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Abstract

Cryo-electron microscopy is a popular method for protein structure determination. Identifying a 

sufficient number of particles for analysis can take months of manual effort. Current 

computational approaches find many false positives and require significant ad hoc post-processing, 

especially for unusually-shaped particles. To address these shortcomings, we develop Topaz, an 

efficient and accurate particle picking pipeline using neural networks trained with a general-

purpose positive-unlabeled (PU) learning method. This framework enables particle detection 

models to be trained with few, sparsely labeled particles and no labeled negatives. Topaz retrieves 

many more real particles than conventional picking methods while maintaining low false positive 

rates, is capable of picking challenging unusually-shaped proteins (e.g. small, non-globular, and 

asymmetric), produces more representative particle sets, and does not require post hoc curation. 

We demonstrate the performance of Topaz on two difficult datasets and three conventional 

datasets. Topaz is modular, standalone, free, and open source (http://topaz.csail.mit.edu)
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Introduction

Single particle cryo-electron microscopy (cryoEM) is a method capable of resolving high-

resolution structures of proteins in near-native states. CryoEM projection images 

(micrographs) can contain hundreds or thousands of individual protein projections 

(particles). Given a sufficient number of particles, the 3D structure of the protein can be 

determined1. However, due to the low signal-to-noise ratio (SNR) of cryoEM images, large 

numbers of observations are required for accurate reconstruction. Studies show a log-linear 

relationship between the number of particles included and the inverse resolution of the 

reconstruction2,3. The concentration of protein on EM grids, efficiency of data collection, 

and completeness and accuracy of particle identification are factors determining the total 

number of particles available for downstream reconstruction and hence the achievable 

resolution. In particular, particle identification (particle picking) is a major bottleneck, often 

taking weeks or even months with current workflows for small or non-globular particles, due 

to variability in particle shapes and structured noise in micrographs.

A variety of methods have been developed for particle picking automation. The most 

common are Difference of Gaussians (DoG) and template-based approaches4–8. However, 

these methods are unable to detect unusually shaped particles and suffer from high false 

positive rates causing them to require significant post-picking curation. Most commonly, 

researchers use iterative 2D/3D classification and discard poor subsets by eye. These picking 

methods and downstream curation introduce significant bias into the final particle set, 

potentially removing rare particle views and conformations9–11. Newer methods based on 

convolutional neural networks (CNNs) have been proposed12–14, which use positive and 

negative labeled micrograph regions to train CNN classifiers which then predict labels for 

the remaining regions. However, due to factors like low SNR, structured background, and 

the distribution of particle morphologies, researchers must label a large number of regions 

for training — a non-trivial and time-consuming task. Moreover, the diverse characteristics 

of negative data make it difficult to manually label a representative set of negative examples, 

and hence the number of labeled negatives must be an order of magnitude larger than the 

number of positives to achieve acceptable performance15. This has limited adoption by the 

cryoEM community and hand-labeling remains the gold standard.

To overcome the challenges inherent in current automatic particle picking methods, we 

newly frame particle picking as a positive-unlabeled (PU) learning problem. We seek to 

learn a classifier of positives and negatives given a small number of labeled positive regions 

and the remaining unlabeled regions. PU learning has proved to be an effective paradigm 

when working with partially labeled data in other domains (e.g. document classification16, 

time series classification17, and anomaly detection18). Recent work has explored general 

purpose PU learning for neural network models based on estimating the true positive-

negative risk, but overfitting remains a challenge for PU learning19. Therefore, we instead 

approach PU learning as a constrained optimization problem in which we wish to find 

classifier parameters to minimize classification errors on the labeled data subject to a 

constraint on the expectation over the unlabeled data. By imposing this constraint softly with 

a novel generalized expectation (GE) criteria20, we are able to mitigate overfitting and train 

high accuracy particle classifiers using very few labeled data points. Furthermore, by 
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combining our PU learning method with autoencoder-based regularization, we can further 

reduce the amount of labeled data required for high performance.

Here, we present Topaz, a pipeline for particle picking using convolutional neural networks 

with PU learning. Topaz retrieves many more particles than alternative methods while 

maintaining a low false positive rate. It substantially reduces the need for particle curation, 

removes systematic bias in particle picking introduced by conventional pickers and 2D/3D 

classification procedures, and allows for robust and representative particle analysis and 

classification. Furthermore, Topaz is capable of reliably picking previously challenging 

particles (e.g. small, non-globular, asymmetric) while avoiding aggregation, grid substrate, 

and other background objects, all while requiring minimal example particles.

We first demonstrate Topaz’s capabilities on a novel protein dataset for the Toll receptor — a 

~105 kDa, non-globular, asymmetric particle. Despite aggregation and sparse labeling in the 

dataset, Topaz enables a 3.7 Å reconstruction and resolves secondary structures not possible 

with other methods. Topaz also decreases anisotropy by better detecting conventionally 

difficult particle views. Additionally, on three publicly available datasets, we find that by 

using Topaz with only 1,000 labeled training examples, we are able to retrieve many more 

real particles than were included in the published particle sets. In addition, we are able to 

solve 3D structures of equal or greater quality to those found using the published particles, 

despite the published particles having been taken through significant manual curation. 

Remarkably, the Topaz results do not require any ad hoc post-processing typically required 

for high-resolution structures; we feed Topaz particles directly into alignment and 

reconstruction. Finally, we compare our GE-based PU learning method against other off-the-

shelf PU learning approaches and find that our method improves over the current state-of-

the-art in application to training particle detection models. Topaz was a critical component in 

determining the single particle behavior of an elongated clustered protocadherin21.

