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Abstract

Many anticancer strategies rely on the promotion of apoptosis in cancer cells as a means to shrink 

tumors. Crucial for apoptotic function are executioner caspases, most notably caspase-3, that 

proteolyze a variety of proteins, inducing cell death. Paradoxically, overexpression of procaspase-3 

(PC-3), the low-activity zymogen precursor to caspase-3, has been reported in a variety of cancer 

types. Until recently, this counterintuitive overexpression of a pro-apoptotic protein in cancer has 

been puzzling. Recent studies suggest subapoptotic caspase-3 activity may promote oncogenic 

transformation, a possible explanation for the enigmatic overexpression of PC-3. Herein, the 

overexpression of PC-3 in cancer and its mechanistic basis is reviewed; collectively, the data 

suggest the potential for exploitation of PC-3 overexpression with PC-3 activators as a targeted 

anticancer strategy.
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Keywords

Proteolysis: the enzyme-catalyzed hydrolysis of peptide bonds found in a protein; Zymogen: 
refers to a precursor protein that upon an activating stimulus (e.g., proteolytic cleavage, liberation 
of inhibitory entities) forms a more active enzyme; often synonymous with the term proenzyme; 
Apoptosis: a process of programmed-cell death that culminates in the activation of executioner 
caspases (caspase-3 and −7) and the cleavage of essential proteins; Procaspase-3 (PC-3): the 
zymogen form of caspase-3 that has minor proteolytic activity and can autoactivate to form 
caspase-3; Caspase-3: cysteine protease that cleaves a variety of cellular substrates, leading to 
phenotypes associated with apoptosis; Labile zinc: the amount of “free” zinc ions within a given 
system; these ions are in equilibrium with their binding partners and not sequestered in proteins; 
Genomic instability: a cellular state where the machinery to repair damaged DNA has been 
compromised (e.g., BRCA mutations) and/or sustains high levels of DNA damage (e.g., double-
strand DNA breaks); this landscape is considered a hallmark of cancer as it promotes mutation, a 
major driver of cancer; Overexpression: an abnormally high level of an entity in a cell, in the 
context of this review is through the comparison of noncancerous and cancerous tissue; PAC-1: 
acronym for the first procaspase-activating compound; a small molecule that binds labile zinc, 
promoting autoactivation of PC-3 to caspase-3 and apoptosis of cancer cells

CANCER, APOPTOSIS, AND PROCASPASE-3

Apoptosis is a central pathway used in organismal development and maintenance of 

homeostasis, with a crucial role in eliminating genetically unstable or aberrantly growing 

cells. First postulated in 19721,2 and later evidenced by recognition of the Bcl-2 oncogene,
3,4 apoptosis represents a major barrier for the development and progression of cancer. This 

inhibitory relationship has led to the canonical view that cancers must evade apoptotic 

induction to root themselves as a developing tumor, with evasion of apoptosis classified as a 

major hallmark of cancer.5,6 Cancer cells employ a variety of strategies to evade apoptosis, 

as has been extensively reviewed.5,6 Classically, these strategies follow the dogma that 
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cancers overexpress antiapoptotic proteins or have mutated/downregulated pro-apoptotic 

proteins, consistent with the notion that apoptosis is tumor suppressive.

Induction of apoptosis results from a variety of intrinsic or extrinsic signals. Halting intrinsic 

apoptosis can be the result of multiple mechanisms including (l) shunting pro-apoptotic 

signals (e.g., p53 loss-of-function mutations),7,8 (2) increased expression of antiapoptotic 

proteins (e.g., Bcl-2 overexpression),9 or (3) decreased expression of pro-apoptotic proteins 

(e.g., APAF-1 ).10 Extrinsic apoptosis is often prevented via perturbation of death receptors 

(e.g., decoy receptors)11,12 or employment of the altered expression patterns described for 

intrinsic apoptotic evasion. Most importantly for this review, these alterations of apoptosis 

almost always lie upstream of the proteolytic cleavage of executioner caspases, namely the 

activation of zymogen procasapase-3 (PC-3) to active caspase-3 (Figure 1).13,14 Of note, 

loss-of-function mutations of PC-3/caspase-3 are rarely observed in tumors.13,15–17

Interestingly, recent studies suggest there are also oncogenic roles for pro-apoptotic 

machinery,18–24 including PC-3. In this review, we analyze the multidisciplinary work 

surrounding the study of PC-3 expression and its role in oncogenesis, the biochemistry and 

cellular biology of PC-3 regulation, and therapeutic development seeking to utilize PC-3 

overexpression as a target for selective anticancer therapy. Specifically, the evidence for 

overexpression of PC-3 in multiple cancers is summarized, and the landscape of PC-3 gene 

and enzymatic regulation is detailed. These data provide an emerging explanation for PC-3 

overexpression in cancer, and this common aberration in cancer suggests a broadly 

leverageable therapeutic target.

