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ABSTRACT

Deciphering the massive volume of complex
electronic data that has been compiled by hos-
pital systems over the past decades has the
potential to revolutionize modern medicine, as
well as present significant challenges. Deep
learning is uniquely suited to address these
challenges, and recent advances in techniques
and hardware have poised the field of medical
machine learning for transformational growth.
The clinical neurosciences are particularly well
positioned to benefit from these advances given
the subtle presentation of symptoms typical of
neurologic disease. Here we review the various
domains in which deep learning algorithms
have already provided impetus for change—ar-
eas such as medical image analysis for the
improved diagnosis of Alzheimer’s disease and
the early detection of acute neurologic events;
medical image segmentation for quantitative
evaluation of neuroanatomy and vasculature;
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connectome mapping for the diagnosis of Alz-
heimer’s, autism spectrum disorder, and atten-
tion deficit hyperactivity disorder; and mining
of microscopic electroencephalogram signals
and granular genetic signatures. We addition-
ally note important challenges in the integra-
tion of deep learning tools in the clinical setting
and discuss the barriers to tackling the chal-
lenges that currently exist.
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INTRODUCTION

Twenty-first century healthcare is marked by an
abundance of biomedical data and the devel-
opment of high-performance computing tools
capable of analyzing these data. The availability
of data and increased speed and power of
computer systems together present both
opportunities and challenges to researchers and
healthcare professionals. Most significantly,
they provide the potential to discover new dis-
ease correlates and translate these insights into
new data-driven medical tools that can improve
the quality and delivery of care. However, such
advancements require the navigation of high-
dimensional, unstructured, sparse, and often
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incomplete data sources, with the outcomes
being cumbersome to track. Identifying novel
clinical patterns amidst this complexity is defi-
nitely not a trivial task [1-3].

Modern representation learning methods
enable the automatic discovery of representa-
tions needed to generate insights from raw data
[4]. Deep learning algorithms are an example of
such representation learning approaches that
hierarchically compose nonlinear functions to
transform raw input data into more sophisti-
cated features that enable the identification of
novel patterns [5]. Such approaches have
proved to be essential in modern engineering
breakthroughs—from face recognition and self-
driving cars to chat-bots and language transla-
tion [6-12]. In medicine, the successful appli-
cation of deep learning algorithms to routine
tasks has enabled a flood of academic and
commercial research, with publications on var-
ious applications growing from 125 published
papers identified as machine learning publica-
tions in arXiv, the electronic scientific and
engineering paper archive, in 2000, to more
than 3600 by November of 2018 (see Fig. 1).

The multidiscipline of clinical neurosciences
has similarly experienced the beginnings of an
impact from deep learning, with movement

towards the development of novel diagnostic
and prognostic tools. Deep learning techniques
are particularly promising in the neurosciences
where clinical diagnoses often rely on subtle
symptoms and complicated neuroimaging
modalities with granular and high-dimensional
signals. In this article, we discuss the applications
of deep learning in neurology and the ongoing
challenges, with an emphasis on aspects relevant
to the diagnosis of common neurologic disor-
ders. However, our aim is not to provide com-
prehensive technical details of deep learning or
its broader applications. We begin with a brief
overview of deep learning techniques followed
by a review of applications in the clinical neuro-
science field. We conclude the review with a
short discussion on existing challenges and a
look to the future. This article is based on previ-
ously conducted studies and does not contain
any studies with human participants or animals
performed by any of the authors.

FUNDAMENTALS OF DEEP
LEARNING

Machine learning is a subset of artificial intelli-
gence that learns complex relationships among
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Fig. 1 Machine learning publications in PubMed by year through 2018 showing the exponential growth of interest in the
field, as reported by the US National Library of Medicine of the National Institutes of Health [13]
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variables in data [14]. The power of machine
learning comes from its ability to derive pre-
dictive models from large amounts of data with
minimal or, in some cases, entirely without the
need for prior knowledge of the data or any
assumptions about the data. One of the most
widely discussed modern machine learning
algorithms, the artificial neural network (ANN),
draws inspiration from biological neural net-
works that constitute mammalian brains. The
functional unit of the ANN is the perceptron,
which partitions input data into separable cat-
egories or classes [15]. When hierarchically
composed into a network, the perceptron
becomes an essential building block for modern
deep neural networks (DNNs), such as multi-
layer perceptron classifiers. Similar examples of
commonly used traditional machine learning
algorithms include linear regression (LR), logis-
tic regression, support vector machines (SVMs),
and the Naive Bayes classifier (Fig. 2).