Topaz source code is freely available (https://github.com/tbepler/topaz) and can be installed 

through Anaconda, Pip, Docker, Singularity, and SBGrid22. Topaz is designed to be 

modular, has been integrated into Appion23, is being integrated into Relion24, CryoSparc25, 

EMAN25, Scipion26, and Focus27, and can easily be integrated into other cryoEM software 

suites in the future. Topaz runs efficiently on a single GPU computer and includes a 

standalone GUI28 to assist with particle labeling.

Results

1. The Topaz Pipeline

The Topaz particle picking pipeline is composed of three main steps (Figure 1): (1) whole 

micrograph preprocessing, optionally with a mixture model newly designed to capture 

micrograph statistics (Online Methods, Supplementary Figures 1, 2 & 3), (2) neural network 

classifier training with our PU learning framework, and (3) sliding window classification of 

micrographs and particle coordinate extraction by non-maximum suppression.

Classifier training from positive and unlabeled data—We frame particle picking as 

a PU learning problem in which we seek to learn a classifier that discriminates between 
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particle and non-particle micrograph regions given a small number of labeled particles and 

many unlabeled micrograph regions. CNN classifiers are trained using minibatched 

stochastic gradient descent with a novel objective function, GE-binomial (Online Methods), 

which explicitly models the sampling statistics of minibatch training to regularize the 

classifier’s posterior over the unlabeled data. Combining this with an optional autoencoder 

module allows high-accuracy classifiers to be trained despite using very few positive 

examples. This approach allows us to overcome overfitting problems associated with recent 

PU learning methods developed for neural networks in domains other than cryoEM analysis 

and to effectively pick particles in challenging cryoEM datasets.

Micrograph region classification and particle extraction—Given a trained CNN 

particle classifier, we extract predicted particle coordinates and their associated predicted 

probabilities. First, we calculate the per pixel predicted probabilities by applying the 

classifier to each micrograph region as a sliding window. Then, to extract coordinates from 

these dense predictions, we use the well-known non-maximum suppression algorithm to 

greedily select high scoring pixels and remove their neighbors from consideration as particle 

centers. This yields a list of predicted particle coordinates and their associated model scores 

for each micrograph.

2. Topaz picks challenging particles and orientations

We explore the ability of Topaz to detect challenging particles on a small, asymmetric, non-

globular, and aggregated protein, a Toll receptor. To this end, we compare particles picked 

by Topaz (trained with 686 labeled particles) with particles picked using several other 

methods: DoG7 and template picking followed by 2D class averaging and manual filtering 

and CNN-based methods crYOLO29 and DeepPicker12 (Online Methods). The CNN-based 

methods were all trained following the software instructions with default settings and 

identical labeled particles.

After four rounds of 2D classification and filtering, DoG finds 770,263 good particles from 

an initial stack of 1,599,638 and template picking finds 627,533 good particles from an 

initial stack of 1,265,564. Using Topaz, after one round of 2D classification, we are left with 

1,006,089 of an initial 1,010,937 particles, indicating that Topaz gives a remarkably low 

false positive rate of only 0.5% on this data. We then compare the quality of the picked 

particles by taking each particle set through reconstruction (Figure 2a,b,c). We find that 

particles picked using Topaz yield a structure with 0.731 sphericity at FSC0.143 = 3.70 Å 

resolution, compared to 0.706 sphericity at 3.92 Å for template picked particles and 0.652 

sphericity at 3.86 Å for particles picked using DoG. Furthermore, only the Topaz particle 

based density map is of high enough quality to reliably resolve secondary structure (beta-

strands) and allow for model building. Other CNN-based picking methods, crYOLO and 

DeepPicker, are unable to find sufficient numbers of good particles for high-resolution 

reconstruction. crYOLO finds 131,300 particles resulting in a 6.8 Å structure while 

DeepPicker fails to find any meaningful particles in this dataset (Supplementary Figures 4 – 

7).
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We next quantify the ability of these methods to detect different particle views. This particle 

is strongly asymmetric and non-globular, thus it is important for picking methods to retrieve 

the full spectrum of view angles. By counting the number of particles assigned to each view 

in 2D class averages, we find that Topaz retrieves a much larger fraction of oblique, side, 

and top views of the Toll receptor than do DoG and template methods (Figure 2d). In 

addition, we note that these micrographs are challenging - containing junk and significant 

protein aggregation, yet Topaz is uniquely able to avoid these micrograph regions while 

picking only good particles (Figure 2e, Supplemental Figure 4).

3. Topaz enables high-resolution reconstruction with no post-processing

We next evaluate the full Topaz particle picking pipeline by generating reconstructions for 

three cryoEM datasets containing T20S proteasome (EMPIAR-10025), 80S ribosome 

(EMPIAR-10028), and rabbit muscle aldolase (EMPIAR-10215). Each of these datasets 

already has a curated set of particles yielding high quality reconstructions which we 

compare with particles predicted by Topaz, trained with 1,000 positives, based on 

reconstruction quality (Online Methods). We standardize the reconstruction procedure by 

using cryoSPARC homogeneous refinement on the raw Topaz particle sets (i.e. no post-

processing was applied) and published particle sets with identical settings for each dataset. 

By considering the reconstruction resolution at decreasing probability thresholds (increasing 

numbers of particles) predicted by Topaz, we select the particle set that optimizes the 

resolution for each dataset.

