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Abstract

Understanding cell geometric and mechanical properties is crucial to understanding how cells 

sense and respond to their local environment. Moreover, changes to cell mechanical properties 

under varied micro-environmental conditions can both influence and indicate fundamental changes 

to cell behavior. Atomic Force Microscopy (AFM) is a well established, powerful tool to capture 

geometric and mechanical properties of cells. We have previously demonstrated substantial 

functional and behavioral differences between aortic and pulmonary valve interstitial cells (VIC) 

using AFM and subsequent models of VIC mechanical response. In the present work, we extend 

these studies by demonstrating that to best interpret the spatially distributed AFM data, the use of 

spatial statistics is required. Spatial statistics includes formal techniques to analyze spatially 

distributed data, and has been used successfully in the analysis of geographic data. Thus, spatially 

mapped AFM studies of cell geometry and mechanics are analogous to more traditional forms of 

geospatial data. We are able to compare the spatial autocorrelation of stiffness in aortic and 

pulmonary valve interstitial cells, and more accurately capture cell geometry from height 

recordings. Specifically, we showed that pulmonary valve interstitial cells display higher levels of 

spatial autocorrelation of stiffness than aortic valve interstitial cells. This suggests that aortic VICs 

form different stress fiber structures than their pulmonary counterparts, in addition to being more 

highly expressed and stiffer on average. Thus, the addition of spatial statistics can contribute to our 

fundamental understanding of the differences between cell types. Moving forward, we anticipate 

that this work will be meaningful to enhance direct analysis of experimental data and for 

constructing high fidelity computational of VICs and other cell models.
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1. Introduction

Cell mechanical and geometric properties play an important role in how cells sense and 

interact with their surrounding environment (Luo et al., 2016). Quantifying these properties 

is crucial for understanding the specific roles of mechanical forces in biological tissues 

(Haase and Pelling, 2015; Lejeune and Linder, 2017; Rigato et al., 2015), including 

quantifying variation between different cell types(Cross et al., 2008). For example, in the 

mechanically demanding heart valve tissue micro-environment, valve interstitial cells (VICs) 

respond to mechanical stimuli due to altered hemodynamic conditions and subsequently 

contribute to tissue remodeling (Ayoub et al., 2011, 2017). Therefore, understanding how 

VICs feel their surroundings is crucial for robustly predicting how heart valve surgical 

interventions can lead to tissue remodeling (Rego and Sacks, 2017; Sacks et al., 2017), and 

measuring mechanobiological variations between VICs derived from different sources 

provides insight into characteristic physiological and pathological changes (Merryman et al., 

2006, 2007).

Atomic force microscopy (AFM) is a popular and well established tool to quantify both cell 

topography and intrinsic cell mechanical properties on two-dimensional substrates (Gavara, 

2017). To measure mechanical properties, an AFM probe is used for micro-indentation. The 

cantilever tip indents the cell at discrete grid points and the force response curve for each 

indentation is used to approximate the value of local cell stiffness, reported as apparent 

elastic modulus (Merryman et al., 2007; Mathur et al., 2001). To measure cell topography, 

the scanning probe is dragged over the surface of the cell and height is recorded at densely 

spaced points along the path of the probe (Merryman et al., 2007; Radmacher et al., 1992). 

Typically, data from these experiments is presented visually, as cell height and stiffness 

maps, and quantitatively, through the mean and standard deviations of these measured values 

(Yeow et al., 2017). Furthermore, cell indentation by AFM has been modeled extensively 

(Nguyen et al., 2016). Our group has used AFM in the study of VICs, both directly 

(Merryman et al., 2007), and in simulations (Sakamoto et al., 2016, 2017).

As AFM data is recorded at multiple points in space, it is natural to turn to the field of 

spatial statistics to analyze, and ultimately model, the resulting spatially distributed data. 