These traditional machine learning methods
have been important in furthering advance-
ments in medicine and genomics. As an exam-
ple, LR has proven useful in the search for
complex, multigene signatures that can be
indicative of disease onset and prognosis, tasks
which are otherwise too intricate and cumber-
some even for researchers with professional
training [16]. Although such tools have been
very effective in parsing massive datasets and
identifying relationships between variables of
interest,  traditional = machine learning

techniques often require manual feature engi-
neering and suffer from overhead that limits
their utility in scenarios that require near real-
time decision-making.

Deep learning differs from traditional
machine learning in how representations are
automatically discovered from raw data. In
contrast to ANNs, which are shallow feature
learning techniques, deep learning algorithms
employ multiple, deep layers of perceptrons
that capture both low- and high-level repre-
sentations of data, enabling them to learn richer
abstractions of inputs [5]. This obviates the need
for manual engineering of features and allows
deep learning models to naturally uncover pre-
viously unknown patterns and generalize better
to novel data. Variants of these algorithms have
been employed across numerous domains in
engineering and medicine.

Convolutional neural networks (CNNs) have
garnered particular attention within computer
vision and imaging-based medical research
[17, 18]. CNNs gather representations across
multiple layers, each of which learns specific
features of the image, much like the human
visual cortex is arranged into hierarchical layers,
including the primary visual cortex (edge
detection), secondary visual cortex (shape
detection), and so forth [19]. CNNs consist of
convolutional layers in which data features are
learned: pooling layers, which reduce the
number of features, and therefore computa-
tional demand, by aggregating similar or
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redundant features; dropout layers, which
selectively turn off perceptrons to avoid over-
reliance on a single component of the network;
and a final output layer, which collates the
learned features into a score or class decision,
i.e., whether or not a given radiograph shows
signs of ischemia. These algorithms have
achieved rapid profound success in image clas-
sification tasks and, in some cases, have mat-
ched board-certified human performance
[20-24].

Recurrent neural networks and variants, such
as long short-term memory (LSTM) and gated
recurrent units, have revolutionized the analy-
sis of time-series data that can be found in
videos, speech, and texts [25]. These algorithms
sequentially analyze each element of input data
and employ a gating mechanism to determine
whether to maintain or discard information
from prior elements when generating outputs.
In this manner, they efficiently capture long-
term dependencies and have revolutionized
machine translation, speech processing, and
text analysis.

Autoencoders (AEs) are a class of unsuper-
vised learning algorithms that discover mean-
ingful representations of data by learning a
lower-dimensional mapping from inputs to
outputs [26, 27]. They are composed of an
encoder, which learns a latent representation of
the input, and a decoder, which reconstructs
the input from the latent representation. By
constraining the latent representation to a
lower dimensionality than the input, AEs are
able to learn a compressed representation of
data that contains only the features necessary to
reconstruct the input. Such algorithms are often
employed to learn features that can be subse-
quently utilized in conjunction with the deep
learning techniques previously discussed.

Generative adversarial networks are a newer
class of algorithms aimed at generating novel
data that statistically mimic input data by
approximating a latent distribution for the data
[28]. Such algorithms are composed of two
competing (“adversarial”) networks: a genera-
tor, which produces synthetic data from noise
by sampling from an approximated distribu-
tion, and a discriminator, which aims to dif-
ferentiate between real and synthetic instances

of data. As the two networks engage in this
adversarial process, the fidelity of the generated
data gradually improves. In some contexts, the
resulting data have been utilized to augment
existing datasets [29].