We find that Topaz is able to retrieve substantially more good particles than were present in 

the curated particle sets, finding 3.22, 1.72, and 3.68 times more particles in 

EMPIAR-10025, EMPIAR-10028, and EMPIAR-10215 respectively. Furthermore, 

reconstructions from the Topaz particle sets are of equal or higher quality to those given by 

the curated particles (Figure 3). Topaz maps reach roughly equivalent resolution to the 

published structures for 80S ribosome and rabbit muscle aldolase while improving the 

resolution by ~0.15 Å over the published structures for the T20S proteasome. Remarkably, 
this was achieved using only 1,000 labeled examples and no filtering of the particle set (e.g. 

particle filtering with 2D or 3D class averaging or iterative reconstructions removing poor 

particles). We note that even though these labeled training particles are extremely sparse, PU 

learning enables Topaz to pick with high precision as seen in example micrographs 

(Supplementary Figures 8, 9, and 10). We verify that the additional particles found by Topaz 

are good particles by performing reconstructions using only the newly picked particles and 

find nearly identical structures (Figure 3). For aldolase, although Topaz finds many more 

particles than were in the published dataset, the Topaz, curated, and the Topaz minus curated 

particle sets achieve the same reconstruction resolution (2.63 Å at FSC0.143), suggesting that 

the ~200k particles in the published set is already sufficient to reach the resolution limit of 

the data given standard reconstruction methods.

4. Topaz particle predictions are well-ranked and contain few false positives

We next quantify the quality of the particles predicted by Topaz over varying predicted 

probability thresholds by calculating the reconstruction resolution and estimating the 

number of false positive particles based on 2D class averaging. For each dataset, 
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reconstructions are calculated using particles predicted by Topaz at decreasing probability 

cutoffs (Figure 4a). The resolution of Topaz structures increases as we include more good 

particles and then drops once the threshold becomes small and too many false positives are 

included as demonstrated by the dip in resolution for the last threshold of EMPIAR-10025. 

Furthermore, we compare these curves with those obtained by randomly subsampling the 

published particle sets and find that Topaz particles quickly match the resolution of the 

published particles for the proteasome and ribosome datasets. For the aldolase dataset, we 

see that more Topaz particles are required to match and then exceed the resolution of the 

curated particle set. This could be because Topaz does not find enough side views of the 

particle until the probability is sufficiently lowered whereas the curated dataset has been 

filtered to be enriched for these views (Supplementary Figure 11).

We also classified the particle sets at each threshold into ten classes and manually examined 

the class averages to determine whether each class represented true particles or false 

positives. As expected, we find that as the probability threshold is decreased, the fraction of 

false positives increases (Figure 4b), yet remains remarkably low even at relaxed thresholds. 

Furthermore, particles appear to be well-ranked in that noisy or unusual particle classes only 

start to appear at low thresholds. For example, the T20S proteasome dataset is contaminated 

with gold particles which appear as dark spots in the micrographs. Particles in close 

proximity to gold are only selected as the probability threshold is decreased (Figure 4). 

Similar trends can be observed in the ribosome (Supplementary Figure 12) and aldolase 

(Supplementary Figure 11) class averages. This can also be seen in the precision-recall 

curves for these datasets (Supplementary Figures 13) where Topaz maintains remarkably 

high precision even at high recall levels.

5. Our GE criteria based PU learning method outperforms other general-purpose PU 
learning approaches

Comparison of PU learning methods—We consider two generalized expectation-

based approaches to PU learning, GE-KL and GE-binomial (Online Methods), and evaluate 

their effectiveness by benchmark against the recent non-negative risk estimator approach of 

Kiryu et al.19 (NNPU) and the naive approach in which unlabeled data are considered as 

negative for classifier training (PN) on two additional cryoEM datasets. This is important to 

keep our PU learning methods development separate from the full Topaz evaluation above. 

The first dataset, EMPIAR-10096, is a publicly available dataset containing influenza 

hemagglutinin trimer particles and the second, EMPIAR-10234 (clustered protocadherin), is 

a challenging dataset provided by the Shapiro lab containing a stick-like particle with low 

SNR (Supplementary Figure 14). For purposes of comparison, we simulated positively 

labeled datasets of varying sizes by randomly subsampling the set of all positive examples 

within the training set of each dataset.

We find that across all experiments, classifiers trained with our GE criteria-based objective 

functions dramatically outperform those trained with the NNPU or PN methods. Generally, 

GE-binomial and GE-KL classifiers display similar performance with a few important 

exceptions where GE-binomial gives better results. For the dataset with more compact 

particles, EMPIAR-10096, GE-binomial gives significantly (p<0.05 by Student’s paired t-
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test) better test set average-precision scores than GE-KL when the number of data points is 

tiny (10 positive examples; Figure 5a). At larger numbers of positives, both methods are 

statistically equivalent. On the challenging EMPIAR-10234 dataset, GE-binomial 

significantly outperforms GE-KL at 1,000 labeled examples (p<0.05) whereas GE-KL gives 

better results (p<0.05) within the 50–250 range of labeled examples. These results indicate 

that our GE-based PU learning approaches dramatically outperform previous PU learning 

methods, enabling particle picking despite few labeled positives on the challenging 

EMPIAR-10234 dataset and substantially improving picking quality on the easier 

EMPIAR-10096. Although GE-binomial and GE-KL perform similarly in this experiment, 

we do find that GE-binomial outperforms GE-KL in the two important cases of 10 easy 

particles and 1,000 difficult particles.