Procaspase-3 Activation to Caspase-3.

PC-3, the precursor to caspase-3, consists of a prodomain, a large subunit, and a small 

subunit (Figure 2A). PC-3 activation to caspase-3 results from proteolysis at Asp9, Asp28, 

and Asp 175.26–28 Caspase-3 is a cysteine protease that cleaves over 200 proteins and 

ultimately leads to apoptotic cell death.29–31 The conversion of PC-3 to caspase-3 is a 

crucial node of apoptosis and is often considered as a “point of no return” for a cell. While 

PC-3 is generally regarded as the inactive zymogen form of caspase-3, multiple groups have 

demonstrated that PC-3 does have proteolytic activity, albeit at least 200-fold less active than 

caspase-326,28,32 (although experimental care must be taken to ensure observed activity is 

not due to small amounts of contaminating caspase-333). This is perhaps best evidenced by 

experiments in which proteolysis was observed with a noncleavable mutant of PC-3, which 

is unable to form caspase-3.28 While in canonical apoptosis PC-3 is cleaved to caspase-3 via 

activity of caspase-8/−9, PC-3 activation can also be the result of an autocatalytic 

mechanism in which PC-3 or caspase-3 cleaves another equivalent of PC-3 (Figure 2B).28,33 

This autocatalysis enables minimal activity of PC-3/caspase-3 to propagate, having profound 

effects in cells (Figure 2C). As such, analyses that implicate caspase-3 proteolysis are 

complicated by intrinsic activity of PC-3, and small perturbations in basal PC-3/ caspase-3 

levels and activity can lead to significant outcomes as demonstrated by engineered 

overexpression of PC-3/caspase-3. experiments34–36.
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Procaspase-3 Overexpression in Cancer.

PC-3 overexpression in cancer has been reported in a variety of contexts, summarized in 

Table 1. There are a few caveats to this compiled data set. First, in studies on this topic it is 

not always reported if the antibodies used are specific for caspase-3, PC-3, or both. We have 

excluded references that are vague in their antibody descriptions, such as reports that solely 

measure active caspase-3 levels in tumors. Another note is defining the term overexpression. 

“Overexpression” in Table 1 is noted

when a report describes abnormally high expression of PC-3 as compared to matched 

normal tissue (the ideal case) or increased expression when comparing clinical stages of 

cancerous tissues. “Underexpression” is defined as the opposite case. Finally, there are 

numerous cancer types that do not appear in Table 1. This is simply because there are no 

published data about those missing cancers, and as such absence from Table 1 does not 

imply any information on the PC-3 expression.

Table 1 summarizes a growing body of work suggesting that the overexpression of PC-3 is 

common across a wide range of cancer types. There are still conflicting reports within some 

cancers, likely due to insufficient data. For example, in colorectal cancers, Yeatman and co-

workers highlighted the correlation of PC-3 expression with the mutational status of APC, a 

critical tumor suppressor that is mutated in 80% of colorectal cancers.68,95 However, other 

reports demonstrate robust overexpression of PC-3 in colorectal cancer patient samples with 

no mention of APC mutational status.32,64–67 Such inconsistencies notwithstanding, the 

totality of the studies in Table 1 demonstrate strong evidence for the near-ubiquitous 

overexpression of PC-3 in cancers. These data further demonstrate the continued need for 

robust tumor samples along with matched normal tissue to empower the understanding of 

cancer s proteomic landscape.

Transcriptional Regulation of Procaspase-3.

CASP3 (the gene encoding PC-3) is one of the target genes for the E2F family of 

transcription factors.96 In the absence of growth signals, E2F forms a complex with the 

retinoblastoma (Rb) family of proteins, specifically pRb,97 which silences its transcriptional 

activity (Figure 3A). When growth signals are present, CDK4/6 kinases are not inhibited by 

pl6INK4a (encoded by CDKN2A) and form a complex with cyclin D to phosphorylate pRb. 