Spatial statistics is specifically intended to handle data where the assumption of 

independence among observations is violated (Ripley, 2005). For example, spatial statistics 

is used to characterizing spatial autocorrelation, the co-variation of properties within space, 

and detect patterns and anomalies in spatially distributed data (Goodchild, 1986). The field 

of spatial statistics also covers methods for more sophisticated interpolation techniques to 

make enhanced predictions at unmeasured locations (Stein, 1999). The most common 

application of spatial statistics is in analyzing geographic data and creating geographic 

models, where specialized statistical analysis software packages are used in both research 

and industry (Steiniger and Hunter, 2012). Though spatial statistics is a natural toolset for 

handling spatially distributed data, such as that generated by AFM studies of biological 

materials, to the authors’ knowledge, this application has yet to be explored in detail.

In the present work, we show how the toolset of spatial statistics can be meaningfully 

applied to the problem of analyzing the spatially mapped data from AFM cell studies. 
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Specifically, we introduce three example methods from the spatial statistics literature: single 

variable measurements of spatial autocorrelation, empirical semivariograms, and Gaussian 

process regression. Then, we show the results of applying these methods to AFM studies of 

aortic valve interstitial cells (AVICs) and pulmonary valve interstitial cells (PVICs). 

Critically, these methods quantitatively reveal different spatial autocorrelation behaviors in 

AVIC and PVIC stiffness. These results suggest that differences between AVIC and PVIC 

stiffness are a result of both intrinsic stress-fiber stiffness, and also how sub-cellular 

components are spatially distributed within the cell. The results of this study and the 

methods presented can also be extended to the general AFM studies of cell mechanics.

2. Methods

In this section, we briefly introduce three non-standard methods to spatially interpret AFM 

data. The first two methods that we introduce, computing Moran’s I and plotting an 

empirical semivariogram, are useful for understanding spatial autocorrelation in 

experimentally recorded data. Essentially, they show how similar the measured values are at 

spatially close locations. The third method that we introduce, Gaussian process regression, is 

a pragmatic strategy for interpolating spatial data. If statistically significant spatial 

autocorrelation is detection with the first two methods, then Gaussian process regression can 

be used to predict unseen values y* at unsampled locations x* in order to construct robust 

models of cells with heterogeneous material properties.

2.1. Experimental data source

The AFM data for this work was taken from (Merryman et al., 2007), in which information 

on the experimental methods has been extensively detailed. Briefly, porcine AVICs and 

PVICs were isolated from the same animal. The AV and PV leaflets were dissected, leaflet 

surfaces were scraped to remove endothelial cells, and the leaflets were digested and 

strained to isolate the VICs. Both populations were plated separately in 250 ml culture flasks 

in complete media. A monolayer of seeded VICs from each valve type were structurally 

mapped by AFM. VIC stiffness was measured in the so-called tapping mode and the AFM 

probe was modeled as a conical tip with a probe opening angle of 35°. The apparent stiffness 

of the cell was calculated based on the Hertzian model. For each VIC type, multiple 

indentations at different points were made over the surface of the cell and each force-

indentation depth curve was fit to determine the apparent stiffness E. In summary, the 

resulting AFM data contains scalar values of interest y (height, stiffness) measured at 

discrete positions xi = (x1
i , x2

i ). In the examples presented in Section 3, the scalar values y are 

apparent Young’s modulus E (Fig. 1a) and cell height h (Fig. 1b). It should be noted that 

these techniques are sufficiently general such that they can be directly applied to other 

experimentally measured scalar quantities of interest.

2.2. Moran’s I

One standard single variable measurement of spatial autocorrelation in a data set is Global 

Moran’s I (Mitchel, 2005; Moran, 1950). Given a single cell with stiffness sampled by AFM 

indentation at n locations, I is defined as
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I = n
S0

∑i = 1
n ∑ j = 1

n wij yi − y‒ y j − y‒

∑i = 1
n yi − y‒ 2 (1)

where yi is the scalar variable of interest, y‒ is the mean of all yi, wij is defined as a matrix of 

weights in which immediate neighbors have value 1 with wii = 0, and S0 is defined as

S0 = ∑
i = 1

n
∑
j = 1

n
wij . (2)

If there is no spatial autocorrelation, then I → 0. Negative spatial correlation corresponds to 

−1 < I < 0 and positive spatial autocorrelation corresponds to 0 < I < 1. To interpret I, we test 

for statistical significance by comparing the measured value of I to the null hypothesis that 

the values in the data set are not spatially correlated (Mitchel, 2005; Moran, 1950). To do 

this, we compute the expected value E[I] and variance V[I] for the uncorrelated case