Augmentation with autoencoder—We next consider whether classifier performance 

can be improved when few labeled data points are available by introducing a generator 

network with corresponding reconstruction error term in the objective to form a hybrid 

classifier+autoencoder network (Online Methods). We hypothesized that including this 

reconstruction component would improve the generalizability of the classifier when few 

labeled data points are available by requiring that the feature vectors given by the encoder 

network be descriptive of the input – acting as a sort of machine learning technique known 

as regularization.

We evaluate this hypothesis by training classifiers with different settings of the autoencoder 

weight, γ, and varying numbers of labeled data points, N, on the EMPIAR-10096 and 

EMPIAR-10234 datasets (Online Methods). We find that including the decoder network 

with reconstruction error term in the objective (γ = 1 and γ = 10
N ) improves classifier 

performance in the few labeled data points regime (Figure 5b). As the number of data points 

increases, the benefit of using the autoencoder decreases and then hurts classifier 

performance due to over-regularization. Our results from both datasets suggest that using the 

autoencoder with γ = 10
N  gives best results when N ≤ 250 and that not using the autoencoder 

is best for N > 250. Combined with PU learning, autoencoder-based regularization is an 

effective method to further improve classifier performance when few labeled positives are 

available.

Discussion

Since our work originally appeared in RECOMB 201830 and as an arXiv preprint, other 

works have followed on bioRxiv that propose alternative CNN-based particle picking 

methods29,31. However, these methods follow the supervised learning paradigm (i.e. some 

variant of PN learning) and are limited by the associated assumptions. In the future, it may 

also be possible to provide particle detection models pretrained on many publicly available 

datasets; however, we note that fully-labeled, ground-truth datasets are presently unavailable 

and that these models are unlikely to generalize to new datasets with conventionally difficult 

particles, which we focus on here. While it may seem difficult to provide labeled data 

upfront, in practice we find that explicitly relaxing the requirement to completely label 

micrographs significantly eases this burden and is a major advantage of Topaz over other 
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CNN-based methods. Users may also “bootstrap” the labeling procedure using existing 

picking and curation methods, while remaining cautious against reintroducing bias. We note 

that there may be some difference between randomly sampling from a curated particle set 

and particles that would be labeled by a user. However, the Toll receptor and clustered 

protocadherin training sets were both provided by hand-labeling and demonstrate that 

labeling a small, representative set of particles is easily achievable even for conventionally 

difficult datasets.

Although we use a simple CNN architecture with reasonable default hyperparameters and 

show that it performs well on these datasets, any model architecture that can be trained with 

gradient descent can use our GE-criteria objective functions to learn from positive and 

unlabeled data. Furthermore, additional hyperparameter tuning, such as L2 or dropout 

regularization, can improve model performance. The only hyperparameters introduced by 

our objective function is the unknown positive class prior, π, and the constraint strength, λ. 

Although the positive class prior could also be chosen by cross validation, we observed that 

our results were relatively insensitive to its choice (Supplementary Figure 15). Furthermore, 

we do not find that λ needs to be changed from the default setting. Our proposed GE-

binomial PU learning method could also have widespread utility for object detection in other 

domains, for example in light microscopy or medical imaging, where positive labels are 

frequently incomplete. Additionally, although we proposed GE-binomial for positive-

unlabeled learning, it is straightforward to extend to the typical semi-supervised case (where 

some labeled negative regions are provided) by taking the expectation of the loss over all 

labeled data in the first term.

Topaz particle probability thresholding allows particles to be included iteratively until the 

reconstruction resolution stops improving. It is possible for reconstruction algorithms to 

explicitly take these probabilities into account when determining 3D structures in the future.

Topaz requires researchers to label very few particles to achieve high quality predictions. It 

performs well independently of particle shape, opening automated picking to a wide 

selection of proteins previously too difficult to locate computationally. In addition, our 

pipeline is computationally efficient – training in a few hours on a single GPU and 

producing predictions for hundreds of micrographs in only minutes. Furthermore, once a 

model is trained for a specific particle, it can be applied to new imaging runs of the same 

particle. Topaz greatly expedites structure determination by cryoEM, enabling particle 

picking for previously difficult datasets, reducing the manual effort required to achieve high-

resolution structures, and thus increasing the efficiency of cryoEM workflows and the 

completeness of particle analytics.

Online Methods

1. Dataset description

Aligned and summed micrographs and star files containing published particle sets were 

retrieved from EMPIAR for datasets EMPIAR-1002532, EMPIAR-1002833, and 

EMPIAR-1009634. Aligned and summed micrographs and hand-labeled particle coordinates 

were provided by the Shapiro lab for the EMPIAR-10234 dataset. Aligned and summed 
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micrographs and curated in-house particle set were provided by the New York Structural 

Biology Center for the EMPIAR-10215 dataset. Micrographs for each dataset were 

downsampled to the resolution specified in Table 1 and normalized as described in the 

following section. Each dataset was then split into training and test sets at the micrograph 

level. The number of micrographs and labeled particles in each split are also reported in 

Table 1. To demonstrate the utility of our GMM normalization method, we also retrieved 

micrographs for EMPIAR-1026135 from EMPIAR.

2. Micrograph normalization

Images are normalized using a per-image scaled two component Gaussian mixture model. 