Phosphorylated-pRb dissociates from the pRb–E2F complex, liberating E2F to turn-on 

transcriptional activity (Figure 3B). Interestingly, the pRb/E2F signaling nexus is often 

dysregulated in many cancers (for example, through overexpression of CDK4/6 and cyclin 

D), leading to unfettered transcriptional activity of E2F (Figure 3C).98–103 This common 

occurrence of pRb/E2F pathway dysregulation in multiple cancers, which funnels to the 

eventual upregulation of CASP3 transcription, is a possible explanation for the prevalence of 

PC-3 overexpression across numerous cancers.

Post-Translational Regulation of Procaspase-3 and Caspase-3 with Inhibitory Zinc.

It is important when discussing overexpression of a protein to also consider key post-

translational regulation of an enzyme’s activity in cells. Specifically for PC-3 and caspase-3, 

inhibitory zinc plays a vital regulatory role. Labile zinc pools have been studied in a variety 

Boudreau et al. Page 4

ACS Chem Biol. Author manuscript; available in PMC 2019 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of contexts,104–108 and the labile zinc concentration in cells is estimated to be in the high 

picomolar to low nanomolar range, suggesting a tightly regulated system of zinc transport.
109–112 Preventing aberrant apoptosis is closely tied to maintaining labile zinc,113–115 and 

there are multiple reports of zinc inhibition of caspase-316 – 20 and PC-328 in biochemical 

assays.

A recent detailed report from Hardy and co-workers121 demonstrates the importance of zinc 

to modulate the activity of caspases and further establishes the stoichiometry of zinc ion 

binding, and their experimental values for zinc inhibition of caspase-3 are in agreement with 

previous experimental methods,118,120 as are their caspase-3/zinc stoichiometries.122 These 

data suggest zinc inhibits caspase-3 with an IC50 of 12.5 nM, and caspase-3 binds three zinc 

ions.121 Interestingly, caspase-3 binds these zinc ions even in the presence of a covalent 

caspase inhibitor (zVAD-FMK). This result suggests that one zinc ion inhibits the active site 

of caspase-3 while leaving the reactive cysteine unperturbed, consistent with a prior 

investigation.120 Hardy et al. hypothesize that one zinc ion binds the catalytic histidine 

(inhibiting proteolysis) while the two other zincs bind in exosites outside the active site of 

caspase-3 (Figure 4A).121 While studies of inhibitory zinc often focus on caspase-3, PC-3 

proteolytic activity and autoactivation to caspase-3 are also inhibited by zinc;28 overall, it 

appears that zinc plays a significant role in regulating both PC-3 and caspase-3 function 

(Figure 4B).

Modulation of zinc levels can be a powerful means to alter caspase activity in a given cell 

type. Regardless of the absolute zinc levels in cancer cells,123–127 the overexpression of 

PC-3 across many cancers results in a perturbation of the labile zinc/ PC-3 ratio. This ratio is 

important for controlling the basal caspase-3 activity in cells, as an increase in PC-3 

concentration favors PC-3 activation (Figure 5). Further, this ratio in normal cells (low 

expressers of PC-3) is a differential that provides a basis for targeting cancer cells 

specifically with PC-3 activators.

Other Modulations of Caspase-3 Activity.

Post-translational modifications (PTMs) that enhance or inhibit caspase activity can be a 

mechanism for regulation of caspase activity in cells (comprehensively reviewed by Lavrik 

and co-workers).128Specifically for caspase-3, there are multiple examples of PTMs that 

inhibit the enzymatic function of caspase-3, including S-nitrosylation on the catalytic 

Cysl63,129–33 glutathionylation of cysteine residues,134 and phosphorylation of Seri50 by 

p38-MAPK.135,136 The overexpression of PC-3 could counteract inhibitory PTMs found on 

caspase-3 and promote apoptosis in these diseased cells.

The overexpression of the X-linked inhibitor of apoptosis (XIAP) protein is a direct 

mechanism to inhibit caspase-3 activity and is reported in a variety of cancers. XIAP is an 

E3 ligase that mediates the ubiquitination of caspase-3,7,9.137,138 However, XIAP does not 

inhibit PC-3 activity, since the LAP recognition motif is only revealed upon PC-3 cleavage 

to caspase-3.137,139,140 Therefore, XIAP acts to prevent cytotoxic caspase-3 activity, but this 

expression does not alter proteolytic events facilitated by PC-3. Perturbing XIAP activity to 

promote apoptosis has been demonstrated with SMAC mimetics, and there are ongoing 

explorations of these anticancer agents.138
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Proteolysis through Caspase-3 and Its Role in Cancer.

