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Maize transposable elements contribute to
long non-coding RNAs that are regulatory
hubs for abiotic stress response
Yuanda Lv1,2†, Fengqin Hu3†, Yongfeng Zhou2, Feilong Wu4 and Brandon S. Gaut2*

Abstract

Background: Several studies have mined short-read RNA sequencing datasets to identify long non-coding RNAs
(lncRNAs), and others have focused on the function of individual lncRNAs in abiotic stress response. However, our
understanding of the complement, function and origin of lncRNAs – and especially transposon derived lncRNAs
(TE-lncRNAs) - in response to abiotic stress is still in its infancy.

Results: We utilized a dataset of 127 RNA sequencing samples that included total RNA datasets and PacBio fl-cDNA
data to discover lncRNAs in maize. Overall, we identified 23,309 candidate lncRNAs from polyA+ and total RNA
samples, with a strong discovery bias within total RNA. The majority (65%) of the 23,309 lncRNAs had sequence
similarity to transposable elements (TEs). Most had similarity to long-terminal-repeat retrotransposons from the
Copia and Gypsy superfamilies, reflecting a high proportion of these elements in the genome. However, DNA
transposons were enriched for lncRNAs relative to their genomic representation by ~ 2-fold. By assessing the
fraction of lncRNAs that respond to abiotic stresses like heat, cold, salt and drought, we identified 1077 differentially
expressed lncRNA transcripts, including 509 TE-lncRNAs. In general, the expression of these lncRNAs was
significantly correlated with their nearest gene. By inferring co-expression networks across our large dataset, we
found that 39 lncRNAs are as major hubs in co-expression networks that respond to abiotic stress, and 18 appear to
be derived from TEs.

Conclusions: Our results show that lncRNAs are enriched in total RNA samples, that most (65%) are derived from
TEs, that at least 1077 are differentially expressed during abiotic stress, and that 39 are hubs in co-expression
networks, including a small number that are evolutionary conserved. These results suggest that lncRNAs, including
TE-lncRNAs, may play key regulatory roles in moderating abiotic responses.
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Background
The functional component of any genome extends
beyond its protein coding sequences. Much of the
additional function is encoded by RNAs, which vary in
size from small RNAs (sRNAs) of< 25 nucleotides (nt) in
length, to tRNAs of 70 to ~ 90 nt in length, to an even
larger class of long non-coding RNAs (lncRNAs).
lncRNAs are typically defined as being longer than 200
nt and containing no more than one short (< 100 amino
acids) open reading frame [1].

lncRNAs represent a stunning proportion of transcrip-
tional products. In mice, for example, an early study
cataloged ~ 34,000 lncRNAs, representing one-third of
all polyadenylated cDNAs [2]. More recent work has
annotated ~ 14,000 lncRNAs in humans [3]. Work in
plants has lagged somewhat behind, but plant lncRNAs
have been identified based on various kinds of high
throughput expression data. For example, microarrays
have been used to detect 6480 lncRNAs from Arabidop-
sis thaliana [4]; single-stranded RNA sequence data have
led to the identification of 2224 lncRNA transcripts in
rice (Oryza sativa) [5]; and total RNAseq data have been
employed to detect 7245 lncRNAs in maize (Zea mays
ssp. mays) [6].
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At least three general properties of lncRNAs have be-
come apparent from studies of both plants and animals.
The first is that many lncRNAs are polyadenylated and
capped, suggesting that they are transcribed and proc-
essed similarly to mRNAs [7]. However, lncRNAs can
also be non-polyadenylated, and hence robust lncRNA
discovery requires consideration of both polyadenylated
and non-polyadenylated RNA samples. The second is
that lncRNAs tend to be expressed at lower levels than
coding genes, but with precise spatio-temporal patterns
[3, 7–13]. A third general property is that some lncRNAs
overlap with coding regions and sometimes contain
parts of an exon; however, most originate from inter-
genic spaces (and these are sometimes called long inter-
genic RNAs or lincRNAs). Consistent with their origin
from intergenic spaces, a large proportion of lncRNAs
are either derived from transposable elements (TEs) or
contain remnants of TEs. For example, Kapusta et al. [7]
determined that 75% of human lncRNAs contained
regions that appear to be derived from TEs.
Just as the origin and structures of lncRNAs are

diverse, they play similarly varied functional roles. One
major role is to act as templates for sRNA production,
which in turn often contribute toward the epigenetic
silencing of TEs [14, 15]. Some lncRNAs perform other
key functions, especially regulatory roles in cellular and
developmental processes [3, 16]. In plants, for example,
lncRNAs have been shown to affect functions as diverse
as phosphate signaling [17], flowering time [18], and
susceptibility to pathogens [19]. Consistent with the
hypothesis that lncRNAs play important regulatory roles,
some lncRNAs are conserved among species and appear
to be under purifying selection [3, 20, 21].
A growing body of evidence also points to a potential

role for plant lncRNAs in responses to abiotic and biotic
stresses. A few studies have identified Arabidopsis
lncRNAs that respond to salt, drought, heat and cold
stresses, as well as phosphate starvation [22–24]. The
expression of 28% (1832 of 6480) of Arabidopsis
lncRNAs was found to be significantly altered under bi-
otic and/or abiotic stresses [4]. These findings – i.e., that
lncRNAs are associated with stress responses – are
particularly important in the context of crop species,
because abiotic stresses affect crop yield and quality
[13, 25–29]. However, the identification of lncRNAs dur-
ing crop stress response remains largely unexplored, with
a few notable exceptions. For example, 637 nitrogen-
responsive lncRNAs and 664 drought-responsive lncRNAs
have been identified in maize seedlings [6, 30]. Similarly,
1010 and 1503 lncRNAs are known to be differentially
expressed under abiotic stress in rice and in chickpea [31].
An important but challenging issue is to discover
lncRNAs that are associated with abiotic stress responses
and then to determine which lncRNAs function as key

regulators, which serve as sRNA templates and which rep-
resent transcriptional noise.
Here we identify lncRNAs that relate to abiotic stress