These strides in deep learning are largely due
to breakthroughs in computing capabilities and
the open-source nature of research in the field.
The application of graphics processing units to
deep learning research has dramatically accel-
erated the size and complexity of algorithm
architectures and simultaneously reduced the
time to train such algorithms from months to
the order of days. The consequence has been
high-throughput research characterized by
rapid experimentation, ultimately enabling
more efficacious algorithms. In addition, the
rise of open-source deep learning frameworks,
such as TensorFlow, Keras, PyTorch, Caffe, and
others, has increased accessibility to technical
advances and facilitated the sharing of ideas
and their rapid application across various
domains [30, 31]. The truly collaborative nature
of deep learning research has led to surprising
innovations and changed the landscape of
medical research and care.

LITERATURE REVIEW

In this article, we review and summarize pub-
lished literature on the application of deep
learning to the clinical neurosciences. We used
search engines and repositories such as Google
Scholar, PubMed, ScienceDirect, and arXiv to
identify and review existing literature and per-
formed keyword searches of these databases
using the following terms: “deep learning,”
“machine learning,” “neurology,” “brain,” and
“MRIL.” Following a comprehensive review of
the literature initially retrieved, we identified
312 articles as containing one or more keywords
associated with our queries. Of these articles,
134 were subsequently identified as being rele-
vant to the subject of this review. Following
collation of the relevant articles, we grouped
articles first into broad modalities, namely
image classification, image segmentation,
functional connectivity and classification of
brain disorders, and risk prognostication.
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Within these areas, we then grouped publica-
tions into disease applications. We focused our
discussion on the clinical implications of the
developments in the field.

DEEP LEARNING IN NEUROLOGY

The deep learning techniques described above
are playing an increasingly crucial role in neu-
rological research, tackling problems within
several subdomains. First, radiological image
classification and segmentation has been a tra-
ditional locus of deep learning development
efforts. Image classification and segmentation
tasks are uniquely suited to deep learning due to
the high-dimensional nature of neuroimaging
data which is unfavorable to manual analysis,
combined with the naturally digital nature of
most modern imaging. Secondly, deep learning
has been applied to functional brain mapping
and correlational studies wusing functional
magnetic resonance imaging (fMRI) data for
tasks such as prediction of postoperative sei-
zure. Lastly, diagnostic prognostication with
deep learning using multiple data types,
including lab values, images, notes, among
others, has been used to assign disease risk. In
the following sections, we discuss the successes
and challenges inherent in the deep learning
approaches adopted towards these tasks, as well
as the limitations and difficulties that such
methods face within the field of neurology and
within medicine as a whole.

Medical Image Classification

The first application of deep learning in medi-
cine involved the analysis of imaging modali-
ties, especially those for the detection of
Alzheimer’s disease (AD) and other cognitive
impairments. A variety of publicly available
databases, such as the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) and Brain
Tumor Segmentation Benchmark (BraTS), have
become available to spur advancements in
neuroimaging analysis [32, 33].

Early approaches used AEs in conjunction
with a classifier to distinguish AD, mild cogni-
tive impairments (MCI) and healthy controls.

Among the first such applications, Suk and Shen
utilized a stacked AE to learn multimodal brain
representations from structural MRI and posi-
tron emission tomography (PET), and incorpo-
rated those features with cerebrospinal fluid
biomarker data and clinical scores from the
Mini-Mental State Examination (MMSE) and
Alzheimer’s Disease Assessment Scale-Cognitive
subscale (ADAS-Cog) to train an SVM classifier
that improved diagnostic accuracy [34]. Other
approaches pre-trained a stacked AE using nat-
ural images (everyday images) prior to training
on brain MR images in order to learn more
high-fidelity anatomical features, such as gray
matter and structural deformities, for incorpo-
ration into a CNN [35]. Variations on these
approaches have been used to incrementally
improve diagnostic performance [36-42].