E[I] = −1
n − 1 V[I] = E[I2] − E[I]2

(3)

where E[I2] is computed as

E[I2] =
[n[(n2 − 3n + 3)S1 − nS2 + 3S0

2]] − [S3[(n2 − n)S1 − 2nS2 + 6S0
2]]

[(n − 1)(n − 2)(n − 3)S0
2]

(4)

with

S1 = 1
2 ∑

i = 1

n
∑
j = 1

n
(wij + w ji)

2
(5)

S2 = ∑
i = 1

n
( ∑

j = 1

n
wij + ∑

j = 1

n
w ji)

2
(6)

S3 =
1
n ∑i = 1

n yi − y‒ 4

(1
n ∑i = 1

n (yi − y‒)2)2 . (7)

Then, the z-score of the observed value of I under the null hypothesis is

zI = I − E[I]
V[I] (8)

and statistically significant zI indicates that we can reject the null hypothesis of no spatial 

autocorrelation. At a p-value of 0.001, we reject the null hypothesis when ∣zi∣ > 3.291.
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2.3. Empirical semivariograms

In addition to single variable measurements of spatial autocorrelation, we can visualize 

spatial variability in AFM data by creating an empirical semivariogram. A semivariogram is 

a plot that shows the variation in measured data as a function of the distance between data 

points (Matheron, 1963). For each pair of data points, point i and point j, the distance 

between them is ∥xi – xj∥ and the variation between them is defined as 1
2‖yi − y j‖

2 (Fig. 2) 

(Diblasi and Bowman, 2001). The raw data is divided into bins N with center h and width 2δ 
as

N(h ± δ) ≡ {(xi, x j) :h − δ < ‖xi − x j‖ < h + δ ; i, j = 1, …, n} (9)

where xi denotes the position of a data point. Essentially, pairs of points are grouped by 

similar separation distances. Then the empirical semivariogram γ (h ± δ) is defined as

γ(h ± δ) ≔ 1
2‖N(h ± δ)‖ ∑

(i, j) ∈ N(h ± δ)
‖yi − y j‖

2
(10)

where the number of points in a bin is ∣N(h±δ)∣ and yi is the scalar quantity measured at 

each point. Through this equation, γ  captures the average difference between sample pairs at 

a fixed separation distance. When data is spatially correlated, the semivariogram will show 

that values of y are more similar when the distance between them is smaller (Fig. 2). When 

spatial autocorrelation is present, 1
2‖yi − y j‖

2 approaches zero as ∥xi–xj∥ approaches zero.

For additional analysis, a semivariogram model can be fitted to an empirical semivariogram 

when there is sufficient data present. In a semivariogram model, there are three key 

parameters: the range, the sill, and the nugget. The range indicates the distance over which 

data points are spatially auto-correlated, the sill indicates the value on the y axis of the 

semivariogram at the x value range, and the nugget (often set to 0) captures measurement 

error and variations over distances smaller than the minimum sampling distance. The 

interested reader is referred to the literature for more information on semivariogram models 

(Cressie, 1993; Mälicke and Schneider, 2018).

2.4. Gaussian process regression

The two methods introduced in Section 2.2 and Section 2.3 are useful for determining if 

spatial correlation is present in AFM data. When the data is spatially correlated, it is 

appropriate to develop a model that can be used to predict the measured values y between 

the locations where the experimental data is recorded. Gaussian process regression (GPR), 

often referred to as kriging, is a non-parametric kernel-based supervised learning method 

that is commonly used to predict spatially correlated measurements (Rasmussen and 

Williams, 2006). With the AFM data, this means using position xi to predict location 

specific scalar value yi. This allows for the prediction of yi at locations where xi has not been 

measured.

Here we describe an established pragmatic strategy to conduct Gaussian process regression. 