responses in maize. Our work extends previous maize
lncRNA studies in at least three ways [6, 8, 30]. First,
our efforts to detect lncRNAs are based on more expan-
sive data. To perform lncRNA discovery, we have
amassed 127 RNAseq datasets that were generated by
different methods, in different tissues and across devel-
opmental stages, with a large subset generated in abiotic
stress experiments, including salt, drought, heat, cold,
UV and ozone stresses. The data include 89 RNAseq
samples based on Illumina sequencing, 36 RNAseq data-
sets based on PacbioIsoSeq experiments, and two Illu-
mina RNAseq datasets that were based on total RNA to
potentially detect non-polyadenylated lncRNAs. Second,
we investigate the relationship between TEs and
lncRNAs. More than 85% of the maize genome consists
of DNA derived from TEs [32], and we therefore expect
that many lncRNAs exhibit sequence similarity to TEs.
Thus far, however, the connection between lncRNA and
specific TE superfamilies has not yet been investigated
for maize. Third, we identify the subset of lncRNAs that
are differentially expressed under abiotic stress to begin
to narrow the set of candidates that function in stress re-
sponse. To further narrow a candidate list of potentially
functional lncRNAs, we also investigate co-expression of
lncRNAs with neighboring genes and within expression
networks [33, 34]. Bringing these diverse analyses
together, we identify several lncRNAs that are hubs in
co-expression networks that respond to abiotic stress
and show that several of these hubs are lncRNAs derived
from TEs.

Results
Construction of transcripts and lncRNA discovery
To discover lncRNAs and examine their expression
during abiotic stress, we used 89 RNAseq samples, 2
total RNA-Seq samples and 36 Pacbio Iso-Seq sam-
ples. For the Illumina datasets, we extracted and
cleaned ~ 305 Gb of sequence data; on average 92.1%
of Illumina reads per sample aligned successfully to
the maize B73 v4 reference sequence [35]. Aligned
reads from each Illumina sample were merged. We
also collected and cleaned ~ 1.98 Gb of IsoSeq se-
quences, aligned them to the B73 reference, and col-
lapsed them for a total of 17,673 loci with 43,774
transcripts. We then combined the Illumina RNAseq
and Pacific Biosciences (PacBio) IsoSeq data based on
alignment of contigs to the reference, ultimately iden-
tifying a non-redundant set of 77,172 loci with 95,523
transcripts (Additional file 1: Fig. S1). Among these,
19,449 transcripts were found only in the total RNA
sample. The set of 95,523 transcripts consisted of both
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coding transcripts and potential lncRNA transcripts.
To identify the latter, we used a pipeline based on a
combination of annotation programs and Pfam ana-
lyses (see Methods). Of the 95,523 assembled tran-
scripts, CPC2 annotation identified 31,967 non-coding
transcripts (CPC2 score < − 1), and 41,839 transcripts
were deemed to be noncoding based on CNCI ana-
lysis. Of these two sets, 26,099 transcripts were longer
than 200 bp and were predicted to be non-coding by
both CPC2 and CNCI. These were further filtered by:
i) comparing them to the Pfam database, retaining
only those transcripts without a match (Blast,
Evalue>1e-05) and ii) FPKM filtration, based on our
requirement that FPKM had to exceed 1 in least one
sample. The final dataset, which we consider high con-
fidence lncRNAs, consisted of 23,309 transcripts
(Table 1; Additional file 1: Fig. S1), representing 24%
of the total (23,309/95,523). The average length of
these candidate lncRNAs was 382 bp. None had an
ORF > 100 amino acids in length, as per our definition
of lncRNAs (see Methods), but most (95.15%) had one
ORF. Among the 23,309 lncRNA candidates, 59.3% (or
13,822 transcripts) were identified from polyadeny-
lated (polyA+) RNAseq samples, and the remaining
40.7% (or 9487 transcripts) were from total RNA sam-
ples, representing potential polyA- transcripts (Table
1; hereafter we refer to lncRNAs from total RNAs as
polyA- for simplicity). A file containing all the identi-
fied lncRNAs sequences, along with their genomic lo-
cations, is provided in DataS1.
The 23,309 lncRNAs were widely distributed across the

10 maize chromosomes (Additional file 1: Fig. S2). We
also examined their location relative to annotated coding
sequences within the maize genome. As expected from
our search strategy, most lncRNAs (87.9%, 20,499 of 23,
309) were intergenic, based on the output (a U class code)
from gff compare. Only 185 lncRNAs were found to be in-
tronic, with 29 and 156 of these as polyA- and polyA+
(Table 1). The few remaining high confidence lncRNAs
corresponded to, or overlapped with, previously annotated
lncRNAs in the B73 v4 reference (Table 1). Among the
20,499 lincRNAs, 44.7% (or 9153 of 20,499) were from
total RNA datasets (i.e, potentially polyA-), representing a
significant enrichment for lncRNAs within the total RNA
samples (Pearson χ-squared; p < 0.001).

Most lncRNAs are derived from transposable elements
Previous work has shown that a large fraction of
lncRNAs are derived from TEs [7, 35], including maize
lncRNAs [8]. These observations have led to the hypoth-
esis that TEs contribute to the functional domains of
lncRNAs [36]. However, previous papers have provided
few details about the TE superfamilies that have contrib-
uted to lncRNAs or to the proportion length of individ-
ual lncRNAs that can be attributed to TEs. Accordingly,
we examined our set of lncRNAs to identify which may
be derived from a TE. To do so, we masked regions of
our 23,309 high-confidence lncRNAs using a species-
specific TE library (see Materials and Methods). Overall,
we found that 65.69% lncRNAs (15,312 of 23,309) over-
lapped with known maize TEs, which is a proportion
similar to the previous maize study based on fewer
lncRNAs [8]. Most (61%, or 9341 of 15,312) TE-
lncRNAs showed similarity to TEs over ≥90% of their
length (Fig. 1a). Perhaps unsurprisingly, the proportion
of polyA- lncRNAs that were masked by TE sequence
was higher than that of polyA+ lncRNAs (79.26% vs.
56.37%), which is a significant difference (p < 1e-5)
(Fig. 1b). Hereafter we refer to lncRNAs with se-
quence similarity to TEs as “TE-lncRNAs”.
We further investigated the superfamily of TEs that

were similar to the 15,312 TE-lncRNAs. We found that
86% had sequence similarity to Long Terminal Repeat
(LTR) retrotransposons of the Gypsy and Copia super-
families (Table 2) and also that some of these TE-
lncRNAs exceeded 3750 bp in length (Fig. 1c). A much
smaller proportion of TE-lncRNAs were derived from
DNA transposons (Table 2); the longest of these were
shorter than the longest TE-lncRNAs with similarity to
Gypsy and Copia elements (Fig. 1c).
These observations raise an interesting question: Do