Given K images, each pixel is modeled as being drawn from a two component Gaussian 

mixture model, parameterized by ρ, the mixing parameter, μ0,σ0,μ1, and σ1, the means and 

standard deviations of the Gaussian distributions, with a scalar multiplier for each image, 

α1...K. Let xi,j,k be the value of the pixel at position i,j in image k, it is distributed according 

to

zi, j, k ∼ Bernoulli ρ

xi, j, k ∨ zi, j, k ∼ Gaussian αkμzi, j, k
, αkσzi, j, k

2

where zi,j,k is a random variable denoting the component membership of the pixel. The 

maximum likelihood values of the parameters ρ,μ0,μ1,σ0,σ1 and α1...K are found by 

expectation-maximization for each data set. Then, the pixels are normalized by first dividing 

by the image scaling factor and then standardizing to the dominant mixture component. Let 

μ′, σ′ be μ0,σ0 if ρ < 0.5 and μ1,σ1 otherwise, then the normalized pixel values x′i,j,k are 

given by

x′i, j, k =

xi, j, k
αk

− μ′

σ .

We positively contrast this normalization with standard affine normalization of micrographs 

(Supplementary Figures 1, 2, & 3). In affine normalization, micrographs are transformed by 

subtracting the mean and dividing by the standard deviation of all pixel values in each 

micrograph.

3. PU learning baselines

Let P be the set of labeled positive micrograph regions (centered on a particle), and U be the 

set of unlabeled micrograph regions where π is the fraction of positive examples within U. 

Then, the task is to learn a classifier (g) that discriminates between positive and negative 

regions given P and U. When π is small, treating the unlabeled examples as negatives for the 
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purposes of classifier training with the following standard loss minimization objective, for 

suitable cost function L, can be effective

πEx ∼ P L g x , 1 + 1 − π Ex ∼ U L g x , 0 (PN)

However, in general, this approach suffers from overfitting due to poor specification of the 

classification objective - it is minimized when positives are perfectly separated from 

unlabeled data points. To address this, Kiryo et al.19 recently proposed an unbiased estimator 

of the true positive-negative classification objective for positive and unlabeled data with 

known π and a non-negative estimator (PU) which is shown to reduce overfitting still 

present in the unbiased estimator.

4. PU learning with generalized expectation criteria

Here, we adopt an alternative approach to positive-unlabeled learning not based on 

estimating the PN misclassification risk. Instead, we observe that the unlabeled data with 

known π can be used to constrain a classifier such that it minimizes the classification loss on 

the labeled data and matches the expectation (π) over the unlabeled data. In other words, we 

wish to find the classifier, g, that minimizes Ex∼P[L(g(x),1)] subject to the constraint 

Ex∼U[g(x)] = π. This constraint can be imposed “softly” through a regularization term in the 

objective function with weight λ:

Ex ∼ P L g x , 1 + λKL Ex ∼ U g x ∨ π (GE-KL)

In this objective function, we impose the constraint through the KL-divergence between the 

expectation of the classifier over the unlabeled data and the known fraction of positives 

which is minimized when these terms are equal. This approach is an instance of a general 

class of posterior regularization called generalized expectation (GE) criteria, as specifically 

proposed by Mann and McCallum20. However, because we wish for our classifier to be a 

neural network and to optimize the objective using minibatched stochastic gradient descent, 

the gradient of the objective must be approximating using samples from the data. Estimates 

of the gradient of the GE-KL objective from samples are biased, which could cause SGD to 

find a suboptimal solution.

To address this issue, we propose an alternative GE criteria, GE-binomial, defined so as to 

minimize the difference between the distribution over the number of positives in the 

minibatch and the binomial distribution parameterized by π. The number of positive data 

points, k, in a minibatch of N samples from U follows the binomial distribution with 

parameter π. Furthermore, the classifier g also describes a distribution over the number of 

positives in the minibatch as

q(k) = ∑
y ∈ Y k

∏
i = 1

N
g xi

yi 1 − g xi
1 − yi
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where x is a micrograph region, y is an indicator vector (yi ∈ {0,1}) denoting which data 

points are positive (yi = 1) and negative (yi = 0) and Y(k) is the set of all such vectors 

summing to k. This allows us to define the new GE criteria as the cross entropy between 

these two distributions ∑k = 1
N q k logp k  giving the full GE-binomial objective function

Ex ∼ P[L g x , 1 ] + λ∑k = 1
N q k logp k (GE-binomial)

In practice, because computing exact q(k) is slow, we make a Gaussian approximation with 

mean ∑i = 1
N g xi  and variance ∑i = 1

N g xi 1 − g xi  and substitute the Gaussian PDF with 

these parameters for q in the above equation.

5. Autoencoder-based classifier regularization

When including the autoencoder component, we break our classifier network into two 

components: an encoder network composed of all layers except the final linear layer and the 

linear classifier layer. We denote these networks as f and c, respectively, with the full 

network, g, being given by g(x) = c(f(x)). Furthermore, we introduce a deconvolutional (also 

called transposed convolutional, see next section) decoder network, d, which takes the 

output of the feature extractor network and returns a reconstruction of the input image, x′ = 

d(f(x)). The objective function is then modified to include a term penalizing the expected 

reconstruction error over all images in the dataset, D, with weight γ

Ex ∼ P[L c f x , 1 ] + λ ∑
k = 1

N
q k logp k + γEx ∼ D[ ∨ x − d f x ∨2

2]

This forms the full GE-binomial objective function with autoencoder component used in 

Topaz.

6. Classifier and autoencoder architectures and hyperparameters

We use a simple three-layer convolutional neural network with striding, batch 

normalization36, and parametric rectified linear units (PReLU) as the classifier in this work. 