First, we define a training set D of n observed data points, D = {(xi, yi) ∣ i = 1, …, n} where 
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x denotes an input vector, in this case the position of a sample, y denotes a scalar output, in 

this case either measured height or stiffness. We define an unseen or “test” data set D* of n* 

points with input x* and output y*. A Gaussian process is defined via a mean function (in 

this case we scale our data and assume zero mean) and positive definite covariance matrices 

that relates values with features x that are close together. We define K as the n × n matrix of 

covariances evaluated at all pairs of training points, define K* as the n × n* matrix of 

covariances evaluated at all pairs of training and test points, and define K** as the n* × n* 

matrix of covariances evaluated at all pairs of test points. We assume that observations y are 

potentially noisy, with y = f(x) + ε where ε is additive independent identically distributed 

Gaussian noise. Then, we write the joint distribution of the test and training locations under 

the prior as

yf ∗~N 0, K + σn
2I K∗K∗

TK ∗ ∗ (11)

where N is a multivariate normal distribution. We use this equation to derive the predicted 

value of f* in terms of the values which are known as

f ∗ ∣ X, y, X∗~N( f‒∗, cov( f‒∗)) . (12)

If we consider a single test point x* where k* is the vector of covariances between the test 

point and the n training points, the predicted mean and variance of f* are

f‒∗ = k∗
T(K + σn

2I)−1y (13)

V[ f ∗] = k(x∗, x∗) − k∗
T(k + σn

2I)−1k∗ . (14)

Essentially, the training data set is used to construct a Gaussian field which is then used to 

make predictions on the test data set and subsequent unmeasured locations (Fig. 3).

Given this structure, the GRP model is fully specified by choosing the kernel function and 

the optimal kernel hyperparameters. A pragmatic way to choose the kernel and 

hyperparameters is to separate the available data into test and training data sets and select the 

GPR model that performs best at predicting the test data given the training data. The model 

that performs best will have the lowest test error, where test error is a function of the known 

values y* and the predictions f‒∗. Additional information on separating between test and 

training samples for AFM data is given in Appendix Appendix A. Ultimately, GPR will 

likely lead to a better approximation of cell properties between the measured data points 

than strategies such as linear interpolation, illustrated in Appendix Appendix B.

3. Results

As introduced in Section 1, AFM is commonly used to make spatially distributed 

measurements of cell stiffness and cell height. Here, we re-visit an experimental analysis of 

AVICs and PVICs where it was previously shown using standard methods that the two cell 
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types have different average mechanical properties (Merryman et al., 2007). From our 

analysis, we obtain novel insights into the characteristics of AVICs and PVICs. First, we 

report global Moran’s I and associated z-score zI, for measurements of scalar stiffness 

represented by apparent elastic modulus E for five aortic valve cells and six pulmonary valve 

cells (Table 1). None of the five AVICs showed statistically significant spatial correlation in 

stiffness (p < 0.001) at the length scale of sampling while six out of six PVICs showed 

statistically significant spatial autocorrelation. We then show a representative histogram and 

semivariogram for an AVIC with low spatial autocorrelation and a PVIC with high spatial 

autocorrelation (Fig. 4). Though the histograms look qualitatively similar, the 

semivariograms look qualitatively different. This is consistent with the empirical 

semivariogram plots for the other AVICs and PVICs (Fig. 5). Overall, AVICs show much 

higher variance for every lag distance, and the decrease in variance at small lag distances is 

much less pronounced than in the PVICs. Though the sample size is relatively small, the 

difference between the two cell types is consistent, both in the present study and in related 

studies.

Next, we show the results of using Gaussian process regression to interpolate both height 

data and stiffness data. First, we show the interpolated heights for a single cell measured by 

AFM (Fig. 6). Mean absolute test error under 0.2 μm, reported in Appendix Appendix A, 

was a good approximation for the error with this method. In addition, we show the 

interpolated stiffness values for a single cell measured by AFM (Fig. 7). Using leave one out 

cross validation, where all but one data points are included in the model at a time, we can get 

an understanding of model error on unseen data. For the cell shown, PV-4, which had high 

spatial autocorrelation, the mean absolute error was under 3 kPa. Additional analysis of this 

error is given in Appendix Appendix B. For the cells which show no significant spatial 

correlation, i.e. the AVIC cells, GPR is not a good strategy to model spatial variations in 

stiffness because stiffness will not be well predicted by position.