LTR/Gypsy and LTR/Copia elements give rise to
lncRNAs more often than expected, given their propor-
tion of the genome? To address this question, we
estimated the proportion length among all annotated
TEs that were attributable to LTR/Gypsy, LTR/Copia
and other element superfamilies, based on RepeatMas-
ker analyses. We then compared these percentages to
the proportion length among inferred TE-lncRNAs
(Table 2). We found, for example, that LTR/Gypsy ele-
ments produced TE-lncRNAs at roughly the expected

Table 1 A summary of lncRNA discovery

Total %TE-lncRNA lincRNA intronic Fall within
annotated lncRNAs

Overlap with
annotated lncRNAs

polyA- 9,487 79.26% 9,153 29 189 116

polyA+ 13,822 56.37% 11,346 156 1,201 1,119

Total 23,309 65.69% 20,499 185 1,390 1,235

Lv et al. BMC Genomics          (2019) 20:864 Page 3 of 17



proportion (61% vs. 59%), relative to their representa-
tion in the genome. However, LTR/Copia elements
contributed TE-lncRNAs at a lower proportion than
their proportion length among annotated TEs (22% vs.
33%). Particularly notable is the fact that class II DNA
elements produced TE-lncRNAs in our dataset at ~ 2-
fold higher rate (12% vs. 6%) than expected based on
their total length among TEs in the genome (Table 2).
Altogether, our results verify that the most maize
lncRNAs derive from TEs, but they also indicated that
different TE superfamilies give rise to TE-lncRNAs at
different rates.

Differential expression under abiotic stress
One general feature of lncRNAs is that they are expressed
at lower levels than protein coding genes, and they are
often expressed tissue specifically [3, 6, 8, 23, 37, 38]. We
assessed the expression levels of coding and lncRNA tran-
scripts based on their maximum FKPM across all of our
129 datasets and then averaged these maximum levels
across transcripts. The results indicated that lncRNAs are
expressed at lower levels than coding RNAs (Fig. 2a), with
coding regions expressed at three-fold higher maximum

levels, on average, than non-TE-lncRNAs (average FPKM:
12.57 vs. 4.30) and six-fold higher maximum levels, on
average, than TE-lncRNAs (average FPKM: 12.57 vs. 2.04).
We next sought to identify coding genes and lncRNAs

that were differentially expressed under abiotic stress.
To do so, we contrasted a subset of our RNAseq samples
that were generated from abiotic stress experiments that
included both treatment and control RNAseq samples.
For example, our samples included 12 RNAseq datasets
that represent two control samples and two replicated
treatment samples from each of four stresses (salt,
drought, heat and cold) (Additional file 2: Table S1), all
taken from V3 seedlings. Accordingly, we contrasted
each stress treatment to the control, for a total of four
contrasts (salt, drought, heat and cold) in V3 seedlings.
Extending this approach to V4 and V6 seedlings across
all the RNAseq data, we performed a total of 12 con-
trasts (Additional file 2: Table S1). These contrasts iden-
tified numerous differentially expressed coding genes
and lncRNAs (Table 3). The various treatments identi-
fied ~ 2000 up- or down-regulated coding transcripts, on
average, and a set of 1077 non-redundant lncRNAs that
were either up- and down-regulated across treatments.

Fig. 1 The relationship between lncRNAs and TEs. a The histogram indicates the number of lncRNAs (y-axis) relative to the percentage length (x-
axis) of lncRNAs that have similarity to TEs. b Numbers of lncRNAs that are polyA- (i.e., from total RNA) or polyA+ with similarity to TEs. The
proportion of polyA- lncRNAs is significantly enriched for similarity to TEs. c The length distribution of TE-lncRNAs organized by their inferred TE
superfamily of origin
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Among the 1077 non-redundant lncRNA transcripts,
many were differentially expressed in two or more treat-
ments. For example, 679 lncRNAs were identified as
differentially expressed across V3-V6 stages under heat
treatment (Table 3; Fig. 2c; Additional file 4: Table S3,
Additional file 1: Fig. S3). Of these, 29 lncRNAs were
differentially expressed in all three developmental stages,
but 79, 214 and 232 lncRNAs were specific to the V3,
V4 and V6 stages, respectively. Interestingly, 40.50% (32/
79) heat-responsive lncRNAs at the V3 stage, 26.17%
(56/214) heat-responsive lncRNAs at V4 and 42.67%
(99/232) heat-responsive lncRNAs at V6 were also dif-
ferentially expressed in response to other stress treat-
ments, but not shared among developmental stages.
These patterns implicate many lncRNAs as a common
component of abiotic stress responses, but they also
imply that these responses have temporal (i.e., develop-
mental) specificity in leaves from V3 to V6 seedlings.
Interestingly, 529 non-redundant TE-lncRNAs were

differentially expressed under one or more conditions.
The proportion of differentially expressed TE-lncRNAs
was lower than the proportion of all lncRNAs; TE-
lncRNAs were 65% of the total proportion of lncRNAs,
but constituted only 45 and 56% of up- and down-
regulated lncRNAs. Most of the differentially expressed

TE-lncRNAs had similarity to LTR/Gypsy and LTR/
Copia, as expected, but other TE families also contrib-
uted to differentially expressed TE-lncRNAs. For ex-
ample, MSTRG.32907 exhibited similarities to LINE
elements, MSTRG.73329 was similar to DNA/hAT-Ac
elements, and MSTRG.37644 was an LTR/Gypsy ele-
ments. All of these were differentially expressed in leaves
from V3 seedlings, but in different abiotic treatments
(heat, cold and salt, respectively) (Fig. 4).
lncRNAs have been shown to be involved in cis regula-

tion of neighboring genes. To investigate this possibility,
we examined the correlation in expression between
lncRNAs and their closest neighboring gene in either the
5′ or 3′ direction, yielding a dataset of 1077 differentially
expressed lncRNAs and their neighboring genes. The
lncRNAs were strongly (r = 0.48), and highly signifi-
cantly (p < 2e-16) correlated with the expression of their
closest neighboring gene (Fig. 2b), suggesting that
lncRNAs may either be involved in cis regulation or are
subject to some of the same cis regulatory features as
their neighboring genes.