While sufficiently high caspase-3 activity leads to apoptotic death, it now appears that PC-3 

and caspase-3 activity may have nonapoptotic roles and broader effects on a cell population 

(Figure 6A).141 The possibility of PC-3/caspase-3 activity as pro-tumorigenic has significant 

implications for basic and translational research, and these single cell and tumor-

microenvironment mechanisms have been the focus of recent reviews.18–24 Here, we 

consider implications of minimal caspase-3-like activities (either from PC-3 or caspase-3), 

providing a possible advantage for cancer cells that overexpress PC-3.

Sub-Lethal Caspase-3 Activity Leads to Genomic Instability.

The elucidation of cellular substrates for caspase-3 reveals that proteins involved in DNA 

repair are preferentially cleaved by caspase-3 during apoptosis.30 These perturbations in 

DNA repair protein levels may lead to genomic instability, ultimately enhancing 

carcinogenesis. For example, Li and coworkers demonstrated that sublethal doses of ionizing 

radiation led to profound DNA damage (Figure 6B),142 but these genomic instabilities were 

not observed in cells lacking PC-3 expression or lacking catalytically competent caspase-3. 

In a follow-up study, the Li group reported sublethal activation of caspase-3 promoted DNA 

damage as a result of Myc-induced oncogenesis in breast epithelial cells, MCF10A, 

suggesting caspase-3-dependent oncogenic transformation.143 CRISPR/Cas9-mediated 

knockout of PC-3 led to reduced DNA damage and abolishment of carcinogenic effects. In 

both of these studies,142,143 DNA damage was the result of endonuclease G (EndoG), a 

DNase that is liberated from the mitochondria following caspase-3 activation. EndoG 

activity has been shown in the presence of pan-caspase inhibitors,144 implying that 

caspase-3 activation may not be solely responsible for EndoG-mediated DNA damage. 

Importantly in both studies, tumor formation in mice was compromised when cancer cells 

had PC-3 knocked down, implying a dependency on PC-3 expression for tumor formation 

and maintenance (Figure 6C). Thus, the overexpression of PC-3 may not merely be a passive 

effect but could be a true driver for oncogenic transformation, strengthening the case for 

PC-3 as a therapeutic target.

In a separate report, Tait and co-workers found that sublethal concentrations of ABT-737, a 

Bcl-2/Bcl-xL inhibitor, led to minority mitochondrial outer membrane permeablization 

(MOMP), caspase-3-mediated CAD (caspase-activated DNAase) activation, and extensive 

DNA damage (Figure 6D,E).145 Treatment with a pan-caspase inhibitor led to no DNA 

damage upon ABT-737 treatment. Pretreatment of cells with ABT-737 increased tumor 

formation as compared to pretreatment with the inactive enantiomer of ABT-737 (Figure 

6F), consistent with studies by Li and co-workers142,143 and suggesting again that caspase-3 

is critical for tumorigenesis. Further validating these reports, other work has revealed that 

sublethal antimitotic146 and extrinsic-apoptotic agents147 induce DNA damage. Taken 

together, it appears that caspase-3 promotes DNA damage and oncogenic transformation 

when sublethal levels of PC-3 activation are induced by a variety of environmental stresses.

These data suggest that there may be an advantage to cancer cells that overexpress PC-3, 

resulting in higher levels of genetic instability. Given PC-3 autoactivation, a lower barrier to 

sublethal caspase-3 activity afforded by a decreased zinc/PC-3 ratio (Figure 5) may be 
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sufficient to promote DNA damage and oncogenesis. Whether this lower level of proteolysis 

is the result of direct PC-3 mediated cleavages resulting from aberrantly high concentrations 

of PC-3 or low levels of caspase-3 accessed via PC-3 autocatalysis remains unanswered. 

Regardless, genomic instability resulting from PC-3 overexpression represents a possible 

explanation for the paradoxical overexpression of PC-3, a canonical pro-apoptotic protein, in 

cancer. There are other possible pro-oncogenic roles of PC-3/ caspase-3 activity, including 

promoting a tumorigenic proliferative state, as has been extensively discussed.18–20,22,23,148

Leveraging Procaspase-3 Overexpression for Selective Anticancer Therapy.