Whereas older approaches were limited to
two-dimensional (2D) slices of medical images
due to computational constraints, newer appli-
cations have been able to incorporate the full
3D volume of an imaging modality for AD
detection. Among the first such examples was
work by Payan and Montana in which they
trained a sparse AE on 3D patches of MRI scans
to learn a volumetric brain representation that
was used to pre-train a 3D CNN for AD diagnosis
[43]. More recently, Hosseini-Asl et al. used an
adaptable training regime with a 3D CNN pre-
trained by a convolutional AE to learn general-
izable AD biomarkers [44, 45]. This approach
was notable because it allowed the transfer of
learned features from the source CADDementia
dataset to the target ADNI dataset, resulting in
state-of-the-art AD diagnosis accuracy on an
external dataset. Analogous work with volu-
metric data has been conducted in the com-
puted tomography (CT) domain to differentiate
AD from brain lesions and the processes of
normal aging [46].

The most recent work has built on existing
work in AD diagnosis and focused on predicting
the onset of AD in at-risk patients in order to
stem progression of the disease. Ding et al. used
fluorine-18-fluorodeoxyglucose PET scans of the
brain derived from the ADNI database to train a
CNN to diagnose AD [47]. Unlike many inves-
tigators before them, however, the authors
evaluated the efficacy of their algorithm against
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data from the long-term follow-up of patients
who did not have AD at the time. Interestingly,
they found that the algorithm predicted onset
of AD on average 75.8 months prior to the final
diagnosis on an independent dataset, which
surpassed the diagnostic performance of three
expert radiologists.

Deep learning-based image classification has
also been applied in the diagnosis of acute
neurologic events, such as intracranial hemor-
rhage (ICH) and cranial fractures, with the aim
of reducing time to diagnosis by optimizing
neuroradiology workflows. Titano et al. trained
a 3D CNN in a weakly supervised manner on
37,236 CT scans to identify ICH for the pur-
poses of triaging patient cases [48]. They lever-
aged a natural language processing algorithm
trained on 96,303 radiology reports to generate
silver-standard labels for each imaging study
and validated the efficacy of their CNN on a
subset of studies with gold standard labels gen-
erated by manual chart review [49]. The inves-
tigators conducted a double-blind randomized
control trial to compare whether the algorithm
or expert radiologists could more effectively
triage studies in a simulated clinical environ-
ment and found that the CNN was 150-fold
faster in evaluating a study and significantly
outperformed humans in prioritizing the most
urgent cases. Subsequent studies have similarly
demonstrated the potential for deep learning to
optimize radiology workflows in the diagnosis
of ICH and detect as many as nine critical
findings on head CT scans with sensitivity
comparable to that of expert radiologists
[50-52].

Medical Image Segmentation

Segmentation of radiological brain images is
critical for the measurement of brain regions,
including shape, thickness, and volume, that
are important for the quantification of struc-
tural changes within the brain that occur either
naturally or due to various disease processes
[53]. Accurate structural classification is partic-
ularly important in patients with gliomas, the
most common brain tumor type, with less than
a 2-year survival time [54, 55]. Manual

segmentations by expert raters show consider-
able variation in images obscured by field arti-
facts or where intensity gradients are minimal,
and rudimentary algorithms struggle to achieve
consistency in an anatomy that can vary con-
siderably from patient to patient [33]. In light of
these factors, deep learning segmentation of
neuroanatomy has become a prime target for
efforts in deep learning research.

Measurement of the performance of neu-
roanatomical segmentation algorithms has
been standardized by the BraTS, which was
established at the 2012 and 2013 Medical Image
Computing and Computer Assisted Interven-
tions (MICCAI) conference [33]. Prior to the
establishment of this challenge, segmentation
algorithms were often evaluated on private
imaging collections only, with variations in the
imaging modalities incorporated and the met-
rics used to evaluate effectiveness. The estab-
lishment of BraTS has been critical in
standardizing the evaluation of various models
for the determination of which to pursue in
clinical practice. At the time of BraTS estab-
lishment, the models being evaluated were lar-
gely simple machine learning models, including
four random forest-based segmentation models
[33]. Since then, there has been considerable
advancement in performance, largely based on
the adoption of CNNs for anatomical
segmentation.