4. Discussion

4.1. Major findings

The methods described in this paper are simple yet powerful tools to interpret and model 

spatial heterogeneity in AFM data. With the simple methods described in Section 2, we are 

able to both quantify experimentally observed spatial autocorrelation and introduce a 

strategy towards better capturing spatially varying data. When we compute Moran’s I for 

stiffness measurements in multiple AVICs and PVICs, following the method in Section 2.2, 

we are able to show that there are differences in spatial autocorrelation between the two cell 

types. Creating empirical semivariograms, following the method in Section 2.3, further 

exposes the fundamental distinction between the two cell types and illustrate the distance 

over which PVIC stiffness is correlated.

For the experimental measurements that display spatial autocorrelation, Gaussian process 

regression is a suitable method for interpolating data points. As emphasized in Section 2.4, 

care must be taken when considering the separation of test and training data. The pragmatic 

approach put forward here for dealing with the directionally dependent spacing of AFM 

height data is appealing because of its simplicity. Furthermore, we show an example of GPR 
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being used to interpolate cell stiffness in PVICs. We anticipate that GPR and similar 

enhanced interpolation strategies will be key to creating realistic computational cell models 

that account for spatial heterogeneity in cell geometry and properties. When cell properties 

are not spatially correlated, alternative methods must be introduced to create representative 

cell models (Ostoja-Starzewski, 2006).

The present findings reinforce and extend previous results that show differences in the mean 
cell stiffness, αSMA levels, stress fiber stiffness, and extracellular matrix remodeling 

capabilities between aortic and pulmonary VICs Merryman et al. (2006, 2007); Sakamoto et 

al. (2016, 2017). In particular, previous studies have found via micropipette aspiration and 

AFM indentation that PVICs are less stiff than AVICs, AVICs express higher αSMA levels, 

intrinsically stronger stress fibers, and will typically remodel collagen gels at an accelerated 

rate. In this work, it was observed that PVICs exhibit much higher levels of spatial 

correlation in stiffness than their AVIC counterparts (Fig. 5). Essentially, AVICs have a more 

heterogeneous stiffness. This indicates that some sub-cellular stress-fiber formation activity 

is likely quite different between the two cell types. One possible explanation for this is that 

the stress fiber architecture of AVIC form more focal adhesion compared to the “smoother” 

spatial features of the PVICs. The underlying mechanism driving this difference could be 

connected to highly localized stress fiber formation in AVICs. We also note that another 

mechanisms driving this difference may be that AVICs and PVICs responds differently to 

cell culture conditions due to different degrees of deviation from their native chemical and 

mechanical environment. Future research will be needed to clarify these insights and 

compare the behavior of these isolated cells to cells in the native tissue.

4.2. Broader findings

Putting this in a broader perspective, distinguishing between cells types and detecting 

changes in cell state and behavior is critical for understanding tissue and organ scale 

function (Ayoub et al., 2017; Rego et al., 2018). Given that VICs are present in all heart 

valves, yet likely subject to dramatically different valve-specific mechanical loading 

conditions throughout their lifetime (Ayoub et al., 2018), quantitative methods for 

determining the difference between cell types are quite meaningful. With this enhanced 

strategy for quantifying experimental data, it is possible to both detect these differences and 

more robustly consider their implications in the broader context of multiscale modeling (Lee 

et al., 2017; Lejeune and Linder, 2018; Lejeune et al., 2019). Furthermore, this clear 

demonstration of spatial heterogeneity within individual cells shows that experiments with 

techniques such as micropipette aspiration may be missing critical information about the 

heterogeneous distribution of mechanical properties within the cell (Sakamoto et al., 2016).

Looking forward, capturing and modeling the spatial variation in cell properties is an 

important step towards understanding both cell mechanics and cell-substrate/ cell-matrix 

interaction. Fundamentally, this methodology will lead to a better understanding of how sub-

cellular components come together and contribute to the mechanical behavior of the whole 

cell. And, it will contribute to our understanding of how spatially heterogeneous cell 

behavior ultimately influences tissue function. In addition, information on spatial 

heterogeneity of cell stiffness will lead to enhanced computational models for calculating the 
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forces that cells experience that, unlike many approaches, will not assume cell stiffness is 

homogeneous. Computational models will be particularly useful for comparing isolated cells 

to cells in the native tissue environment. Furthermore, additional understanding of the 

inherent heterogeneity in biological samples will interface well with methods for rapidly 

acquiring AFM measurements (Hartman and Andersson, 2017; Huang and Andersson, 

2012).