The majority of the current anticancer arsenal (both conventional cytotoxins and targeted 

therapies) relies on robust activation of apoptosis via processes upstream of PC-3 for their 

antitumor effect.25,149 Due to a variety of mechanisms, these therapies can fail to elicit 

levels of caspase-3 activity sufficient for apoptotic death, diminishing their efficacy.149 As 

described above, a low level of caspase-3 activity may actually benefit cancers, which has 

led to the suggestion of caspase inhibition as a therapeutic strategy.19,20 However, given (l) 

the downstream location of PC-3 in the apoptotic cascade relative to frequently mutated 

proteins (Figure 1),150 (2) the low frequency of PC-3 loss-of-function mutations in cancer,
15,17 (3) the robust overexpression of PC-3 in a number of cancer types (Table l), and (4) the 

dependency of tumorigenesis on maintained PC-3 expression (Figure 6), therapeutic 

interventions that directly activate PC-3 leading to robust caspase-3 activity represent a 

strategy to overcome apoptotic evasion and synergize with the current suite of anticancer 

drugs.

Procaspase Activating Compound 1 (PAC-1).

With this backdrop, a first-in-class small molecule activator of PC-3, the first procaspase-

activating compound (PAC-1 ), was reported in 2006.64 PAC-1 treatment leads to robust 

activation of apoptosis in multiple cancer cell lines and patient-derived tumor cells, while 

having a minimal effect in normal cell lines and matched normal tissues.64,151,152 Through 

multiple mechanistic studies, it has been shown that PAC-1 leads to PC-3 activation via 

chelation of the inhibitory zinc of PC-3 (Figure 7A).28 The affinity of PAC-1 for zinc (Kd = 
1.28nM)153 allows for chelation of inhibitory zinc from PC-3 but is not strong enough to 

disrupt proteins containing essential zinc ions.42,15 PAC-1 chelation of intracellular labile 

zinc has been demonstrated using genetically encoded zinc-selective sensor proteins,155 and 

this unique mode of action of PAC-1 has been validated via utilization of caspase-specific 

inhibitors156 caspase-specific substrates151 in work with Bax/Bak double knockout 

cells157,158 as well as explorations using a PAC-1 derivative in caspase-3/caspase-7 

knockout cell lines.42

The relationship between PAC-1 and other therapeutically relevant metal chelators has been 

extensively described as has evidence suggesting PAC-1 is not acting through a pan-assay 

interfering mechanism.25,28,153 Targeting transition metal homeostasis is known to be a 

viable drug strategy.25,153,159,160 PAC-1 is stable at temperatures and pH values well outside 

of the physiological range161 and the N-acyl hydrazone functional group is found in other 

drugs (e.g., rifampicin, eltrombopâ). Over 1000 PAC-1 derivatives have been synthesized,
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162–169 as recently reviewed.25 In particular, the derivatives S-PAC-1, B-PAC-1, and SM-1 

appear to have clinical promise (Figure 7B)>
25,47,170–174

PAC-1 has been used as a tool for exploring the effect of direct PC-3 activation in a variety 

of contexts, highlighted by the recent work of Fuchs and co-workers that elucidated a key 

role for caspase-3 activity in regulating organ size.175 PAC-1 has also been utilized for the 

induction of apoptosis176–182 for the direct activation of PC-3 downstream of the 

mitochondria157,183–189 and has been the subject of detailed preclinical studies.161,190–194 

PAC-1 is part of several pharmacological reagent kits (e.g., Sigma LOPAC bioactives library, 

SCADs inhibitor kit) and has been evaluated in multiple large-scale drug/cell line screens.
195–197 The half-life of PAC-1 is ~25 min in mice153 and ~2.1 h in dogs198 but markedly 

longer in humans (discussed below), suggesting differences between the rodent and human 

metabolism of PAC-1.

Combination Studies with PAC-1.