Co-expression modules associated with stress responses
Compared to coding genes and microRNAs, the function
of lncRNAs in abiotic stress response remains largely

Table 2 The proportion of base pairs attributable to different TE superfamilies based on the total length of inferred TE-lncRNAs and
the B73 reference genome

TE Class Number of TE-lncRNAs % total length of TE-lncRNAs % total length of TEs in the genome

Retroelements

SINE 15 0.36% 0.02%

LINE/L1 151 1.28% 0.96%

LINE/RTE-BovB 8 0.05% 0.14%

LTR/Cassandra 47 0.23% 0.10%

LTR/Copia 3917 22.45% 32.39%

LTR/Gypsy 9566 61.53% 59.64%

Total 13,704 85.90% 93.25%

DNA transposons

DNA 28 0.28% 0.03%

DNA/CMC-EnSpm 579 3.97% 3.33%

DNA/hAT-Ac 234 2.03% 0.73%

DNA/hAT-Tag1 20 0.56% 0.08%

DNA/hAT-Tip100 32 0.34% 0.14%

DNA/MULE-MuDR 213 1.70% 0.93%

DNA/PIF-Harbinger 291 2.80% 0.64%

DNA/TcMar-Stowaway 35 0.41% 0.08%

Total 1,432 12.10% 5.96%

Helitrons 162 1.79% 0.78%

Unclassified: 14 0.21% 0.02%

Total 15,312
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Fig. 2 Features of the expression dynamics of lncRNAs. a The Log2(FPKM) expression level of coding RNAs, lncRNAs and TE-lncRNAs, based on
the maximum expression of each lncRNA across datasets. b The correlation (log2(Fold Change)) of TE -lncRNAs and the closest neighboring gene
under different stress conditions. The blue curve indicates the best fit across all of the plotted points and clearly indicates a strong positive
correlation from when log2(Fold Change) varies between roughly − 5 and 5. The linear correlation of r = 0.48 is indicated in the graph. c This
figure reports the number of differentially expressed lncRNAs under different stress conditions and developmental stages. The blue histogram on
the left shows how many lncRNAs were differentially expressed under different conditions. The red histogram, coupled with the dot plot below,
represent the distribution of differentially expressed lncRNAs among stress and stages. For example, the blue graph on the left indicates that 187
lncRNAs were differentially expressed under heat stress in V3. Of these, 38 were detected only under heat stress, as indicated by the graph in red,
while 11 were differentially expressed under heat stress at both the V3 and V4 stages and 6 were differentially expressed under heat stress at
both the V3 and V6 stages

Table 3 Numbers of differentially expressed genes, lncRNAs and TE-lncRNAs in maize seedlings under abiotic stress

Condition/Stage Heat Cold Drought Salt UV Ozone

V3 V4 V6 V3 V4 V3 V6 V3 V4 V6 V4 V6

Up-regulated 2,051 3,279 2,892 1,273 3,161 1,260 2,560 1,292 2,348 3,114 2,752 1,712

Coding 1,952 3,030 2,681 1,248 2,976 1,233 2,433 1,264 2,264 3,028 2,703 1,660

lncRNA 84 223 181 23 159 24 112 22 64 74 36 45

TE-lncRNA 36 92 86 6 64 8 59 5 21 31 13 19

Down-regulated 1,511 3,411 3,407 1,450 2,420 1,543 1,904 1,266 2,944 3,183 2,740 738

Coding 1,395 3,299 3,209 1,312 2,310 1,414 1,806 1,101 2,894 2,945 2,686 699

lncRNA 103 97 101 117 93 112 80 150 45 208 42 35

TE-lncRNA 66 38 118 70 39 63 38 101 15 133 14 15
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unknown. Computational construction of gene co-
expression networks can be a valuable tool for linking
lncRNAs and coding RNAs and also for beginning to
infer potential biological functions, because co-expressed
genes are often members of the same pathway or protein
complexes, are often either functionally related, or are
controlled by the same transcriptional regulatory pro-
gram [33, 39–41].
We used the 89 Illumina RNA-seq datasets to build

co-expression networks (see Methods and Table S1).
WGCNA analyses identified 40 modules that comprise
various nodes in the network. Of the 40 inferred mod-
ules, 16 were significantly correlated with stress treat-
ments (Fig. 3, Additional file 1: Fig. S4, Additional file 4:
Table S3, Additional file 5: S4). These 16 contained 7221
transcripts including 408 lncRNAs, of which 171 were TE-
lncRNAs. Most of the 16 modules were associated with a
single stress and developmental stage, but some were cor-
related with two or more stresses or stages (Fig. 3). For ex-
ample, the ME_darkgreen module was highly correlated
with drought at the V3 stage (r2 = 0.76, p < 4e-18), but it
was also significantly correlated with salt stress at the
V3 (r2 = 0.21, p < 0.05) and V4 (r2 = 0.29, p < 0.005)
stages. Similarly, the ME_salmon module correlated
with drought (r2 = 0.25, p < 0.02) and also salt stress
at the V3 (r2 = 0.45, p < 1e-05) and V4 stages (r2 = 0.38,
p < 3e-04). Complete correlation information between

modules and stress conditions and developmental stages
are provided in Additional file 1: Fig. S4.
Recent work uncovered a temporal transcriptional

logic underlying nitrogen (N) signaling in Arabidopsis
[42]; we see similar logic based on developmental timing
for abiotic stress responses. Consider the example of
heat stress: the ME_tan module was correlated with V3
heat stress (r2 = 0.89, p < 4e-32), the ME_yellow module
correlated with V4 heat stress (r2 = 0.96, p < 1e-49), and
the ME_darkturquoise (r2 = 0.43, p < 2e-05) and ME_
pink (r2 = 0.49, p < 1e-06) modules were associated with
heat stress in the V6 stage. These data suggest a develop-
mental cascade of heat-responsive modules. To illustrate
this graphically, we arranged the 16 associated modules by
stress and development stage. Like heat stress, cold and
drought stress were both associated with distinct modules
at different developmental stages. There were exceptions,
however, as both salt and UV stress associated with two
modules in the V4 stage (Fig. 3).
Among the 16 significant modules, the most lncRNAs

were associated with the ME_yellow module, which corre-
lated with heat stress in the V4 stage (r2 = 0.96, p < 1e-49)
and contained 147 lncRNAs and 65 TE-lncRNAs. Figure 4
details the expression pattern of this and other stress
related modules. Given these modules, it is possible to
extract the eigengenes from modules to infer function. For
example, the eigengenes for the ME_yellow module were