4.3. Conclusions

In conclusion, applying tools from spatial statistics to AFM data will provide substantial 

new insight and lead to a deeper understanding of the properties of biological cells. We were 

able to demonstrate that pulmonary valve interstitial cells display higher levels of spatial 

autocorrelation of stiffness than aortic valve interstitial cells. Thus, the addition of spatial 

statistics can contribute to our fundamental understanding of the differences between these 

cell types. The methods presented in this paper are also only a small subset of what is 

available in the spatial statistics literature. For example, Geary’s C and Getis-Ord Gi* are 

other single variable measurements of spatial autocorrelation (Geary, 1954; Getis and Ord, 

1992), and AFM indentation may be used to approximate indentation parameters beyond 

apparent elastic modulus (Putman et al., 1994). Furthermore, there are extensions of these 

techniques to understand correlations in both space and time (Sherman, 2011). 

Biomechanics researchers working with spatially heterogeneous AFM data should consider 

these approaches in their analysis.
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Appendix

Appendix A. Separating test and training data for Gaussian Process 

Regression

A pragmatic strategy for constructing a GPR model is to separate data into a test set and a 

training set and evaluate model performance as the error on the test set. Much of this 

workflow is accomplished by a package such as sklearn-learn (Pedregosa et al., 2011). Here 

we note that it is important to consider what a meaningful split of test and training data is 

given the nature of the available data. More specifically, consider the AFM height 

measurements where the scanning probe is moved in a line along the sample surface (Fig. 

1). As the tip passes over the cell, multiple data points are recorded with a fixed y-value so 

the data is quite dense in the x-direction. The tip then passes over another line with a fixed y-

value such that the distance between data points is much greater in the y-direction than in the 

x. If we first consider the AFM height data in one y plane, where the data available is quite 

dense and uniformly spaced, separating test and training data is straightforward. To 

demonstrate this, we show the decrease in mean absolute test error as the number of training 
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samples is increased and the resulting closer match between the predicted height of the GPR 

model and the measured height (Fig. A.8).
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Figure A.8: 
Left: the mean absolute error (MAE) of the test predictions decreases as the number of 

training points increases; Center: GPR model fit with five sample points compared to raw 

data; Right: GPR model fit with 50 sample points compared to raw data.

Next, we consider the AFM height data in both the x and y planes. If we separate the test 

and training data without considering that the data is unevenly spaced, the reported test error 

is artificially low and the GPR parameters may be tuned such that the model is overfitting 

(Fig. A.9 left). Instead, to get a more realistic impression of test error and to select the GPR 

model parameters that will best predict unseen data, we must separate test and training error 

by grouping entire “strips” of data with identical y-coordinates corresponding to one pass of 

the AFM tip probe. When we do this, we see that the test error decreases with each 

additional “strip” of data and is notably higher than with the previous uninformed test and 

training data separation method (Fig. A.9 right). Furthermore, the best performing kernel 

may be different than the case where no special consideration is given to the separation of 

test and training data. The resulting GPR model can then be used to interpolate height data 

in the regions between each pass of the AFM tip (Fig. 6 right). When the data is evenly 

spaced in both dimensions, as is the case with the AFM stiffness data available, this 

additional consideration is not necessary.
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Figure A.9: 
Left: MAE of the test predictions approaches zero as the number of naively selected training 

points increases; Right: MAE of the test prediction decreases as the number of strips of 

training points increases.