The model is organized as 32 conv7×7 filters with batch normalization and PReLU, stride by 

2, 64 conv5×5 filters with batch normalization and PReLU, stride by 2, 128 conv5×5 filters 

with batch normalization and PReLU, and a final fully connected layer with a single output. 

We use sigmoid activation on this output to convert it into the predicted probability of a 

region being from the positive class (i.e. the output is interpreted as the log-likelihood ratio 

between positive and negative classes).

When augmenting with an autoencoder, we use a decoder structure similar to that of 

DCGAN37. The d-dimensional representation output by the final convolutional layer of the 

classifier network is projected to a small spatial dimension but large feature dimension 

representation. This is repeatedly projected into larger spatial dimension and smaller feature 

dimension representations until the final output is of the original input image size. 

Specifically, this model is structured as repeated transpose convolutions with batch 

normalization and leaky ReLU activations. Let z be the representation output by the final 
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convolutional layer of the classifier and X’ be the image reconstruction given by the decoder, 

the decoder structure is z -> transpose conv4×4 128-d, batch normalization, leaky ReLU -> 

transpose conv4×4 64-d, stride 2, batch normalization, leaky ReLU -> transpose conv4×4 

32-d, stride 2, batch normalization, leaky ReLU -> transpose conv3×3 1-d, stride 2 -> X’.

7. PU learning benchmarking

To compare classifiers trained with the different objective functions, we simulate hand-

labeling with various amounts of effort by randomly sampling varying numbers of particles 

from the training sets to treat as the positive examples. All other particles are considered 

unlabeled. We use cross entropy loss for the labeled particles. The values of π used for 

training are specified in Table 1. For GE-KL we set the GE criteria weight, λ, to 10 as 

recommended by Mann and McCallum20. For GE-binomial, we set this parameter to 1. The 

classifier is then trained with those positives and evaluated by average-precision score (see 

next section for description of classifier evaluation) on the test set micrographs. This is 

repeated with 10 independent samples of particles for each number of positives. Statistical 

significance of performance differences between methods at each number of labeled positive 

examples is assessed using a two-sided t-test.

We also evaluate classifiers trained with autoencoder components and input reconstruction 

weight, γ, and varying numbers of labeled data points, N. We compare models trained with 

γ = 0 (no autoencoder), γ = 1, and γ = 10
N . For each setting of γ and N, we train 10 models 

with different sets of N randomly sampled positives and calculate the average-precision 

score for each model on the test split of each dataset.

8. Classifier evaluation

Classifiers were evaluating by average-precision score. This score is a measure of how well 

ranked the micrograph regions were when ordered by the predicted probability of containing 

a particle and corresponds to the area under the precision-recall curve. It is calculated as the 

sum over the ranked micrograph regions of the precision at k elements times the change in 

recall

∑
k = 1

n
Pr k Re k − Re k − 1

where precision (Pr) is the fraction of predictions that are correct and recall (Re) is the 

fraction of labeled particles that are retrieved in the top k predictions. Let TP(k) be the 

number of true positives in the top k predictions, then Pr and Re are given by

TP(k) = ∑
i = 1

k
yi

Pr(k) = TP(k)
k
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Re(k) = TP(k)
∑i = 1

n yi

This measure is commonly used in information retrieval.

9. Non-maximum suppression algorithm for extracting particle coordinates

Non-maximum suppression chooses coordinates and their corresponding predicted 

probabilities of being a particle greedily starting from the highest scoring region. In order to 

prevent nearby pixels from also being considered particle candidates, all pixels within a 

second user-defined radius are excluded when a coordinate is selected. We set this radius to 

be the half major-axis length of the particle, however, smaller radii may give better results 

for closely packed, irregularly shaped particles.

10. Micrograph pre-processing

For EMPIAR-10025 and EMPIAR-10096, the aligned and summed micrographs along with 

CTF estimates were taken directly from the public data release on EMPIAR. For 

EMPIAR-10028 and EMPIAR-10261, frames were aligned and summed without dose 

compensation using MotionCor238. Whole micrograph CTF estimates provided with the 

public release were used for this dataset.

For the clustered protocadherin dataset (EMPIAR-10234), single particle micrographs were 

collected on a Titan Krios (Thermo Fisher Scientific) equipped with a K2 counting camera 

(Gatan, Inc.); the microscope was operated at 300 kV with a calibrated pixel size of 1.061 Å. 

10 secs exposures were collected (40 frames/micrograph), for a total dose of 68 e–/Å2 with a 

defocus range of 1 to 4 μm. A total of 896 micrographs were collected using Leginon39. 

Frames were aligned using MotionCor238. 1,540 particles were picked manually using 

Appion Manual Picker23 from 87 micrographs and used as a training dataset for Topaz.

The rabbit muscle aldolase dataset (EMPIAR-10215) was collected on a Titan Krios 

(Thermo Fisher Scientific) equipped with a K2 counting camera (Gatan, Inc.) in super-

resolution mode; the microscope was operated at 300 kV with a calibrated super-resolution 

pixel size of 0.416 Å. 6 secs exposures were collected (30 frames/micrograph), for a total 

dose of 70.32 e–/Å2 with a defocus range of 1 to 2 μm. A total of 1,052 micrographs were 

collected using Leginon39. Frames were aligned, Fourier binned by a factor of 2, and dose 

compensated using MotionCor238. Whole-image CTF estimation was performed using 

CTFFIND440.