The traditional computational approach to
segmentation is to employ an atlas-based seg-
mentation, namely the FreeSurfer software,
which assigns one of 37 labels to each voxel in a
3D MRI scan based on probabilistic estimates
[56]. In a recent comparative study, Wachinger
et al. designed and applied a deep CNN, called
DeepNAT, for the purposes of segmenting neu-
roanatomy visualized in T1-weighted MRI scans
into 25 different brain regions. The authors
used the MICCAI Multi-Atlas Labeling chal-
lenge, consisting of 30 T1-weighted images, in
addition to manually labeled segmentations
[53, 57]. When the authors compared the cur-
rent clinical standard, FreeSurfer, which uses its
own anatomical atlas to assign anatomic labels,
to DeepNAT, they found that DeepNAT showed
statistically significant performance improve-
ments. Performance in segmentation was
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measured using a Dice volume overlap score,
with DeepNAT achieving a Dice score of 0.906,
in comparison to FreeSurfer’s 0.817 [53].

In addition to tissue-based segmentation
efforts, vascular segmentation has been an area
of deep learning research aimed at quantifying
brain vessel status. Traditional vessel segmen-
tation relies on either manual identification or
rule-based algorithms since there is no equiva-
lent atlas-based method for brain vessels as
there is for neuroanatomy. In their recent study
on blood vessel segmentation, Livne et al.
applied a U-net model to labeled data from 66
patients with cerebrovascular disease and then
compared the method to the traditional vascu-
lar segmentation method of graph-cuts. The
U-net model outperformed graph-cuts, achiev-
ing a Dice score of 0.891 compared to 0.760 for
graph-cuts [58]. Of note, the model, which was
trained on 3T MRI time-of-flight images, failed
to generalize well to 7T images [58].

Quantification of changes in white matter as
biomarkers for disease processes has been a
third area of deep learning segmentation efforts
in neurology. Perivascular spaces (PVSs) are
small spaces surrounding blood vessels that can
be caused by the stress-induced breakdown of
the blood-brain barrier by various inflamma-
tory processes [59, 60]. While PVSs have been
implicated in a wide range of disease processes,
the quantification of these spaces is difficult due
to their tubular and low-contrast appearance
even on those clinical MRI machines with the
highest-approved resolution [61]. In one 2018
study, Lian et al. used a deep CNN to evaluate
PVSs in 20 patients scanned on a 7T MRI
machine, comparing these to gold-standard
manual labels. Their deep CNN outperformed
unsupervised algorithmic methods, such as a
Frangi filter, as well as a U-net deep learning
model, achieving a positive predictive value
(PPV) of 0.83 £+ 0.05, compared to a PPV of
0.62 £ 0.08 for the Frangi filter and 0.70 + 0.10
for the U-net.

U-net models have also been leveraged in
quantifying white matter hyperintensities as
biomarkers for age-related neurologic disorders
[62]. White matter changes have been shown to
be involved in various forms of cortical
dementia, such as AD, and manifest themselves

as high-intensity regions in T2-fluid-attenuated
inversion recovery (FLAIR) MRI scans [63]. In
addition to quantifying PVSs, U-nets have been
used in segmentation efforts to identify regions
of abnormally intense white matter signals. In
2019, Jeong et al. proposed a sailiency U-net, a
U-net combined with simple regional maps,
with the aim to lower the computational
demand of the architecture while maintaining
performance in order to identify areas of signal
intensity in T2-FLAIR MRI scans of patients with
AD [62, 64]. Their model achieved a Dice coef-
ficient score of 0.544 and a sensitivity of 0.459,
indicating the utility of such a model to aug-
ment clinical image analysis [62]. The efforts
described above in neuroanatomical segmenta-
tion and anomaly detection highlight the ver-
satility of deep learning in analyzing an
inherently complex organ system.

