
The development of executive function in early childhood is 
inversely related to change in body mass index: Evidence for an 
energetic trade-off?

Clancy Blair1, Christopher W. Kuzawa2, Michael T. Willoughby3

1Department of Applied Psychology, New York University and Department of Population Health, 
New York University School of Medicine

2Department of Anthropology and Institute for Policy Research, Northwestern University

3Education and Workforce Development, RTI International

Abstract

A well-established literature demonstrates executive function (EF) deficits in obese children and 

adults relative to healthy weight comparisons. EF deficits in obesity are associated with overeating 

and impulsive consumption of high calorie foods leading to excess weight gain and to problems 

with metabolic regulation and low-grade inflammation that detrimentally affect the structure and 

function of prefrontal cortex. Here, we test a complementary explanation for the relation between 

EF and body mass index (BMI) grounded in the energy demand of the developing brain. Recent 

work shows that the brain accounts for a lifetime peak of 66% of resting metabolic rate in 

childhood, and that developmental changes in brain energetics and normative changes in body 

weight gain are closely inversely related. This finding suggests a trade-off in early childhood 

between energy used to support brain development versus energy used to support physical growth 

and fat deposition. To test this theorized energetic trade-off, we analyzed data from a large 

longitudinal sample (N=1,292) and found that change in EF from age 3–5 years, as a proxy for 

brain development in energetically-costly prefrontal cortex, is inversely related to change in BMI 

from age 2–5 years. Greater linear decline in BMI predicted greater linear increase in EF. We 

interpret this finding as tentative support for a brain-body energetic trade-off in early childhood 

with implications for lifetime obesity risk.
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Executive function (EF) deficits in obese children and adults relative to healthy weight 

controls have been demonstrated in a number of studies. A recent meta-analysis (Yang et al., 

2018) indicated deficits in performance of moderate effect size (0.33–0.44) in obese vs. 

normal weight comparisons for each aspect of executive function examined, including 

inhibitory control, working memory, cognitive flexibility, decision making, verbal fluency, 

and planning. Over one-third of the studies in the meta-analysis included children; however, 

age was not found to moderate effects of obesity on any aspect of EF. Further, neuroimaging 

studies have documented relations between poor performance on EF tasks and altered 

structure and function of prefrontal cortex (PFC) in obese vs. healthy weight comparisons in 

children and adolescents (Kamijo et al., 2014; Ross, Yau, & Convit, 2015).

To some extent, the association between EF deficits and obesity is attributable to failures of 

dietary self-regulation and the impulsive consumption of high calorie foods (Hall, 2016). EF 

deficits associated with obesity are also attributable to alterations to PFC and associated 

brain areas resulting from insulin resistance and other characteristics of the metabolic 

syndrome (MetS) (Rusinek and Convit, 2014). Human neuroimaging and animal models 

have demonstrated that metabolic dysregulation affects multiple brain areas through 

processes related to decreased vascular reactivity and increased neuroinflammation and 

oxidative stress (Bocarsly et al., 2015; Thaler et al., 2012; Yates et al, 2012; Yau et al., 

2012). Obesity and the consumption of a high-fat diet lead to increases in circulating 

cytokines and free fatty acids resulting in microglial proliferation, synaptic remodeling, and 

reductions in surface area and volume of cortical and subcortical structures (Miller and 

Spencer, 2014).

A number of studies, however, have demonstrated an inverse association between EF and 

body mass index (BMI) in typically developing populations of children and young adults, 

some of which include obese or overweight participants but none that exhibit MetS (Kamijo 

et al., 2012; Yang et al., 2018; Yau et al., 2014). A unique example is seen in a positron 

emission tomography (PET) study with healthy adults (N=21) in which resting glucose 

metabolism in PFC was negatively correlated with BMI and positively correlated with EF 

(Volkow et al., 2009). Further examples in children are seen in studies in which fat mass was 

assessed by dual-energy X-ray absorptiometry (DXA) in addition to BMI and that also 

controlled for aerobic fitness. In one analysis, both fat mass assessed by DXA and BMI were 

inversely related to executive inhibitory control as well as academic achievement in N=126 

children 7 to 9 years of age (Kamijo et al., 2012). In the second analysis with N=233 

children, also 7 to 9 years of age, whole body adiposity was associated with increased 

intraindividual variability in inhibitory control, an indicator of lapses in attention (Chojnacki 

et al., 2018).