Appendix B. Comparing Gaussian Process Regression to linear 

interpolation

When the AFM data is quite densely spaced, for example in the x-direction of height 

measurements, the strategy for inferring values between measured data points is less 

important. However, when the spacing between data points is larger, for example in the y-

direction of height measurements and the grid of stiffness measurements, critically 

evaluating how to infer these values matters. To illustrate this, we compare the mean 

absolute error (MAE) in height prediction computed with GPR and linear interpolation with 

respect to the number of training points (Fig. B.10 left) and the number of training strips 

(Fig. B.10 right). Though there is no apparent difference between the two methods for the 

incorrect test and training data separation, discussed in Appendix Appendix A, there is a 

notable difference for the correct test and training data separation. Interpolation with GPR 

results in a lower MAE, and the MAE for GPR appears to decrease with respect to the 

addition of more training data in a way that the linear interpolation strategy does not. Similar 

behavior is observed for interpolating stiffness, where MAE reliably decreases with the 

addition of more training data for GPR but not for linear interpolation (Fig. B.11 left). Of 

course, there are many other potential strategies besides GPR and linear interpolation 

(Friedman et al., 2001). For future endeavors in computational modeling of cells based on 

AFM data, we recommend critically evaluating multiple data-specific strategies for 

interpolating between measured data points. Noting the difference between GPR (Fig. 7) and 

linear interpolation (Fig. B.11 right) emphasizes this point.
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Figure B.10: 
Left: Comparison between MAE of the test predictions for GPR and linear interpolation as 

the number of naively selected training points increases; Right: Comparison between MAE 

of the test predictions for GPR and linear interpolation as the number of strips of training 

points increases.
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Figure B.11: 
Left: Comparison between MAE of the test predictions for GPR and linear interpolation as 

the fraction of data included in the training set increase; Right: Plot of linear interpolation of 

stiffness (the nearest interpolated point is used to fill in the extrapolated regions).
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Figure 1: 
a) an AFM probe is used to measure cell stiffness by indenting the cell at discrete grid 

points; b) an AFM probe is used to measure cell height by tracing over the surface of the 

cell.
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Figure 2: 
A semivariogram contains information about correlations in spatially distributed data. Left: 

scalar value yi is measured at each location xi marked by an orange cross; Right: the value 
1
2‖yi − y j‖

2 is plotted with respect to the distance between xi and xj for each location pair xi 

and xj. The example illustrates spatially correlated data because the value 1
2‖yi − y j‖

2

approaches 0 as ∥xi – xj∥ approaches 0.
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Figure 3: 
Schematic of a Gaussian process f. The values in squares are known while values in circles 

are unknown.

Lejeune and Sacks Page 19

J Biomech. Author manuscript; available in PMC 2020 August 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Upper left: histogram for an AVIC; Upper right: semivariogram for an AVIC where there is 

no statistically significant spatial correlation (Table 1); Lower left: histogram for a PVIC; 

Lower right: semivariogram for a PVIC where there is statistically significant spatial 

correlation (Table 1).
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Figure 5: 
Left: empirical semivariograms for five AVICs; right: empirical semivariograms for five 

PVICs. For the AVICs, low lag distance does not correspond to low semivariance. For the 

PVICs, low lag distance corresponds to low semivariance which indicates that values are 

spatially correlated.
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Figure 6: 
Gaussian process regression interpolation of height data from an AFM study on an aortic 

valve cell. The black lines indicate the raw experimental data while the surface is the GPR 

model. Note that the z axis is magnified.
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Figure 7: 
Gaussian process regression interpolation of stiffness data from an AFM study on a 

pulmonary valve cell. The black markers indicate the locations where experimental data is 

available. Based on further analysis given in Appendix Appendix B, the mean absolute error 

of this method on unseen data (in this case held out test data) is under 3 kPa.
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Table 1:

Moran’s I and zI for Aortic Valve (AV) cells and Pulmonary Valve (PV) cells. The cells marked with ★ show 

statistically significant spatial autocorrelation with p < 0.001 at the length scale of sampling. We note that 

AV-2 shows statistically significant spatial autocorrelation with p < 0.05.

cell no. I zi cell no. I zi

AV-1 0.095 1.15 ★ PV-1 0.42 6.33

AV-2 0.27 2.39 ★ PV-2 0.50 7.68

AV-3 −0.012 0.092 ★ PV-3 0.57 9.25

AV-4 −0.082 −0.31 ★ PV-4 0.70 10.29

AV-5 0.023 0.11 ★ PV-5 0.39 6.24
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