Given that PC-3 activation is crucial for apoptotic-inducing agents, investigation of PAC-1 

treatment as a means to synergistically enhance the activity of a variety of 

chemotherapeutics has been explored.51,199 Of interest, PAC-1 + doxorubicin has efficacy in 

animal models of osteosarcoma, including in canine cancer patients.199 PAC-1 + 

doxorubicin treatment induced shrinkage of pulmonary macrometastatic lesions in canines 

with metastatic osteosarcoma (trial size n = 6), and in another small trial PAC-1 + 

doxorubicin showed impressive results for the treatment of canine lymphoma (trial size n = 
4).199

PAC-1 is a blood–brain barrier penetrant155 suggesting the possibility for treating CNS 

cancers, namely glioblastoma (GBM). PAC-1 induces synergistic apoptosis with the 

standard-of-care drug temozolomide (TMZ) in many glioma cancer cell lines and in vivo 
intracranial rodent models.51 Again, a small clinical trial enrolling canine cancer patients 

with spontaneous glioma allowed for further valuable preclinical assessment of PAC-1, 

given the outstanding evidence that canine glioma mirrors its human counterpart.49,200–202 

Three canine glioma patients were treated with a protocol that mimics human treatment 

protocols, i.e., PAC-1, radiation, and TMZ cycling. Marked responses were observed with 

tumor regressions of 43%, 60%, and 100% observed in these three patients51.

As stated by Thornbury and Lazebnik in 1998, proteolysis of a protein represents an 

irreversible post-translational modification,203 and the ability to degrade a target rather than 

inhibit its function is an emerging therapeutic strategy.204,205 PAC-1 treatment in 

combination with a variety of clinically approved kinase inhibitors leads to synergistic 

caspase-3 activity, resulting in increased apoptotic cell death and delayed onset of resistance.
206,207 MEK1/2 are the gatekeeper kinases for ERK½ phosphorylation, and MEK1/2 

reactivation is a major driver of resistance to MAPK-pathway targeted agents (Figure 7C).
208 Direct PC-3 activation with PAC-1 leads to caspase-3 dependent proteolysis of MEK1/2, 

irreversibly removing the necessary cellular machinery to reactivate MAPK signaling 

(Figure 7D). As shown, PAC-1 combinations lead to persistent inhibition of MEK1/2 

phosphorylation (Figure 7E), resulting in minimal resistance (Figure 7F).207 This study 

highlights the ability to leverage caspase-3’s proteolytic substrate scope29,31 to cleave 
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proteins within cells and utilize cancer s overexpression of PC-3 to selectively direct this 

degradation only to cancer cells.

On the basis of compelling data in mouse models of cancer64,199,206,209 and m canine cancer 

patients,51,199 a phase 1 clinical trial of PAC-1 for late-stage cancer patients was initiated (). 

Thus far, it has been reported that PAC-1 has excellent pharmacokinetics in human cancer 

patients (e.g., a half-life of ~20 h210), and PAC-1 has been dosed as high as 750 mg (oral 

tablet, once-a-day for 21 days) with signs of efficacy in these late-stage cancer patients.
211,212 The FDA granted PAC-1 orphan drug designation for the treatment of GBM, and 

based on the demonstration that PC-3 expression is increased in glioma samples,48–51 and 

data showing efficacy of PAC-1 + TMZ in rodent models of glioma and canine glioma 

patients,51 the combination of PAC-1 and TMZ is being assessed in recurrent human GBM 

patients. Initial reports of this trial () suggest that the PAC-1/TMZ combination is well-

tolerated and that PAC-1 has outstanding pharmacokinetics in this combination study.213

CONCLUSIONS AND OUTLOOK

Apoptosis-inducing drugs are a mainstay of many anticancer regimens. Cancers must evade 

apoptosis to proliferate, and it appears that certain subapoptotic processes may be 

advantageous for cancers (e.g., through genetic instability). The zymogen precursor of 

executioner caspase-3, PC-3, is overexpressed in multiple malignances, and this abnormal 

expression suggests the possibility for crucial roles of canonical apoptotic machinery in 

oncogenic transformation. PC-3 presents an opportunity to target cancer through 

weaponization of PC-3 overexpression to selectively generate cytotoxic caspase-3 in cancer 

cells. PAC-1 is a first-in-class drug that chelates the inhibitory zinc from PC-3/caspase-3, 

restoring their enzymatic function. PAC-1 has been useful as a tool to explore procaspase-3 

function, and the translational potential of PAC-1 is being evaluated in human cancer 

patients (, , ). Continued efforts to unravel the overexpression of PC-3 and studies that 

capitalize on this paradoxical observation will further our understanding of the complex 

relationship between normal cell growth, apoptosis, and cancer.
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Figure 1. 
Diverse upstream mechanisms employed by cancers to prevent apoptosis. Increased 

expression of antiapoptotic proteins (green arrows, e.g. Bcl-2, decoy death receptors) or 

decreased expression or mutation of proapoptotic proteins (red arrows, x’s, e.g. APAF-1, 

