Skip to main content
. 2019 Nov 15;10:5024. doi: 10.1038/s41467-019-12875-2

Fig. 4.

Fig. 4

Applications of SchNOrb. a Optimisation of the HOMO-LUMO gap. HOMO and LUMO with energy levels are shown for a randomly drawn configuration of the malonaldehyde dataset (centre) as well as for configurations that were obtained from minimising or maximising the HOMO-LUMO gap prediction using SchNOrb (left and right, respectively). For the optimised configurations, the difference of the orbitals are shown in green (increase) and violet (decrease). The dominant geometrical change is indicated by the black arrows. b The predicted MO coefficients for the uracil configurations from the test set are used as a wavefunction guess to obtain accurate solutions from DFT at a reduced number of self-consistent-field (SCF) iterations. This reduces the required SCF iterations by an average of 77% using a Newton solver. In terms of runtime, it is more efficient to use SOSCF, even though this saves only 15% of iterations for uracil