BMI and the brain.

If the association between BMI and brain structure and function in areas of PFC that 

underlie EF precedes as well as follows MetS, it is likely that an association between EF and 

BMI is developmental and detectable in early childhood, prior to the onset of any metabolic 

symptoms associated with excess adiposity. Executive function is developing rapidly in the 

preschool period at a time of declining BMI, prior to what is known as the adiposity rebound 
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(Rolland-Cachera et al 1984). The adiposity rebound refers to the fact that infants are born 

with fat deposits that increase over the first year prior to decreasing throughout early 

childhood. Body fat mass tends to reach its lowest point at 4–6 years of age at which time 

relative weight and adiposity increase. Children reaching this inflection point early or at high 

BMI are at elevated lifetime risk for obesity and MetS (Peneau et al., 2016).

An inverse developmental association between BMI and EF is suggested by an analysis 

using cross-sectional PET and magnetic resonance imaging data to estimate the energy 

demand of the developing brain (Kuzawa et al., 2014). This analysis found that the percent 

of resting metabolic rate (RMR) accounted for by the brain increases rapidly in early 

childhood and peaks, at 66% of RMR, as normative weight gain velocity is decreasing in 

advance of the adiposity rebound. This finding inspired the hypothesis of an individual level 

brain-body energetic tradeoff between brain development and fat deposition during 

childhood (AUTHORS). Although little is currently known about between-person variability 

in the energy demands of the developing brain, an inverse association in early childhood 

between change in BMI and change in EF, as a proxy for brain development in energetically-

costly prefrontal cortex (PFC), would be consistent with the hypothesis of a brain-body 

energetic tradeoff in childhood. Increases in grey matter and increases in the proliferation 

and density of synapses are key energetically costly characteristics of early brain 

development (Atwell and Laughlin, 2001; Gilmore et al., 2018). The development of PFC is 

a prominent aspect of brain development in early childhood, exhibiting both grey matter 

increase (Sowell et al., 2003) and synaptic proliferation (Elston et al., 2009; Petanjek et al., 

2011), and as such is a primary contributor to the high developmental peak in brain energy 

demands during childhood (Goyal et al., 2014). The development of PFC in early childhood 

manifests behaviorally in the emergence of EF abilities. Accordingly, given the prominent 

role of PFC development in the childhood brain energetics peak, the development of EF in 

early childhood could provide a useful proxy for evaluating the hypothesis of a brain-body 

energetic trade-off.

Current study.

Data with which to estimate between-child variability in the energetic demand of the 

developing brain are rare. Children vary markedly, however, in trajectories of the 

development of EF. Normatively, EF develops rapidly in early childhood (Willoughby et al., 

2012) at an age when BMI is typically declining, pointing to the likelihood of energetic links 

between these two aspects of development. However, we are aware of no study that has 

assessed children longitudinally to determine whether BMI change in early childhood is 

inversely related to the development of EF. Accordingly, we hypothesized that the rate of 

increase in EF, as an indicator of the energy required by the developing brain when 

controlling for well-known influences on EF development, would be related to the rate of 

decline in BMI in early childhood. Such an association would be consistent with a close 

biological linkage between brain development and physical growth.
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Method

Participants

The Family Life Project (FLP) was designed to study child development and family ecology 

in areas of high rural poverty in two states (North Carolina and Pennsylvania). Complex 

sampling procedures were used to recruit a representative sample of 1,292 families at the 

time of the target child’s birth, with low-income families in both states being over-sampled 

and African Americans oversampled in NC. FLP recruiters identified 5471 (59% NC, 41% 

PA) women who gave birth to a child during a 12-month period spanning September 2003 to 