BH3 proteins, p53) drive the net effect of preventing downstream activation of PC-3 to 

caspase-3 and avoiding apoptotic cell death. Protein structures displayed: p53 (PDB: 4QOl), 

APAF-1 (PDB: 1CY5), BH3-proteins (Bax, PDB: 1F16), decoy death receptor (Death 

Receptor 4, PDB: 5CIR, no reported decoy death receptor crystal structures), and Bcl-2 

(PDB: 1G5M). For comprehensive reviews on the upstream signaling that results in 

apoptosis, see refs 14 and 25.
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Figure 2. 
Autocatalytic PC-3 activation, resulting in large effects from minor initial activity. (A) 

Pictorial representation of PC-3 and caspase-3 domains. (B) Reaction scheme for PC-3 

activation to form caspase-3. While PC-3 is canonically cleaved by caspase-8 or caspase-9, 

caspase-3 can be formed by PC-3-mediated proteolysis of another PC-3 protein, or 

caspase-3 mediated cleavage of PC-3. (C) Initial PC-3 activation to form caspase-3 leads to 

a proteolytic cascade to form increased levels of caspase-3, in turn increasing proteolysis.
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Figure 3. 
pRB/E2F pathway dysregulation leading to unrestricted CASP3 gene transcription. The 

pRb/E2F pathway regulation of transcription and cell cycle progression. (A) The 

transcriptional activity of E2F is inhibited through binding with pRb with further regulation 

of the pathway via pl6INK4a. (D) In the presence of growth signals, cells turn on E2F 

transcription via CDK4/6 activation, resulting in phosphorylation of pRB and E2F 

translocation to the nucleus, turning on transcription of target genes (i.e., CASP3). (C) In 

cancer cells, the loss of pl6INK4a, pRb, or overexpression of CDK4/6 lead to relief of E2F 

inhibition, resulting in unregulated transcription. For a comprehensive review of this 

pathway in cancer, see refs 99 and 101.
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Figure 4. 
Post-translational regulation of caspase-3 and PC-3 activity via inhibitory zinc. (A) 

Graphical representation of inhibitory zinc on caspase-3.121 Protein structure displayed is 

PDB: 2XYG. (B) Zinc binding inhibits PC-3 autocatalysis to form caspase-3. Upon zinc 

liberation, PC-3 can autoactivate to form caspase-3. Adapted with permission from ref 28. 

Copyright 2009 Elsevier.
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Figure 5. 
Perturbation of zinc regulation via increased PC-3 levels in cancer cells. Cancer cells 

overexpress PC-3, making regulation of PC-3 activity through inhibitory zinc less effective. 

Given the autocatalytic nature of PC-3 autoactivation and amplification, these changes in 

zinc/PC-3 ratio may prove sufficient to alter basal PC-3 (and ultimately caspase-3) activity 

within a cell. Zinc (Zn2+) circles represent the labile zinc pool.
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Figure 6. 
Promotion of DNA damage and genomic instability by subapoptotic caspase-3 activity. (A) 

Graphical representation of the spectrum of PC-3/caspase-3 activity. Sublethal levels 

(spanning from green to yellow/orange) represent proteolytic levels not sufficient for 

apoptotic induction, but sufficient for cleavage of a variety nonlethal protein substrates. 

Lethal levels (spanning from orange to red) signify irreconcilable caspase-3 activities and 

result in cell death via apoptosis. (B) Sublethal irradiation of MCF10A induces DNA 

damage as per the comet tail assay. A larger tail moment indicates increased DNA damage. 

Reprinted with permission from ref 142. Copyright 2015 Elsevier. (C) Irradiated MCF10A 

cells form tumors in mice, while shRNA of CASP3 leads to a dramatic reduction in tumor 

formation (n = 10 per arm, all arms are displayed in the panel). These results indicate an 

active role of caspase-3 in tumorigenesis. Casp3DN: dominant-negative caspase-3. 