Fig. 3 A visual representation of the 16 modules that were significantly correlated with abiotic stress responses. All of the modules were
associated with one stress condition and developmental stage, such that they exhibit a temporal cascade of stress responsiveness under different
stresses and across V3 to V6 developmental stages. The scale of the heat map reflects the level of correlation (r) among genes in an expression
module for a specific abiotic stress (i.e., Heat, Cold, Drought, Salt, UV, Ozone) at a specific development stages (i.e., V3 to V6)
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assigned into GO categories related to ‘response to heat’,
‘response to high light intensity’, ‘heat acclimation, re-
sponse to radiation’, ‘regulation of seedling development’
and ‘ER-nucleus signaling pathway’. The ME_darktur-
quoise (r2 = 0.43, p < 2e-05) and ME_pink (r2 = 0.49, p <
1e-06) modules were also associated with heat stress but
in a later development stage (V6). These two modules
contained 52 lncRNAs and 16 TE-lncRNAs, and their
eigengenes exhibited significant enrichment of the GO
terms ‘intracellular ribonucleoprotein complex’, ‘HslUV
protease complex’, ‘cytoplasmic translation’ and ‘intracel-
lular membrane-bounded organelle’ (Additional file 6:
Table S5, Additional file 7: Table S6, Additional file 8:
Table S7). Overall, GO-inferred functions helped verify
that the modules reflect aspects of the stress response.

LncRNAs are hubs in modules
An interesting facet of the 16 stress-associated modules
is that each contained both lncRNAs and TE-lncRNAs.
We have mentioned that the ME_yellow module con-
tained the most lncRNAs of the 16 modules, with 147
lncRNAs and 65 TE-lncRNAs, but other modules were
similar in containing lncRNAs. For example, the ME_tan
module, which is associated heat stress in V3, contained 26
lncRNAs and 9 TE-lncRNAs. An important question con-
cerns the role of these lncRNAs in expression networks.
One role, which is suggested by our results (Fig. 2b), is that
some of the lncRNAs in modules are co-expressed with
genes due to cis interactions. It is also possible, however,
that lncRNAs regulate genes in trans. To investigate this
possibility, we screened for key ‘hubs’, which we defined by

Fig. 4 lncRNA expression for four modules associated with heat stress. This figure consists of a heat map (top) and graphs of the expression of
specific TE-lncRNAs (bottom) that were chosen because they were top three overrepresented lncRNAs in the four modules and had high
interconnectivity. Top) The heat graph shows transcript expression levels for hub genes and lncRNAs in each module (y-axis) and across
conditions (x-axis). The key to modules (y-axis) and stress conditions (x-axis) are shown on the right legend, with conditions also separated by
developmental stage (bottom of x-axis). Warmer colors within the heat map indicate high expression, and cooler colors are low (or under)
expression. This particular heat map illustrates that the four heat-associated modules are, as expected, highly expressed under heat stress, but not
always at the same developmental stage. Bottom) The bar plots below the heat graph are eigen-lncRNA expression values selected from the top
three overrepresented TE-lncRNAs with high interconnectivity. The x-axis is the same as the heat map, and the id of the TE-lncRNAs is provided
by the color key. This graphs shows, again, that the TE-lncRNAs tend to be more highly expressed under heat stress, but with some dependence
on developmental stage. Additional file 1: Figs. S5 to S9 present similar figures for modules associated with cold, drought, salt, UV and ozone
stress, respectively
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high connectivity (i.e., intramodular connectivity within the
top 10% of all members of the module), membership > 0.9
and high significance (p < 0.01) in the module. Based
on these filters, we identified 670 hubs that included
39 lncRNAs from different stress-responsive modules
(Additional file 5: Table S4), of which 18 were TE-lncRNAs.
Considering the heat-responsive modules as an example,

the 3 associated modules had 27 lncRNAs as hubs, out of
225 total lncRNAs, with 12 of the 27 categorized as TE-
lncRNA. The 27 hub lncRNAs included transcript TE-
lncRNAs such as MSTRG.32907 (TE-lncRNA, LINE/L1,
p < 1.78E-04), MSTRG.35709(TE-lncRNA, LTR/Gypsy,
p < 2.59E-114), MSTRG.44074 (TE-lncRNA, DNA/hAT-
Ac, p < 2.11E-19) and MSTRG.37268 (TE-lncRNA, DNA/
CMC-EnSpm, p < 1.63E-08). In Fig. 4, we illustrate the ex-
pression patterns of three of the top-ranked hubs within
the heat-stress associated modules, with the top-ranked
hubs for the other five abiotic stresses in Additional file 1:
Figs. S5–9. All of these hubs are expressed under stress
and demonstrate high intramodular connectivity.
Many hubs in co-expression networks belong to tran-

scription factors (TF) of families such as TCP, AP2/
EREBP, MYB, WRKY, NAC, bZIP [43–46]. We found in-
teractions and potential crosstalk between lncRNAs and
stress-responsive TFs from these families. In the heat-
responsive modules, for example, hub lncRNAs such as
MSTRG.32907, MSTRG.36825 and MSTRG.30107 and
MSTRG.35709 were connected to TF families such as
TCP, NAC, Dof and bHLH, which are known to respond
to abiotic stress from previous studies (Fig. 5, 48–50].
These results suggest the possibility that lncRNAs – and

more specifically, some TE-lncRNAs – act to regulate abi-
otic stress responses. If they play a functional role, one
would expect them to be conserved over evolutionary
time. We tested this idea by blasting each of the 39 hub
lncRNAs to an evolutionary gradient of genomes that in-
cluded sorghum, rice and Arabidopsis (Additional file 9:
Table S8). Of the 39, 16 had strong hits (e < 10− 15) to sor-
ghum, a close relative to maize, and 4 of these 16 were
TE-lncRNAs. Moreover, three of the hub lncRNAs had
hits to rice, but zero TE-lncRNAs had rice hits, and none
of the 39 hub lncRNAs had significant hits to Arabidopsis.
Overall, these results suggest that ~ 10% these lncRNAs
have been conserved since the divergence of rice and
maize, roughly 50 million years ago [47], and that 39%
have been conserved since the divergence between sor-
ghum and maize, roughly 16 million years ago [48].

