells did not exhibit either necrosis or
apoptosis. Moreover, this increase in the membrane conductance
(�16%) for osmotically stressed AfrLEA3m can be attributed to
the effective area of the membrane surface (Gmem ¼ fG0, where
f � 1:2) which is close to the actual increase in Gmem (� 1:5).
However, the increase in the membrane conductance of the Kc167
vector control could be attributed to the degradation of the plasma
membrane.44

The second assumption states that the relative dielectric cons-
tant, εr , and thickness, d, of the membrane are changing due to the
expression of LEA proteins as well as osmotic stress imposed from
the hypertonic media, with the relative dielectric constant, εr , sur-
prisingly increasing due to the expression of the LEA proteins. The
presence of organelles, structures, or polypeptides such as LEA pro-
teins will contribute to the internal dielectric properties of the cell.
Several studies reported changes in the dielectric constant which in
turn have an influence on the membrane capacitance.45–47 Gentet
et al.48 showed a minor decrease in the membrane capacitance

FIG. 4. SEM images demonstrating that cells expressing AfrLEA3m retain a
more circular shape after complete desiccation and have porelike formations in
their plasma membranes. Vector control (VC) cells (a) and cells expressing
AfrLEA3m (b) and (c) were completely desiccated prior to imaging. (d) Pores
were observed exclusively intact, desiccated AfrLEA3m cells. Scale bars for
(a)–(c) represent 5 μm, while the scale bar for (d) represents 100 nm.
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(�6%) due to expressing glycine receptors and other membrane
proteins in embryonic kidney cells (HEK-293). Similarly, Stoneman
et al.49 also reported a decrease in the membrane capacitance of
yeast cells (�7%) overexpressing a G protein coupled receptor
(Ste2p protein). In contrast to our work, these two experiments did
not induce any osmotic stress on the cells being studied. The Cmem

value mostly reflects the properties of the hydrophobic layer of the
membrane, which is populated by the hydrocarbon tails of the
phospholipids and hydrophobic segments of integral membrane
proteins.50 Considering that AfrLEA3m is expected to only fold
into its native structure in response to water stress, the observed
increase in the membrane capacitance under osmotic stress is not
surprising. Therefore, Kc167 cells expressing AfrLEA3m will yield
different membrane capacitance (Cmem) and conductance (Gmem)
values when subjected to hyperosmotic stress. It should be noted
that the porelike formations in the SEM images [Figs. 4(c) and 4(d)]
only form in the completely dried state. In the case of porelike
formations occurring during an osmotic stress of �760 mOsmol/
kg, the relative dielectric constant of the membrane would decrease
by a factor of approximately one-fourth.24 This is in contrast to the
observed increase in the specific membrane capacitance in cells
expressing AfrLEA3m. The formation of �200–300 nm large pores
would result in a loss of membrane integrity, but this was not
observed during preparation of cells for hyperosmotic stress experi-
ments (data not shown). Furthermore, our data suggest that
AfrLEA3m is integrating, at least to some capacity, into the plasma
membrane which agrees with previously published results that sug-
gests AfrLEA3m protects membranes during water stress.5

Lacking any apparent propensity to form amphipathic
α-helices, AfrLEA6 is an ideal protein to compare to AfrLEA3m.8

In comparison with AfrLEA3m, cells expressing AfrLEA6 experi-
enced a significant increase in the membrane conductance, but not
specific membrane capacitance, when challenged with moderate
hyperosmotic stress (�570 mOsmol/kg). Furthermore, specific
membrane capacitance for cells expressing AfrLEA6 was not signifi-
cantly different from what was observed for vector control cells
under all conditions. The observed increase in specific membrane
conductance for cells expressing AfrLEA6, as well as vector control
cells, is thought to be due to an efflux of monovalent ions (likely by
gated ion channels) that is ameliorated when AfrLEA3m integrates
into the membrane as well as the change in the effective area of the
membrane surface (i.e., f) which influences both Cmem and Gmem.

IV. CONCLUSION

In summary, a dielectrophoresis-based platform was used to
characterize the electrical proprieties of Kc167 cells from D. mela-
nogaster expressing late embryogenesis abundant proteins from the
anhydrobiotic embryos of A. franciscana. The increase in cytoplas-
mic conductivity observed in Kc167 vector control cells under
osmotic stress is related to the reduction in cell volume and the
increase in ion concentration. We hypothesize that the increase in
cytoplasmic conductivity, for cells ectopically expressing AfrLEA3m
or AfrLEA6, under isotonic conditions, is related to both LEA pro-
teins behaving as typical polyelectrolytes increasing the diffusivity
of cytoplasmic ions. Under osmotic-stress conditions, the protein
dynamics may shift from an unentangled regime to a concentrated

regime which leads to a decrease in cytoplasmic conductivity. In
the case of AfrLEA3m being activated during osmotic stress, then
the increases in the specific membrane capacitance during hyperos-
motic stress may be due to its direct interactions with the plasma
membrane. The increase in specific membrane conductance
observed in Kc167 vector control cells was related to changes in
plasma membrane morphology during hyperosmotic stress. In con-
trast, for cells ectopically expressing LEA proteins, the increase in
the specific membrane conductance is driven by a change in the
effective area of their membrane surfaces in addition to any
changes in membrane morphology that may occur during hyperos-
motic stress. Altogether, these data support the utility of cellular
DEP-based characterization as a powerful tool to identify protein-
membrane interactions in vivo when direct observations are
challenging.
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