Reprinted with permission from ref 142. Copyright 2015 Elsevier. (D) Treatment of U20S 

cells, transiently expressing CytoGFP/Mitocherry, with ABT-737 (5 μΜ) leading to 

increased /H2AX foci; H202 is the positive control. Increases in yH2AX foci are indicative 

of heightened DNA damage. Reprinted with permission from ref 145. Copyright 2015 

Elsevier. (E) Treatment with ABT-737 causes minority MOMP (displayed as a perforated 

mitochondria), leading to sublethal levels of caspase-3, resulting in CAD activation and 

genomic instability and carcinogenesis. (F) Primary pi9Arf null MEF cells were treated with 

ABT-737 (10 μΜ) or its inactive enantiomer (ENA, 10 μΜ) for 10 passages, then inoculated 

into mice. Tumor formation is increased when cells were pretreated with ABT-737 (n = 15 

per treatment), suggesting that ABT-737 treatment leads to caspase-3 mediated genomic 

instability that ultimately increases tumorigenicity. Adapted with permission from ref 145. 

Copyright 2015 Elsevier.
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Figure 7. 
Activation of PC-3 by PAC-1 and its derivatives via chelation of labile inhibitory zinc. (A) 

PAC-1 binds zinc, alleviating inhibition of PC-3, allowing for autocatalytic formation of 

caspase-3. (B) Chemical structures of reported derivatives of PAC-1. Deviations from PAC-1 

are highlighted in blue. (C) A variety of kinase inhibitors that target mutant proteins found in 

cancer are effective as single agents and in combination with MEK inhibitors. However, this 

initial efficacy is short-lived, and resistance invariably occurs through a variety of 

mechanisms surrounding MEK reactivation.208 (D) PAC-1 treatment synergizes with 

targeted kinase inhibitors and leads to robust activation of PC-3. These increased levels of 

caspase-3 activity lead to dramatic reduction of MEK levels via caspase-3 mediated 

cleavage. This protein degradation strategy sustains inhibition of MEK and the MAPK 

pathway and delays the onset of resistance.207 (E) Time course of phosphorylated MEK1/2 

levels upon treatment of vemurafenib (BRAFv600E inhibitor, Vem), PAC-1, trametinib 

(MEK1/2 inhibitor, Tram), and combinations as indicated. Experiment was conducted with 

A375 cells (BRAFv600E cell line). PAC-1 combined with vemurafenib leads to persistent 

phosphorylated MEK1/2 suppression and increased apoptosis as measured by PARP-1 

cleavage. Reprinted with permission from ref 207 (some blots have been removed for 

simplification). Copyright 2018 Elsevier. (F) Long-term incubation of A375 cells with 

PAC-1 (l μΜ), vemurafenib (10 μΜ), trametinib (3 nM), and combinations thereof. PAC-1 in 

combination with kinase inhibitors dramatically decreases the occurrence of resistant cell 

growth. Reprinted with permission from ref 207 (the orientation of the figure is rotated from 

the original). Copyright 2018 Elsevier.
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Table 1.

Procaspase-3 Expression Levels in Cancer

cancer type
a PC-3 expression levels refs

blood ALL overexpressed 37, 38

AML overexpressed 38, 39

BL/BLL overexpressed 40

CLL overexpressed 41, 42

DLBCL overexpressed 43

NHL overexpressed 41, 44

underexpressed 45

childhood NHL overexpressed 46

multiple myeloma overexpressed 47

brain astrocytomas overexpressed 48, 49

glioblastoma overexpressed 48–51

meningioma overexpressed 49, 52, 53

neuroblastoma overexpressed 54

oligodendrogliomas overexpressed 49

solid tumors breast overexpressed 55–60

underexpressed 61

cervical overexpressed 62, 63

colorectal overexpressed 32, 64–67

underexpressed 68

esophageal overexpressed 69, 70

gallbladder overexpressed 71

gastric overexpressed 72

hepatocellular overexpressed 73

underexpressed 74, 75

NSCLC overexpressed 76–81

melanoma overexpressed 82, 83

pancreatic similar 84

overexpressed 85, 86

prostate overexpressed 87

underexpressed 88–90

SCC overexpressed 91–93

stomach overexpressed 94

a
ALL, Acute Lymphocytic Leukemia; AML, Acute Myeloid Leukemia; BL/BLL, Burkitt Lymphoma/Burkitt-Like Lymphoma; CLL, Chronic 

Lymphocytic Leukemia; DLBCL, Diffuse Large B-Cell Lymphoma; NSCLC, Non-Small Cell Lung Cancer; SCC, Squamous Cell Carcinoma.
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