Functional Connectivity
and Classification of Brain Disorders

Research in diagnostic support using multiple
modalities has been a key area of focus in deep
learning research, particularly in disease spaces
such as AD, autism spectrum disorder (ASD),
and attention deficit hyperactivity disorder
(ADHD). For all of these diseases, the onset can
be insidious, and diagnosis is reliant on non-
specific symptoms, such as distractibility and
hyperactivity in the case of ADHD, which
results in poor sensitivity and specificity for
clinical diagnostic testing; in fact, the sensitiv-
ity of the American Psychiatric Association’s
Diagnostic and Statistical Manual testing for
ADHD is between 70 and 90% [65]. Further-
more, delays in diagnosis inevitably delay
treatment, resulting in the treatment being less
effective or entirely ineffective [65]. Using f{MRI
and connectome mapping alongside clinical
and demographic data points, multidisciplinary
teams have sought to improve upon the accu-
racy of currently utilized neurological tests.
Within the realm of AD and disorders
implicated in MClIs, deep learning has been
increasingly adopted as a method to analyze
neural connectivity information. Although
much of the work in connectome mapping has
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relied on less complex classifiers, recent publi-
cations have explored the benefits of deep
learning [66, 67]. When applied to fMRI data,
deep learning has several advantages over sim-
pler SVMs and Lasso models, and exhibits an
exponential gain in accuracy over simpler
models with increasing volumes of training data
[S, 68]. Meszlenyi et al. utilized a variant of a
convolutional neural network called a connec-
tome convolutional neural network (CCNN) to
classify MCI in a relatively small dataset of
functional connectivity data from 49 patients
[67]. Although accuracies were comparable
between the deep learning and less complex
classifiers (53.4% accuracy for the CCNN com-
pared to 54.1% for the SVM), the authors pos-
tulate that the accuracy benefits of the CCNN
architecture are well suited to fMRI tasks as
dataset sizes expand [67].

Deep learning classifiers have been applied
numerous times toward the accurate diagnosis
of ASD using fMRI data. In one study published
in 2015, Iidaka et al. selected 312 patients with
ASD and 328 control patients from the Autism
Brain Imaging Data Exchange (ABIDE), together
with 90 regions of interest, and used a proba-
bilistic neural network to classify individuals
with ASD. Their method achieved a classifica-
tion accuracy of 90% [69]. Additionally, Chen
et al. published a classifier based on a con-
structed functional network and additional data
from the ABIDE dataset in a clustering analysis
aimed at grouping discriminative features and
found that many discriminative features clus-
tered into the Slow-4 band [70].

In the realm of ADHD, several efforts have
been made to use publicly available imaging
data and deep learning algorithms for diagnosis.
In a study published in 2014, Kuang et al.
attempted to classify ADHD using a deep belief
network, comprised of stacked Boltzmann's
machines trained on the public ADHD-200
dataset [71]. Using time-series fMRI data, the
deep belief network achieved an accuracy of
35.1%. While each of the above classifiers have
achieved results that are either on-par or less
accurate than clinical diagnoses using fMRI
data, methods are expected to improve dra-
matically as the quantity of labeled data con-
tinues to grow [71].

Risk Prognostication

In addition to widespread research on deep
learning applications for image classification
and segmentation, researchers have applied
deep learning to a variety of other neurology-
specific and general medicine data for the pur-
poses of risk prognostication. These efforts have
been applied to electroencephalogram (EEG)
signals and genetic biomarkers in the hope of
predicting clinically meaningful events. Neu-
rologists frequently rely on EEG data for the
management and diagnosis of neurological
dysfunction, in particular epilepsy and epileptic
events. Several studies using deep learning
methods have investigated its utility when
applied to preictal scalp EEGs as a predictive
tool for seizures [72-74]. The most successful of
these efforts included a LSTM network, which is
particularly useful for interpreting time-series
data, allowing a model to allocate importance
to previously seen data in a sequence when
interpreting a given datapoint. These algo-
rithms are uniquely suited to large sequences of
data and have proved their efficacy in predict-
ing epileptic events [73].