The Toll receptor dataset was collected on a Titan Krios (Thermo Fisher Scientific) equipped 

with a K2 counting camera (Gatan, Inc.); the microscope was operated at 300 kV with a 

calibrated pixel size of 0.832 Å. 6 secs exposures were collected (40 frames/micrograph), for 

a total dose of 73.48 e-/Å2 with a defocus range of 1.5 to 2.0 μm. A total of 9,323 

micrographs were collected using Leginon. Frames were aligned using MotionCor238. 

Whole-image CTF estimation was performed using CTFFIND440.
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11. 3D reconstruction procedure

Reconstruction was performed using cryoSPARC25. For each particle set, we first generated 

an ab initio structure with a single class. These structures were then refined using 

cryoSPARC’s “homogenous refinement” option with symmetry specified depending on the 

dataset (T20S proteasome: D7, 80S ribosome: C1, aldolase: D2). For the aldolase dataset, 

we used C2 symmetry for ab initio structure determination. Otherwise, all other parameters 

were left in the default setting. When evaluating the quality of Topaz particle sets for 

decreasing score thresholds, each particle set was selected by taking all particles predicted 

by the Topaz model with scores greater than or equal to the given threshold. Reconstructions 

were calculated for each of these sets independently as described above.

12. Removal of overlapping particles

In order to evaluate the quality of the extra particles predicted by Topaz, we remove particles 

from the Topaz particle set that are also included in the published particle set. This was done 

by removing all Topaz particles with centers within the particle radius of a particle center in 

the published particle set.

13. 2D class averages (EMPIAR-10025, EMPIAR-10028, EMPIAR-10215)

Class averages were calculated using the cryoSPARC “2D Classification” option. All 

settings were left as default except the number of 2D classes which was set to 10 for every 

particle set.

14. 3D structure analysis (EMPIAR-10025, EMPIAR-10028, EMPIAR-10215)

The final 3D reconstructions were analyzed visually in UCSF Chimera41 and with 3DFSC34. 

In Chimera, the published/previous 3D reconstruction was first loaded (with the fit PDB 

structure, if available) to which the newly-processed 3D reconstruction was then aligned. 

The structures were visually compared and representative areas were chosen for display in 

Figure 4. The 3DFSCs were calculated using the public server, https://3dfsc.salk.edu, which 

compares Fourier shell components for several solid angles to determine the range of 

resolutions and the amount of anisotropy in the reconstruction.

15. Toll receptor particle picking

1,599,638 particles were picked using DoG Picker 27 from 8,974 micrographs and imported 

into cryoSPARC for all subsequent processing. After particle curation using 2D 

Classification described below, the particle picks from 44 micrographs were visually 

inspected. Picks in areas of obvious particle aggregation were removed, and lower SNR 

particles corresponding to views typically missed by DoG Picker were selected. The 

resulting 1,048 particles were split into 686 training and 362 testing particles at the 

micrograph level. Topaz was then trained on the training particles and applied with the 

default score threshold of 0 for particle prediction. The “oblique,” “side,” and “top” 2D 

classes (Figure 3d) were lowpass filtered to 15 Å and used for template correlation with 

FindEM42 implemented in the Appion23 software package.
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The crYOLO29 network was trained on the complete set of 1,048 labeled particles with 20% 

held out for validation by default. Micrographs were filtered and training was performed as 

described in the crYOLO tutorial. Picking was performed at the default threshold of 0.3.

The DeepPicker12 network was also trained on the complete set of 1,048 particles. Though 

no micrograph processing is required in the DeepPicker tutorial, micrographs were binned in 

Fourier space and lowpass filtered to 10 Å using EMAN25. Even with a threshold of 0, no 

particles were predicted by DeepPicker.

16. Toll receptor 3D reconstruction

All reconstructions were performed using cryoSPARC25. For all particle picking approaches, 

we performed 2D Classification with default parameters and 100 2D classes, then removed 

obvious non-particles. For the DoG dataset, four rounds of 2D Classification yielded 

770,263 particles from an initial stack of 1,599,638. For the template dataset, four rounds of 

2D Classification yielded 627,533 particles from an initial stack of 1,265,564. For the Topaz 

dataset, one round of 2D Classification yielded 1,006,089 particles from an initial stack of 

1,010,937. For the crYOLO dataset, one round of 2D Classification yielded 131,300 

particles from an initial stack of 133,644. For all datasets, ab initio reconstruction was used 

to generate an initial model, and the structures were further refined using homogeneous 

refinement with C1 symmetry, followed by non-uniform refinement. All parameters were 

left in their default setting. Unfiltered half-maps and masks were used to calculate 3DFSCs 

using the public server, https://3dfsc.salk.edu.

Data availability statement

Single particle half maps, full sharpened maps, and masks for T20S proteasome, 80S 

ribosome, rabbit muscle aldolase, and the Toll receptor (DoG, template, and Topaz picks) 

have been deposited to the Electron Microscopy Data Bank (EMDB) with accession codes 

EMD-9194, EMD-9201, EMD-9202, EMD-9206, EMD-9207, EMD-9208, EMD-9209, 

EMD-9210, EMD-9211, EMD-20529, EMD-20531, and EMD-20532. The full rabbit 

muscle aldolase dataset has been deposited to the Electron Microscopy Pilot Image Archive 

(EMPIAR) with accession code EMPIAR-10215.

Code availability statement

Source code for Topaz is publicly available via Code Ocean43 and on GitHub at https://

github.com/tbepler/topaz. Updates to Topaz will be posted at http://topaz.csail.mit.edu. 

