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2-truncating mutation of DMD
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Abstract

Nonsense and frameshift mutations of the dystrophin (DMD) gene usually cause severe Duchenne muscular dystrophy
(DMD). Interestingly, however, premature stop codons in exons 1 and 2 result in relatively mild Becker muscular
dystrophy (BMD). Herein, we report the clinical course of a patient with a very mild phenotype of BMD caused by a
frameshift mutation, NM_004006.2: c40_41del GA/p.(Glu14ArgfsX17), in exon 2 of the DMD gene.

The dystrophin (DMD) gene, located at Xp21.2-p21.1, is
one of the largest human genes and consists of 79 exons.
The DMD gene encodes dystrophin, a large rod-shaped
protein that lies on the inner side of the skeletal and
cardiac muscle cell membrane. Dystrophin assembles
with various proteins to form the dystrophin-associated
protein complex (DAPC). The DAPC plays a critical role
in stabilizing the plasma membrane of striated muscle by
linking the actin cytoskeleton to the extracellular matrix.

Loss-of-function mutations in the DMD gene result in
the following two common forms of X-linked recessive
muscular dystrophy: the more severe form of Duchenne
muscular dystrophy (DMD) and the milder form of
Becker muscular dystrophy (BMD). In DMD, progressive
muscular weakness usually develops in early childhood
between 2 and 3 years of age, progresses to the
wheelchair-bound stage by the age of 12 years, and might
result in death at 30 years of age because of respiratory
insufficiency or heart failure. Patients with BMD show
similar signs and symptoms of DMD with a later onset
and very broad spectrum of phenotypes, ranging from a
“near DMD” to an almost asymptomatic state. These
phenotypes generally depend on the amount of functional
dystrophin protein in muscle cells. In DMD, the
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dystrophin protein is completely absent or present in very
small amounts (<3% of normal levels)" due to frameshift
mutations, whereas in BMD, the dystrophin protein is
partially functional (reduced amount or truncated size)
due to in-frame (preserved reading frame) large-scale
mutations or missense mutations. However, exceptions to
this reading-frame rule have been observed in ~10% of
patients with DMD and BMD?™°, Deviation from the
reading-frame rule is thought to involve multiple mole-
cular mechanisms, which are not fully explained. Herein,
we report the clinical course of a patient with a two-base
deletion mutation of the DMD gene, which causes a fra-
meshift and results in a premature stop codon in exon 2.
This truncating mutation is expected to terminate the
translation of the gene in the N-terminal actin-binding
domain and cause the complete absence of muscular
dystrophin. However, interestingly, this patient showed a
very mild phenotype of BMD.

A 61-year-old Japanese man with muscular dystrophy
visited the Clinical Genetics Outpatient Department of
Niigata National Hospital seeking a more precise diag-
nosis by genetic testing. His muscular symptoms first
manifested as toe running and pseudohypertrophy of the
calves around the age of 10 years. He became aware of his
difficulty in climbing stairs beginning at the age of 20
years. At the age of 28 years, he was admitted to a uni-
versity hospital and diagnosed with sporadic BMD based
on his clinical symptoms, serum creatine kinase elevation,
and dystrophic changes in his muscle biopsy specimens.
However, immunostaining for the muscular dystrophin

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecormmons.org/licenses/by/4.0/.

Official journal of the Japan Society of Human Genetics


http://creativecommons.org/licenses/by/4.0/
mailto:ozawa.tetsuo.yk@mail.hosp.go.jp

Ikeda et al. Human Genome Variation (2019) 6:52

protein was not available because the DMD gene had not
been discovered at that time. A few decades after the first
diagnosis of BMD, his attending doctor pointed out the
possibility that his illness might not be BMD, but limb-
girdle muscular dystrophy (LGMD) because the progres-
sion of his clinical symptoms was relatively slower than
expected. He was intellectually normal. He could walk
until the age of 53 years and move independently with his
buttocks on the floor up to the age of 60 years. He showed
no symptoms of heart failure at the age of 61 years. To
resolve this ambiguity, he desired to obtain a definitive
diagnosis by genetic testing. During the pretest genetic
counseling, we obtained a detailed family history, which
revealed that three of his maternal male cousins had mild
muscle weakness, although they were not diagnosed with
muscular disease. This information strongly suggested
that his disease followed an X-linked recessive pattern of
inheritance. After obtaining written informed consent, we
performed genetic testing for both BMD and LGMD. We
analyzed the DMD gene using multiplex ligation-
dependent probe amplification analysis (MLPA, MRC-
Holland). In addition, we analyzed the DMD gene and the
major genes responsible for LGMD by next-generation
sequencing (NGS) using a selected exome panel (TruSight
One; Illumina). The MLPA results revealed no exonic
deletions/duplications of the DMD gene, whereas NGS
revealed a two-base deletion in exon 2 of the DMD gene,
which caused a frameshift and premature stop codon
(NM_004006.2: c.40_41del GA/p.(Glul4ArgfsX17)). This
mutation was confirmed by Sanger sequencing (Fig. 1).
We analyzed the 34 primary genes causing LGMD or
LGMD-like diseases using NGS. However, no pathogenic
variant was detected.