In their 2018 study, Tsiouris et al. used a two-
layer LSTM-based algorithm to predict epileptic
seizures using the publicly available CHB-MIT
scalp EEG database. While previous efforts had
been made using CNNs and scalp EEGs to pre-
dict epileptic events, the novel use of an LSTM
set a new state-of-the-art over traditional
machine learning algorithms and other deep
learning algorithms. Following feature extrac-
tion, the LSTM was provided several meaningful
features, including statistical moments, zero
crossings, Wavelet Transform coefficients,
power spectral density, cross-correlation, and
graph theory, to use in the prediction of sei-
zures. Notably, the authors compared the pre-
dictive ability of the raw EEG data to the
extracted features and determined that feature
extraction improved model performance [73].
This model configuration achieved a minimum
of 99.28% sensitivity and 99.28% specificity
across the 15-, 30-, 60-, and 120-min preictal
periods, as well as a maximum false positive rate
of 0.11/h. Similar experiments on the CHB-MIT
scalp EEG database using CNNs, as opposed to

A\ Adis



Neurol Ther (2019) 8:351-365

359

LSTMs, achieved worse results, namely poorer
sensitivity and a higher hourly rate of false
positives [75, 76].

Genetic data has been another important
area of research and development for precision
medicine. Predictive tasks in large-scale geno-
mic profiles face high-dimensional datasets that
are often pared down by experts who hand-se-
lect a small number of features for training
predictive models [77]. In ASD, deep learning
has played a particularly important role in
determining the impact of de-novo mutations,
including copy number variants and point
mutations, on ASD severity [78]. Using a deep
CNN, Zhou et al. modeled the biochemical
impact of observed point mutations in 1790
whole-genome sequenced families with ASD, on
both the RNA and DNA levels [78]. This
approach revealed that both transcriptional and
post-transcriptional mechanisms play a major
role in ASD, suggesting biological convergence
of genetic dysregulation in ASD.

Genomic data, either alone or in conjunc-
tion with neuroimaging and histopathology,
has provided cancer researchers a wealth of data
on which to perform cancer-related predictive
tasks [77, 79, 80]. Deep learning offers several
advantages when working simultaneously with
multiple data modalities, removing subjective
interpretations of histological images, accu-
rately predicting time-to-event outcomes, and
even surpassing gold standard clinical para-
digms for glioma patient survival [80]. Using
high-powered histological slices and genetic
data, namely IDH mutation status and 1p/19q
codeletion, on 769 patients from The Cancer
Genome Atlas (TCGA), Mobadersaney et al.
used a survival CNN (SCNN) to predict time-to-
event outcomes. The histological and genetic
model performed on par with manual histologic
grading or molecular subtyping [80]. In a sec-
ond paper by this group, SCNNs were shown to
outperform other machine learning algorithmes,
including random forest, in classification tasks
using genetic data from multiple tumor types,
including kidney, breast, and pan-glioma can-
cers [77]. The ability of deep learning algo-
rithms to reduce subjectivity in histologic
grading and disentangle complex relationships
between noisy EEG or genetic data, has the

potential to improve current standards for pre-
dicting clinical events.

CHALLENGES

Despite the profound biomedical advances due
to deep learning algorithms, there remain sig-
nificant challenges that must be addressed
before such applications gain widespread use.
We discuss some of the most critical hurdles in
the following sections.

Data Volume

Deep neural networks are computationally
intensive, multilayered algorithms with param-
eters on the order of millions. Convergence of
such algorithms requires data commensurate
with the number of parameters. Although there
are no strict rules governing the amount of data
required to optimally train DNNs, empirical
studies suggest that tenfold more training data
relative to the number of parameters is required
to produce an effective model. It is no surprise
then that domains, such as computer vision and
natural language processing, have seen the most
rapid progress due to deep learning given the
wide availability of images, videos, and free-
form text on the Internet.

Biomedical data on the other hand is mostly
decentralized—stored locally within hospital
systems—and subject to privacy constraints that
make such data less readily accessible for
research. Furthermore, given the complexity of
patient presentations and disease processes,
reliable ground truth labels for biomedical
applications are extremely expensive to obtain,
often requiring the efforts of multiple highly
specialized domain experts. This paucity of
labeled data remains an important bottleneck in
the development of deep learning applications
in medicine.