Topaz is licensed under the GNU General Public License v3.0.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. 
Topaz particle picking pipeline using CNNs trained with positive and unlabeled data. (a) 
Given a set of labeled particles, a CNN is trained to classify positive and negative regions 

using particle locations as positive regions and all other regions as unlabeled. Labeled 

particles from EMPIAR-10096 are indicated by blue circles and a few positive and 

unlabeled regions are depicted. (b) Once the CNN classifier is trained, particles are 

predicted in two steps. First, the classifier is applied to each micrograph region to give per 

region predictions. Second, coordinates are extracted from the region predictions using non-

maximum suppression. The left image shows a raw micrograph from EMPIAR-10096. The 

middle image depicts the micrograph with overlaid region predictions [blue = low 

confidence, red = high confidence]. The right image indicates predicted particles after using 

non-maximum suppression on the region predictions.

Bepler et al. Page 19

Nat Methods. Author manuscript; available in PMC 2020 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2 |. 
Reconstructions of the Toll receptor using particles picked by Topaz, template-based 

(Template), and DoG methods. Template and DoG particles were filtered through multiple 

rounds of 2D classification before analysis. Topaz particles were not filtered. (a) Density 

map using particles picked with Topaz. The global resolution is 3.70 Å at FSC0.143 with a 

sphericity of 0.731. (b) Density map using particles picked using template picking. The 

global resolution is 3.92 Å at FSC0.143 with a sphericity of 0.706. (c) Density map using 

particles picked using difference of Gaussians (DoG). The global resolution is 3.86 Å at 

FSC0.143 with a sphericity of 0.652. (d) Quantification of picked particles for each protein 

view based on 2D classification. (e) Example micrograph (representative of >100 

micrographs examined) showing Topaz picks (red circles) and protein aggregation (outlined 

in green). Scale bar for the top of (a) is 5 nm.
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Figure 3 |. 
Single particle reconstructions from published particles, Topaz particles, and Topaz particles 

with published particles removed (left to right). Below each reconstruction is the 

corresponding 3DFSC plot. (a) T20S proteasome (EMPIAR-10025) using the provided 

aligned, dose-weighted micrographs. (b) 80S ribosome (EMPIAR-10028). (c) Rabbit muscle 

aldolase (EMPIAR-10215). Scale bars: 3 nm
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Figure 4 |. 
Reconstruction resolution and 2D class averages for Topaz particles at decreasing log-

likelihood ratio thresholds. (a) Number of particles vs. reconstruction resolution for Topaz 

particles (increasing number of particles corresponds to decreasing log-likelihood threshold) 

and randomly sampled subsets of the published particle set. Resolution is as reported by 

cryoSPARC. For the published particle sets the mean of three replicates is marked with 

standard deviation shaded in grey. (b) Stacked bar plots show the quantification of the 

number of true and false positives at each threshold based on 2D class averages. Decreasing 

threshold corresponds to increasing number of predicted particles. True positives are colored 

in blue and false positives in orange. (c) 2D class averages obtained at each score threshold 

for the T20S proteasome (EMPIAR-10025). Number of particles (ptcls) and effective 

sample size (ess) for each class are reported by cryoSPARC. NaN is reported for classes 

without any particles assigned. Classes determined to be false positives are marked with 

orange boxes. Several classes which appear to be false positives at high score thresholds do 

not contain any particles and, therefore, are not highlighted.
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Figure 5 |. 
Comparison of models trained using different objective functions with varying numbers of 

labeled positives on the EMPIAR-10096 and EMPIAR-10234 datasets. (a) Plots show the 

mean and standard deviation of the average-precision score for predicting positive regions in 

the EMPIAR-10096 and EMPIAR-10234 test set micrographs for models trained using 

either the naive PN, Kiryo et al.’s non-negative risk estimator (PU), our GE-KL, or our GE-

binomial objective function. Each number of labeled positives was sampled 10 times 

independently. (*) indicates experiments in which GE-binomial achieved higher average-

precision than GE-KL with p < 0.05. (†) indicates experiments in which GE-KL achieved 

higher average-precision than GE-binomial with p < 0.05 according to a two-sided 

dependent t-test. (b) Plots show the mean and standard deviation of the average-precision 

score for models trained jointly with autoencoders with different reconstruction loss weights 

(γ). γ=0 corresponds to training the classifier without the autoencoder. γ=10/N means the 

reconstruction loss is weighted by 10 divided by the number of labeled positives used to 

train the model.
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Table 1|

Summary of cryoEM datasets and hyperparameters used for classifier training on each. Each dataset was 

downsampled and split into train and test sets at the whole micrograph level.

Train Test

Dataset Protein Original 
(ang/
pix)

Down-
sampled 
(ang/
pix)

Particle 
radius 
(pix)

Training 
radius 
(pix)

π Number 
of 
micro-
graphs

Number 
of 
particles

Number 
of 
micro-
graphs

Number 
of 
particles

EMPIAR-10025 T20S 
proteasome

0.98 15.7 7 3 0.035 156 39653 40 10301

EMPIAR-10028 80S 
ribosome

1.34 10.7 12 3 0.012 831 80701 250 24546

EMPIAR-10096 Hemagglu-
tinin trimer

1.31 5.24 10 4 0.035 347 100465 100 29535

EMPIAR-10215 Rabbit 
muscle 
aldolase

0.832 6.64 10 3 0.1 865 163758 200 39347

EMPIAR-10234 Clustered 
protocad-
herin

1.061 8.49 15 4 0.015 67 1167 20 373

Toll receptor Toll 
receptor

0.832 3.328 25 5 0.035 30 686 14 362
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