September 2004. A total of 1515 (28%) of all identified families were determined to be 

ineligible for participation for three primary reasons: not speaking English as the primary 

language in the home, residence in a non-target county, and intent to move within three 

years. Of the 2691 eligible families who agreed to the randomization process, 1571 (58%) 

families were selected to participate using the sampling fractions that were continually 

updated from our data center. Of those families selected to participate in the study, 1292 

(82%) completed a home visit at 2 months of child age, at which point they were formally 

enrolled in the study. Seventy percent of enrolled families had an average income of less 

than twice the poverty threshold for the US; 99% of primary caregivers were the index 

child’s biological mother; 41% of mothers had 12 years of schooling or less, while only 16% 

had at least 4 years of post-secondary education. The sample was 43% African American 

and 51% male. Further details of FLP sampling plan and recruitment procedures are 

available in Vernon-Feagans, Cox and the FLP Investigators (2013).

Procedures

The data for this analysis were collected from home visits at child ages 7, 15, 24, 36, 48, and 

60 months At all home visits for data collection, primary caregivers provided demographic 

information and information on numerous aspects of family life. The visit procedures at all 

time points included collection of physical measurements and administration of 

questionnaires relating to the composition of the household and relationships and resources. 

At 36, 48 and 60 months of age, children participated in task batteries to assess executive 

function. At age 36 months, children were administered a brief measure of IQ.

Measures

Executive Function.—The battery included three inhibitory control tasks (Simon-like 

Spatial Conflict, Stroop-like Silly Sounds, and Farm Animal go no-go), two working 

memory tasks (a span-like task and a self-ordered pointing task), and one attention shifting 

task (item selection modeled on the Dimensional Change Card Sort task; Jacques & Zelazo, 

2001). Full details regarding the tasks, administration rules, psychometric properties, and 

scoring approach for the battery are available in a number of publications (e.g., Willoughby, 

Wirth, Blair & the FLP Investigators, 2012). Item response theory was used to generate 

expected a posteriori (EAP) scores for each task (see Willoughby, Wirth, Blair, & FLP 

Investigators, 2012). EAP scores were averaged to form a composite measure of EF ability 

at 36, 48, and 60 months of age.
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Body Mass Index.—Child weight was measured to the nearest 0.1 kg and child height to 

the nearest 0.1 cm. BMI was calculated as kg/m2. Raw scores for BMI were used in data 

analysis.

Weight Status.—Weight status at each time point (obese, overweight, normal weight, and 

underweight) was calculated using CDC reference data, adjusted for age and sex. [Note: 

CDC reference data for BMI are not available for ages below 24 months. N=419 participants 

were younger than 24 months (22.2 – 23.9 months) at the 24 month time point.]

Cumulative Risk Index.—Informed largely by extensive prior work with these data (see 

Vernon Feagans et al., 2013), we created a longitudinal cumulative risk composite 

comprising 8 variables—family income, maternal education, constant spouse/partner living 

in the home, hours of employment, occupational prestige, household density, neighborhood 

noise and neighborhood safety. Full details are available in Vernon Feagans et al., (2013)

Covariates—included race (African American = 1, White = 0), state (PA = 1, NC = 1), 

child sex (male = 1) and estimated full scale IQ measured at age 36 months using the 

Wechsler Preschool and Primary Scales of Intelligence (Wechsler, 2002).

Missing Data

To assess possible differential attrition in the sample at each time point we examined 

variables for which we had complete information collected at infant age 2 months. Few 

variables indicated differences between families who were present and those who were 

missing. Participants missing data on EF were more likely to be male (χ2 = 14.8, p < .0001) 

and more likely to be living in North Carolina (χ2 = 12.5, p < .0001). Participants missing 

data on BMI were more likely to live in North Carolina (χ2 = 25.7, p < .0001).