Data Quality

Healthcare data are fundamentally ill-suited for
deep learning applications. Electronic medical
records are highly heterogeneous, being
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composed of clinical notes, a miscellany of
various codes, and other patient details that
may often be missing or incomplete. Clinical
notes consist of nuanced language and acro-
nyms that often vary by specialty and contain
redundant information that provides an inac-
curate temporal representation of disease onset
or progression. Diagnosis codes suffer from a
similar fate as they track billing for insurance
purposes instead of health outcomes. This
inherent complexity makes it impossible for
deep learning algorithms to parse signal from
noise.

Generalizability

Although existing deep learning applications
have garnered success in silico, their widespread
adoption in real-world clinical settings remains
limited due to concerns over their efficacy
across clinical contexts. Much of the concern is
based on the tendency of deep learning algo-
rithms to overfit to the statistical characteristics
of the training data, rendering them hyper-
specialized for a hospital or certain patient
demographic and less effective on the popula-
tion at-large [81, 82]. The siloed existence of
healthcare data in hospitals and the hetero-
geneity of data across healthcare systems make
the task of developing generalizable models
even more difficult. And even when multi-in-
stitutional data are acquired, the data are often
retrospective in nature, which prevents practi-
cal assessment of algorithm performance.

Interpretability

The power of deep learning algorithms to map
complex, nonlinear functions can render them
difficult to interpret. This becomes an impor-
tant consideration in healthcare applications
where the ability to identify drivers of outcomes
becomes just as important as the ability to
accurately predict the outcome itself. In the
clinical setting, where clinical decision support
systems are designed to augment the decision-
making capacity of healthcare professionals,
interpretability is critical to convince healthcare
professionals to rely on the recommendations

made by algorithms and enable their wide-
spread adoption. As such, major efforts within
the deep learning community to tackle prob-
lems of interpretability and explainability have
the potential to be particularly beneficial for
facilitating the use of deep learning methods in
healthcare.

Legal

Medical malpractice rules govern standards of
clinical practice in order to ensure the appro-
priate care of patients. However, to date, no
standards have been established to assign cul-
pability in contexts where algorithms provide
poor predictions or substandard treatment rec-
ommendations. The establishment of such reg-
ulations is a necessary prerequisite for the
widespread adoption of deep learning algo-
rithms in clinical contexts.

Ethical

Incidental introduction of bias must be care-
fully evaluated in the application of deep
learning in medicine. As discussed previously,
deep learning algorithms are uniquely adept at
fitting to the characteristics of the data on
which they are trained. Such algorithms have
the capability to perpetuate inequities against
populations underrepresented in medicine and,
by extension, in the very healthcare data used
to train the algorithms. Furthermore, recent
research evaluating algorithmic bias in a com-
mercial healthcare algorithm provides a cau-
tionary tale on the importance of critically
evaluating the very outcomes algorithms are
trained to predict [83].

CONCLUSION

Deep learning has the potential to fundamen-
tally alter the practice of medicine. The clinical
neurosciences in particular are uniquely situ-
ated to benefit given the subtle presentation of
symptoms typical of neurologic disease. Here,
we reviewed the various domains in which deep
learning algorithms have already provided
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impetus for change—areas such as medical
image analysis for improved diagnosis of AD
and the early detection of acute neurologic
events; medical image segmentation for quan-
titative evaluation of neuroanatomy and vas-
culature; connectome mapping for the
diagnosis of AD, ASD, and ADHD; and mining
of microscopic EEG signals and granular genetic
signatures. Amidst these advances, however,
important challenges remain a barrier to inte-
gration of deep learning tools in the clinical
setting. While technical challenges surrounding
the generalizability and interpretability of
models are active areas of research and progress,
more difficult challenges surrounding data pri-
vacy, accessibility, and ownership will necessi-
tate  conversations in the healthcare
environment and society in general to arrive at
solutions that benefit all relevant stakeholders.
The challenge of data quality, in particular, may
prove to be a uniquely suitable target for
addressing using deep learning techniques that
have already demonstrated efficacy in image
analysis and natural language processing.
Overcoming these hurdles will require the
efforts of interdisciplinary teams of physicians,
computer scientists, engineers, legal experts,
and ethicists working in concert. It is only in
this manner that we will truly realize the
potential of deep learning in medicine to aug-
ment the capability of physicians and enhance
the delivery of care to patients.
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