Testing the reliability of RNA-seq based inferences via
qRT-PCR
All of our inferences are based on bioinformatic analyses
of RNAseq samples. To explore the reliability of these in-
ferences, we performed a heat-stress experiment on maize
B73 V3 seedings. The seedlings were subjected to 50 °C

for 4 h (see Methods), and their RNA was extracted. We
then subjected the samples to quantitative real-time PCR
(qRT-PCR) to compare expression changes between repli-
cated control and heat-treated seedlings. We focused on
ten representative transcripts, including seven lncRNAs
and three coding genes. Among this set of ten transcripts,
six were significantly up-regulated under heat-stress and
four were significantly down-regulated based on
qRT-PCR (Fig. 6). We then compared experimental
results to those based on RNAseq data, illustrating a
high degree of consistency (r = 0.936; p < 1 × 10− 4)
between inferences based on RNA-Seq and on qRT-
PCR (Fig. 6, Additional file 10: Table S9).

Discussion
In this study, we accumulated and mined an expansive
dataset to identify lncRNAs in maize, particularly those
that are expressed in response to abiotic stress. Bioinfor-
matic analyses led to the identification of 23,309
lncRNAs, the largest collection yet identified from
maize. We characterized these lncRNAs with respect to
three features: i) their prevalence and origins, especially
lncRNAs that appear to be derived from TEs, ii) their
expression levels and patterns, including a detectable cis-
effect, and iii) their potential for functioning in abiotic
stress response, as inferred from the construction of co-
expression networks.

lncRNA identification and characterization
By its very nature, lncRNA discovery is limited by a
number of factors. It is first, of course, limited by the
definition of lncRNAs that have been used in the litera-
ture – i.e., an RNA molecule > 200 bp with at most one
ORF or overlapping exon of < 100 codons [1]. Following
precedence, we have adopted this definition for lncRNA
discovery, but it bears remembering that some of these
could in fact be translated because they contain short
ORFs. A second limitation is the fact that our search
strategy did not include lncRNAs that overlapped with
(or contained) an annotated exon. We applied this limi-
tation purposefully, to avoid mis-classification based on
fragmented RNA molecules or contigs. For that reason,
however, our work likely underrepresents lncRNAs de-
rived from genes and so some of our estimates may be
inaccurate. For example, if many lncRNAs are derived
from genic regions, then our estimate of the proportion
of lncRNAs that are derived from TE-lncRNAs is an
overestimate. It is worth noting, however, that our
estimate of the proportion of TE-lncRNAs (65%) is
similar to a previous, smaller maize study that estimated
68% of lncRNAs were derived from TEs [8]. A third
limitation is that the completeness of lncRNA discovery
relies critically on the number of tissue and develop-
mental samples that are available. With the exception
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of A. thaliana, for which lncRNA discovery was based
on 2000 microarray transcriptomes, most plant stud-
ies have been limited to only a handful of samples,
suggesting that there is still much to learn about the
lncRNA complement within and among plant species.
Although our study focuses on only one tissue (i.e.,
leaves from seedlings of different developmental
stages), it greatly expands lncRNA discovery in maize
because previously the most RNAseq samples used
for lncRNA discovery was 30 [8].
Our RNA datasets were highly enriched for polyadeny-

lated (polyA+) transcripts, because it consisted of 36
PacBio fl-cDNA datasets, 89 RNAseq datasets and only
two total RNA datasets. Nonetheless, fully 44% of inter-
genic lncRNAs were identified from the total RNA data,
representing a disproportionately large number relative
to polyA+ data. This observation superficially suggests
that far more lncRNAs are polyA-, which is an import-
ant point to consider when one considers that most –

but not all [6, 49, 50] – lncRNA surveys in plants have
relied solely on RNAseq samples and not total RNA
samples. Previous work has also suggested that the ratio
of polyA- and polyA+ lncRNAs may be a function of
growth conditions and external stresses [13]. A fuller
understanding of lncRNAs may require more substantial
investments in total RNA datasets.

Most lncRNAs are TE-lncRNAs
Given our identification of 23,309 lncRNAs, we next
sought to characterize their loci of origin and particu-
larly to identify those that likely originated from TEs.
We found that ~ 65% (15,312) of lncRNAs contained
similarity to known TEs. Of these, most (61%, 9341 of
15,312) were similar to TEs over > 90% of their length,
suggesting they were derived solely from TEs. As we
noted above, our estimates of the proportion of TE-
lncRNAs could be too high, based on our search strat-
egy. However, it is also not surprising that we identified

(See figure on previous page.)
Fig. 5 The networks of four heat-responsive modules. The four modules are, the ME_tan module (top left), the ME_yellow module (top right), the
ME_pink module (middle), and the ME_darkturquoise module (bottom). In each network diagram, the green circles represent TE-lncRNAs; the
blue color represents nonTE-lncRNAs; the orange dots represent known transcription factors from various families (e.g., TCP), and grey circles
represent coding RNAs. The size of the dot represents intramodular connectivity, with larger sizes representing higher connectivity. From these
networks, we can infer that lncRNAs and TE-lncRNAs are sometimes as or more interconnected than transcription factors

Fig. 6 qRT-PCR validation of differentially expressed lncRNAs and coding RNAs The qRT-PCR data were generated from 10 differentially expressed
loci, based on leaf tissue of V3 seedlings under heat-shock and control conditions. The qRT-PCR histogram for each locus represents the mean ±
standard error (SE) of three independent biological replicates, and the qRT-PCR are compared to fold-change data inferred from RNAseq data.
The fold-change values based on qRT-PCR and RNAseq data were significantly correlated across the 10 loci (r = 0.9363, p < 0.000067).
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a high proportion of TE-lncRNAs, for at least three rea-
sons. First, previous studies in mammals have demon-
strated that most lincRNAs derive from TEs [7, 35].
Second, the maize genome is replete with TEs, with > 85%
of the genome estimated to consist of DNA derived from
TEs [32]. Finally, an important function of lncRNAs is to
be precursors for small RNAs, which in turn contribute to
TE silencing via sequence homology [8, 51–53].
We also investigated the TE families from which TE-