Data Analysis

Latent growth curve (LGC) models were estimated to test key questions. All models were 

estimated in Mplus version 8 using a robust full information maximum likelihood estimator 

that uses all available data and is superior to listwise deletion and mean replacement missing 

data methods (Enders, 2001). A series of unconditional univariate and multivariate LGCs 

were estimated to characterize patterns of change in EF and BMI raw scores. The LGCs for 

EF and BMI were parameterized such that the intercept represented the level of each 

construct at age 36 and 24 months, respectively and the slope terms represented change from 

36–60 months and 24–60 months. Given overlapping time points for both constructs but an 

earlier time point (24 months) for the measurement of BMI, the intercept for EF was 

regressed on the intercept for BMI and the linear slope for EF was regressed on the intercept 

and linear and quadratic slopes for BMI. The covariance between the EF and BMI linear 

slope parameters in the multivariate LGC was of primary interest. Following standard 

practice, model fit was evaluated using likelihood ratio tests and global fit indices (CFI > .

95, RMSEA ≤ .05 were indicative of good fit).
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Results

Descriptive statistics are presented in Table 1 and correlations among variables in the 

analysis are presented in Table 2. Table 2 indicates moderate to large correlations among 

measures of EF and IQ. Cumulative risk exhibited comparatively smaller correlations with 

these cognitive measures. Notably, measures of BMI are uncorrelated with measures of EF, 

IQ, and cumulative risk. Table 2 does indicate that BMI maintained high rank order stability 

in early childhood, particularly at ages 36, 48, and 60 months. Associations of BMI at these 

time points with BMI at age 24 months are somewhat reduced, particularly the association 

between BMI at 60 months and BMI at 24 months (r = .56, p < .0001). The number of 

participants and percent of the sample considered obese (≥95%), overweight (≥85%), normal 

weight, and underweight (< 5%) at each time point according to CDC reference data are 

reported in Table 3.

Latent Growth Model relating change in Executive Function to change in BMI

Preliminary unconditional models indicated that change in EF was adequately characterized 

by a linear model while change in BMI required a fixed quadratic slope in addition to a 

linear slope term to represent an initial decline followed by increase. Means and variances 

for all latent growth parameters from the fully conditional model are presented in Table 4. 

The intercept for EF is negative, reflecting the longitudinal scaling of the EAP score, and the 

linear slope is positive, indicating growth in EF from age 36 to 60 months. The intercept for 

BMI is positive, the linear slope is negative, and quadratic slope is positive, indicating that, 

on average, BMI declined linearly from age 24 to 60 months but that change in BMI was 

also characterized by positive acceleration. All growth parameters were significantly 

different from zero and variances for the intercept and linear slope terms for both constructs 

are significant. The model fit the data well (χ2(35) = 49.02, p = .06, CFI=.996, RMSEA=.

018, SRMR=.016). Slope and intercept are positively correlated for BMI (φ=0.14, se=0.05, p 

< .01) but are uncorrelated for EF. The model implied trajectories for EF and BMI are shown 

in Figure 1.

As hypothesized, the model in Figure 2 indicated a negative association between the linear 

slope for EF and the linear slope for BMI (b=−0.04, se=0.02, p < .05, β=−.14). This effect 

indicates that children exhibiting greater decline in BMI from age 24 to age 60 months 

exhibited greater increase in EF from age 36 to 60 months. The intercept for BMI and 

intercept for EF are not related.

Other predictors of the intercept for EF indicated that children in Pennsylvania had higher 

EF at 36 months, on average, than children in North Carolina (b=0.18, se=0.04, p < .0001, 

β=.26) and that mean EF at age 36 months for males was lower than that for females (b=

−0.08, se=0.03, p < .005, β=−.12). Cumulative poverty-related risk was negatively (b=−0.08, 

se=0.02, p < .001, β=−.16) and IQ was strongly positively related to EF at 36 months 

(b=0.01, se=0.001, p < .0001, β=.56). No variable other than state of residence (b=−0.07, 

se=0.02, p < .01, β=−.19) predicted the slope for EF, with children in Pennsylvania 

exhibiting less growth from age 36 to 60 months.
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The only predictor of the intercept, linear slope, and quadratic slope for BMI was sex, with 

males presenting higher BMI at 24 months (b=0.41, se=0.10, p < .0001, β=.15), greater 

linear decline in BMI, (b=−0.28, se=0.09, p < .005, β=−.26), and greater acceleration in 

change in BMI as indicated by a positive quadratic slope (b=0.06, se=0.03, p < .05, β=.58). 