Limb-girdle muscular dystrophy is a descriptive term for a
group of muscular dystrophies, exclusive of DMD/BMD,
that manifests as weakness and muscle wasting pre-
dominantly in the proximal portion of the arms and legs.
The genetic background of LGMD is highly heterogeneous.
To date, more than 50 responsible genes and loci have been
reported. Type 1 LGMD is inherited in an autosomal
dominant manner, and type 2 LGMD (LGMD?2) is caused
by autosomal recessive mutations. Because several genes
related to LGMD2 encode the key components of the
DAPC, such as a-, B-, Y-, and &-sarcoglycan, patients with
LGMD? usually have phenotypes similar to those of BMD.
In this study, we investigated the LGMD-related genes
included in TruSight One by NGS, but found no genetic
changes causing the illness in the patient.

In contrast, we found that this patient had a truncating
mutation p.(Glul4ArgfsX17) in exon 2 of the DMD gene.
This mutation is very rare but is already listed in the
mutational databases such as the Human Genome
Mutation Database (http://www.hgmd.cf.ac.uk/ac/index.
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php) and the Leiden Muscular Dystrophy pages (https://
www.dmd.nl/) as a mutation causing the BMD phenotype.
The diagnosis of BMD was confirmed based on the results
of genetic testing.

Multiple molecular mechanisms are thought to be
involved in the exceptions to “the reading-frame rule” in
DMD/BMD. For example, severe phenotypes of patients
with DMD with in-frame exonic deletion mutations can
be explained by a very large deletion that produces a
dysfunctional dystrophin or the loss of a functionally
essential portion of dystrophin, such as the actin-binding
site*. Milder phenotypes of patients with mutations in the
5’ region of the DMD gene have also been reported as
exceptions to the rule®®, In these cases, alternative spli-
cing is considered a factor leading to these exceptions®’.

Recently, another notable mechanism of phenotypic
amelioration was proposed.

It is known that premature stop codons in exon 1 of the
DMD gene, such as p.(Trp3X) and p.(Glu5ValfsX3),
resulted in very mild phenotypes of BMD. The first
reported case of p.(Trp3X) showed no symptoms until age
20 years and could walk until 62 years of age®. The patient
with p.(Glu5ValfsX3) was ambulant until 42 years of age®.
Gurvich et al.° revealed that these truncating mutations in
exon 1 induced alternative translation initiation at two
AUG codons within exon 6 and resulted in considerable
amelioration of the phenotype. Furthermore, Wein et al.’
demonstrated that the reinitiation of translation of exon 6
was mediated by the activation of an internal ribosomal
entry site within exon 5 of the DMD gene. Internal
ribosomal entry sites are translation regulatory sequences
that govern cap-independent translation initiation, which
is activated when cap-dependent translation is compro-
mised in eukaryotes. This altered translation initiation
mechanism is thought to be applied to the premature stop
codons in exons 1 and 2 of the DMD gene, such as p.
(Trp3X), p.(Glu5ValfsX3), and p.(Glul4ArgfsX17), which
is the same mutation found in our patient. They also
demonstrated that the N-terminus truncated isoforms of
dystrophin derived from these premature stop codons
were functional and that they were expressed in the
muscles of individuals with such mutations at decreased
levels. These findings indicate the potential for a new
therapeutic approach that promotes the initiation of
translation in exon 6 for patients with mutations in the
early DMD exons’.

The clinical symptoms of our patient are consistent with
the theoretical explanation presented by Wein et al.”. This
is not the first report of a p.(Glul4ArgfsX17) mutation in
the DMD gene. However, we believe that our findings are
worth reporting because the detailed symptoms and
clinical course of an individual with this mutation have
not been described®’.
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This mutation induces a frame-shit and results in an amino acid replacement and
a premature stop codon in exon 2(p.Glul4ArgfsX17).

induces a frame shit and results in an amino acid replacement and a premature stop codon in exon 2(p.Glu14ArgfsX17)

Electropherogram of the patient shows a small deletion mutation, ¢.40 41del GA.

Fig. 1 Sanger sequencing of the mutation site. Electropherogram of the patient shows a small deletion mutation, c40_41del GA. This mutation
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