lncRNAs originated. Most of the TE-lncRNAs were de-
rived from LTR/Gypsy and LTR/Copia families (Table 2),
reflecting their preponderance in the maize genome
[32, 53]. lncRNAs derived from LTR/Gypsy elements were
represented in a similar proportion to their genomic pro-
portion (by length) among the TEs we investigated in our
study (Table 2). However, LTR/Copia elements were un-
derrepresented in the TE-lncRNA dataset relative to their
combined lengths in the genome, 22% versus 33%. This
suggests that LTR/Copia elements do not produce
lncRNAs as readily as LTR/Gypsy elements, at least within
our data. The reasons for the difference between LTR/
Copia and LTR/Gypsy are presently unclear, but one can
consider two broad categories: TE age and TE location.
For the former, older elements might be expected to be in
a deeply-silenced epigenetic state that relies primarily on
the maintenance of methylation during cell division rather
than an active epigenetic response that enlists lncRNAs
[54]. For the latter, one might expect LTR/Copia elements
to be in genomic locations that are transcribed. In fact,
however, the opposite is true, because LTR/Gypsy ele-
ments tend to be concentrated in pericentromeric regions
[32] where there may be less active transcription and less
ongoing silencing. In contrast, LTR/Copia elements tend
to accumulate preferentially in euchromatic regions [32]
that tend to be more transcriptionally active. Class II
DNA elements also tend to be located near genes and eu-
chromatic regions, but unlike LTR/Copia elements they
produce lncRNAs at about a 2-fold higher than implied by
their genomic lengths (Table 2). To sum: we have shown
that TE superfamilies over- and under-produce lncRNAs
relative to their genomic representation based on our ex-
tensive collection of datasets, but the ultimate causes of
these differences remain unclear.

Levels and patterns of lncRNA expression
Several previous papers from both plants and animals
have shown that lncRNAs tend to be expressed at lower
levels than bona fide genes and that they also tend to
show tissue-specific patterns of expression [3, 7–12]. We
have verified the former by recording the maximum
FPKM for each lncRNA transcript across datasets; on
average, lncRNAs are expressed at 4-fold lower levels
than genic transcripts by this metric (Fig. 2a). Unfortu-
nately, we cannot verify that lncRNAs have more tissue

specific expression than genes, because the bulk of our
data were isolated from leaves. We can, however, verify
that they have lower entropy than genes, on average
(Average Shannon Entropy = 2.10 for coding genes vs.
1.13 for lncRNAS), because the lncRNAs consistently
lack expression evidence under more conditions.
Of the 13,822 polyA+ lncRNAs, we found that 1077

(7.79%) were differentially expressed under stress condi-
tions, including 529 TE-lncRNAs. These TE-lncRNAs
provided an opportunity to assess whether they could be
linked to the expression of nearby genes, indicating some
sort of cis-regulatory pattern, as has been observed in
other species [20, 55, 56]. TE-lncRNAs were significantly
correlated (r2 = 0.48; p < 2.0e-16) with their nearest neigh-
boring genes (Fig. 2b), suggesting that TE-lncRNAs may
either be involved in cis regulation or are subject to some
of the same cis regulatory features as their neighboring
genes, such as open chromatin structure.

lncRNAs, abiotic stress and coexpression modules
This study was designed specifically to identify stress-
responsive lncRNAs. We approached this problem in
two ways. We first identified differentially regulated
lncRNAs from a series of controlled experiments for
heat, cold, drought and salt stress. These experiments
were based on leaf tissue from seedlings of the V3, V4
and V6 stages. Comparing the stress treatment to their
corresponding control at the appropriate developmental
stage across 12 different contrasts, we identified 1077
lncRNAs with evidence for differential expression. This
observation corroborates previous studies in suggesting
that lncRNAs may be differentially regulated under
stress [6, 22–24, 30, 31], but it provides no indication
whether the differentially regulated lncRNAs are a
byproduct of stress responses or play a functional role.
There is, however, a large gap between observing differ-
ential expression and proving function. As a first step
toward bridging this gap, we have built co-expression
networks based on both coding RNAs and lncRNAs
from 89 RNAseq datasets, yielding a total of 40 co-
expression modules. Of these, 16 were significantly
associated with stress responses, and GO annotations of
these modules were generally consistent with their in-
ferred response functions. One interesting facet of these
16 modules is that they demonstrate clear patterns
across developmental time (Fig. 3), suggesting that tem-
poral hierarchies are important for plant responses to
environmental stress.
It is difficult to infer function from co-expression mod-

ules [57], but studies have shown that genes with high
connectedness tend to be functionally essential [58, 59].
We were therefore particularly interested whether any of
our lncRNAs are included within co-expression networks
and particularly whether they are ‘hubs’ within network
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modules. Of the 16 modules that were significantly associ-
ated with stress responses, we identified 670 hubs, many
of which corresponded to genes from known transcription
factor families (Fig. 5). Of these 670 hubs, 39 were
lncRNA transcripts. These represent our best candidates
for lncRNAs that function in stress response, potentially
as trans-acting regulatory factors. Consistent with this last
conjecture, several of these lncRNA hubs were connected
to genes from known TF factors [60–62]. Moreover, ~
10% of these lncRNAs yielded strong blast hits to rice,
suggesting some measure of evolutionary conservation
consistent with functional constraint, at least for this
subset.
One somewhat surprising finding is that 18 of the 39

lncRNA hubs are related in sequence to – and perhaps
derived from - TEs. This observation raises the intri-
guing idea that TE exaptation can occur at the level of
lncRNAs. It is now well known that TE exaptation con-
tributes to many aspects of genome function, including
protein coding genes and especially functional regulatory
elements [63–65]. The location of TE-lncRNAs as hubs,
along with their connectedness to known TFs, suggests
that a small subset of TE-derived lncRNAs may function
as trans-acting regulatory factors in maize. If true, these
hubs appear to have been recruited recently, given that
only four of 16 yield strong hits to the sorghum genome.
Clearly additional work is required to prove that these
TE-lncRNAs function as hypothesized in abiotic re-
sponse, but their centrality in co-expression modules is
nonetheless an intriguing result that is consistent with
previous findings showing that most lncRNAs are de-
rived from TEs [7] and that lncRNAs can play central
regulatory roles in plant and animal development [63].