Race was also associated with the quadratic slope (b=0.08, se=0.03, p < .01, β=.82), with 

African American children exhibiting greater acceleration in BMI.

We next added birth weight, maternal BMI, paternal BMI, and whether the child spent time 

in the neonatal intensive care unit (NICU) as a robustness check to the LGM relating change 

in EF to change in BMI. The model continued to fit the data well, (χ2(52) = 63.6, p = .12, 

CFI=.997, RMSEA=.013, SRMR=.018). NICU stay was associated with a lower initial level 

of EF (b=−0.17, se=0.05, p< .001, β=−.11), and birth weight with a higher initial level of EF 

(b=0.04, se=0.02, p = .05, β=.06). Maternal BMI (b=0.03, se=.008, p < .05, β=.14), paternal 

BMI (b=0.03, se=0.01, p < .05, β=.11), and birth weight (b=0.29, se=0.09, p < .001, β=.13) 

were all positively related to the initial level of BMI. None of these additional variables were 

related to the linear slope for BMI or EF. Maternal BMI was related to greater acceleration 

in change in BMI as indicated by a positive effect on the quadratic slope for BMI (b=.006, 

se=.002, p < .01, β=.62). Addition of these variables to the model did not alter the 

association between the slope for BMI and the slope for EF or alter coefficients for 

predictors of interest on EF and BMI.

We also ran two additional robustness checks. We first ran the analysis using the CDC 

reference BMI z-scores instead of raw scores. Despite the reduced sample size available for 

this analysis at 24 months, the association between the linear slope for EF and the linear 

slope for BMI remained significant, with the standardized effect increasing slightly (b=

−0.09, se=0.04, p < .05, β=−.16). Second, we reran both the z-score and the raw score 

analysis deleting z-score outliers for height (±3SD) at each time point using CDC reference 

data. Doing so reduced the sample size only minimally and had no effect on associations 

among variables (results not shown).

Discussion

This analysis confirmed a hypothesized inverse linear association between change in BMI 

and change in EF in early childhood. Children exhibiting greater linear decline in BMI from 

2 to 5 years of age exhibited greater linear increase in EF from age 3 to 5 years. The 

intercepts for BMI and EF were unrelated, indicating that the association was not present at 

baseline, but emerged developmentally. Given the young age of the sample, we interpret this 

finding as support for the hypothesized energetic trade-off between brain development and 

fat deposition in early childhood (Kuzawa and Blair, in press). Specifically, we propose that 

inversely correlated change between BMI and EF reflects an aspect of development in which 

between-child variation in the energy demand of the developing brain affects between-child 

variation in fat deposition at a time when children are typically losing fat mass in advance of 

the adiposity rebound (Rolland-Cachera et al., 1984).

Although data with which to estimate between person variation in the energy requirement of 

the developing brain in childhood are rare, such variation and the hypothesized inverse 
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relation of this variation to between person variation in fat mass is suggested by genetic 

analyses of BMI. Specifically, a large (N=339,224) genome-wide association meta-analysis 

found that genes associated with BMI are primarily expressed in the central nervous system 

and associated with neuronal function and development (Locke et al., 2015). Using a variety 

of approaches to determine which aspects of CNS function and where in the brain BMI-

associated genes were expressed, the authors found that the largest category of BMI-relevant 

genes are associated with processes of neuronal transmission and development, and strongly 

expressed in brain areas associated with learning and memory, including the hippocampus, 

frontal cortex, and limbic structures.

In addition, three studies demonstrate evidence for genetic pleiotropy between BMI and grey 

matter volume of multiple cortical and subcortical structures, pointing to an energetic trade-

off with body weight gain as central to the genetic architecture of obesity risk. The first of 

these (Ho et al., 2010) found that a single nucleotide polymorphism in the fat mass and 

obesity-associated (FTO) gene was pleiotropically associated with greater BMI and reduced 

grey matter volumes in frontal and occipital lobes in otherwise healthy older adults (N=206). 