Methods
Sample collection
In this study, we gathered 36 Pacbio Isoseq datasets that
were sampled from different tissues [66] and 91 illumina
RNAseq datasets that were sampled from leaves of maize
B73 [6, 67–69] (Additional file 2: Table S1, Additional file 1:
Fig. S1). Of the Illumina datasets, 89 represented polyA+
transcripts and two were based on total RNA, which in-
cludes putative polyA- transcripts. The datasets were used
for three purposes: lncRNA discovery, differential gene ex-
pression analyses, and the inference of gene co-expression
networks. All of the 129 datasets were used for lncRNA dis-
covery. A subset of 71 of the 91 RNAseq datasets were
employed for differential gene expression analyses (Add-
itional file 2: Table S1); these included replicated control
and treatment samples from experiments that tested the ef-
fects of drought, salt, heat, cold, UV and ozone treatments
on gene expression. Finally, all of the 89 polyA+ Illumina
RNAseq datasets were used for inferring gene co-
expression networks. The 89 Illumina datasets represented

a developmental series sampled from leaves of V3, V4 and
V6 seedlings; we take advantage of this developmental
series in some network analyses (Additional file 2:
Table S1, Additional file 1: Fig. S1).

Data processing and alignment
Raw data were converted into the FASTQ-formatted file
by the Fastq-dump program from the SRA Toolkit
(https://github.com/ncbi/sratoolkit). For Illumina data,
the SolexaQA++ v3.1 program [70] was employed for
quality trimming, using the Q20 value. After trimming,
any reads < 50 bp were removed. Cleaned reads were
then aligned to the B73 reference genome sequence (v4,
http://plants.ensembl.org) using the STAR aligner pro-
gram [71] with default parameters. Aligned reads were
assembled into transcripts by the StringTie program,
using the RABT (reference annotation-based transcript)
assembly algorithm [72]. For the Pacbio IsoSeq data,
reads were aligned to the B73 reference genome using
the Minimap2 program [73]. Unique isoforms were
collapsed, based on genome alignment by Cupcake ToFU
(https://github.com/Magdoll/cDNA_Cupcake). Subse-
quently, the assembled transcripts from Illumina RNAseq
and Pacbio IsoSeq were merged using StringTie, which
yielded a non-redundant unified set of transcripts.

Computational identification of intergenic and intronic
lncRNAs
To find lncRNAs, a strict computational strategy was
performed as described by Lv et al. (2016) that and con-
sisted of four steps. First, non-redundant transcripts
were submitted to annotation programs to evaluate their
coding potential. We used two annotation programs –
CPC2 [74] and CNCI [75] – and focused on transcripts
that were identified as having no coding potential by
both programs as candidate lncRNAs. Second, we sub-
mitted candidates to the Pfam database using Pfam_scan
script (ftp://ftp.ebi.ac.uk/pub/databases/Pfam/), which
aligns transcripts with HMMER [76]. We filtered any
transcripts that aligned to known protein families at an
Evalue<1e-05. Third, we compared the remaining tran-
scripts to reference annotations using gffcompare [77],
which outputs various codes to designate the relation-
ship of transcripts to annotated coding regions. We
retained transcripts with class codes “i”, which indicates
that a transcript is fully contained within a reference in-
tron, and “u”, which designates transcripts that are not
obviously related to known coding regions, for further
analyses. This last step is likely to miss some sense and
anti-sense lncRNAs that derive from coding regions but
also limit false positives based on incompletely assem-
bled coding transcripts. Finally, we retained transcripts
as high confidence lncRNAs if they passed all of the pre-
vious four steps, if they were longer than 200 bp, and if
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they had an FPKM (fragments per kilobase of exon
model per million reads mapped) > 1 in at least one of
our sample datasets. To determine the relationship of
high-confidence lncRNAs to TEs, we masked the
lncRNA sequences to identify TE domains. Masking was
based on the maize-specific library of Repbase database
(www.girinst.org) and was performed by RepeatMasker
(www.repeatmasker.org).

Gene expression analyses
We performed two separate types of analyses based on
gene and lncRNA expression data. The first analysis was
differential expression analysis based on comparisons
between stress and control data (Table S1). To perform
these analyses, high quality reads were aligned to the
B73 reference using the STAR program [71]. For reads
that mapped to multiple locations, we removed align-
ment reads with a mapping quality < 20, based on SAM-
Tools [78]. Raw counts were quantified using the
featureCounts program [79], and the FPKM value per
gene was calculated using a custom Perl script. The
DESeq2 package [80] was used to perform pairwise
comparisons between samples to identify differentially
expressed transcripts. To identify differentially expressed
genes (DEG), we relied on two criteria: the Log2(fold
change) had to be > 1 and the adjusted p-value from
DEseq analyses had to be p-adj < 0.05.
The second type of analysis was the inference of co-

expression networks. To construct networks, expression
profiles were extracted from each gene and lncRNA, and
expression levels were normalized using variance stabil-
izing transformation in DESeq2 [80]. Co-expression
correlations among lncRNAs and genes were based on
Pearson correlations with R2 ≥ 0.8 across the 89 RNAseq
datasets. An unsigned co-expression network was in-
ferred using the WGCNA package [81] with an optimal
soft threshold = 12. Modules within the network were
assigned using Topological Overlap Matrix (TOM). The
correlations between modules and stress treatments
were calculated and plotted, and then the significant
stress-responsive modules were extracted for further
analysis. Co-expressed networks were visualized by the
Gephi program [82].

Gene ontology enrichment analysis
The eigengene probes of each stress-responsive module
were assigned putative functions by searching against
the UniProt protein database [83]. Searching was based
on using the Blastx program [84], using a cut-off e-
value ≤ 1e-10. Coding eigengenes were then submitted to
the AgriGO v2 online toolkit [85] for gene ontology
term enrichment. A Fisher’s exact test was applied for
the enrichment analysis and the p value was adjusted

using the Bonferroni method, with an experiment-wide
significance level of 0.05.

Experimental stress treatment, RNA extraction and qRT-
PCR analysis
The maize inbred line B73 was germinated in a green-
house at JAAS (Jiangsu Academy of Agricultural Sci-
ences). Seedlings at the three-leaf (V3) stage were then
incubated at 50 °C for 4 h for heat stress treatment, as
described by Makarevitch et al. [69]. Control plants were
retained under a temperature of 25 °C. Leaves from three
independent biological replicates were collected and
processed for RNA extraction and first strand cDNA
synthesis according to PrimeScriptTMRT Master Mix
(TaKaRa). qRT-PCR was performed using SYBR Premix
DimerEraser™ kits (Takara) on a Real Time PCR System
(Roche LightCyclerR 96, USA), according to the manufac-
turer’s instructions. Quantification results of target tran-
scripts were calculated using the comparative 2-ΔΔCT
method. Primers were designed using Primer Primer5 [86]
and can be found in Additional file 10: Table S9.
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