The risk allele of FTO was not associated with the presence of MetS, indicating that the 

association was not attributable to metabolic dysregulation. Second, an analysis with a large 

pedigreed adult Mexican American sample (N=839) reported evidence for pleiotropic 

genetic effects linking elevated BMI with widespread reductions in surface area throughout 

the cortex (Curran et al., 2013). Third, a multiple cohort study found that the polygenic risk 

score derived from the Locke et al. (2015) meta-analysis was associated with reduced grey 

matter volume in orbital frontal cortex and positively associated with BMI (Opel et al., 

2017). The authors interpret this finding as evidence for a genetically-based trait marker of 

obesity risk in which reductions in grey matter in PFC precede obesity rather than serve only 

as an indicator of accelerated neurodegeneration precipitated by MetS.

Compatibility of the brain-body energetic trade-off with alternative explanations for the 
inverse association between EF and BMI.

Although we are not able to definitively rule out metabolic dysregulation as a factor in the 

association between BMI and EF in this analysis, it is unlikely to have a major role in our 

findings given the young age of the sample and correspondingly short time for adverse 

effects to accumulate. It is important to emphasize, however, the extent to which the 

proposed brain-body energetic trade-off complements, and is consistent with, additional 

explanations for the association between EF and BMI. Prior analyses (Francis and Susman, 

2009; Graziano et al., 2013) have documented negative relations between aspects of EF, 

namely inhibitory control and the ability to delay gratification, and change in BMI across 

childhood. Such deficits in EF are theorized to lead to overeating and the increased 

consumption of high fat foods, resulting in metabolic dysregulation and low level 

inflammation that would precipitate changes in PFC structure and function leading to further 

impairment of EF. This is particularly the case in light of increases in self-determination and 

volitional decision making occurring with advancing child age that would be expected to 

affect food choices and levels of physical activity.
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The proposed brain-body energetic trade-off is entirely consistent with the line of reasoning 

in which genetic and environmental pathways are likely and complementary. As such, the 

theorized brain-body energetic trade-off provides a basis for the identification of individuals 

at high risk for a vicious cycle in which genetically-mediated reductions in brain energy 

demand and corresponding reductions in EF increase the likelihood of high fat food 

consumption, leading to increased weight gain, increased risk for metabolic dysregulation, 

and further impairment in EF. The inverse association between EF and consumption of high 

fat foods is generally well established (Hall, 2016). An important direction for future 

research will be studies designed to examine whether genetic risk for elevated BMI is 

associated with reduced EF and impulsive consumption of high fat food. Further, we take it 

as tentative support for the theory that the association between change in BMI and change in 

EF was observed in this sample, given relatively low rates of obesity and overweight in early 

childhood seen here. Prior demonstration of associations between BMI and EF with slightly 

older child participants have included larger proportions of participants classified as obese or 

overweight using CDC reference data (Chojnacki et al., 2018; Kamijo et al., 2012). An 

important follow-up to this analysis with the Family Life Project sample will be to examine 

rates of obesity and overweight in adolescence with newly acquired longitudinal data as a 

function of change in BMI and change in EF in early childhood and genetic risk for obesity.

Prevention.

Given associations of early age and elevated BMI at the adiposity rebound with lifetime 

obesity risk, the theory of the brain-body energetic tradeoff can inform targeted prevention 

efforts in early childhood. Children at high risk for obesity due to polygenic risk for elevated 

BMI and lower EF could be identified and prioritized in analyses of prevention data and 

targeted for receipt of early intervention programming. Further, given the association of EF 

with school readiness (Blair and Raver, 2015), the proposed energetic trade-off could inform 

early childhood education (ECE) efforts. High quality ECE has the potential to promote 

school readiness as well as reduce obesity risk. The extent to which ECE programming 

increases the energy demand of the developing brain is currently unknown. Programs that 

have demonstrated effects on EF (Diamond et al., 2007; Sasser et al., 2017) would be 

expected to increase the brain’s need for metabolic substrate in ways that, in theory, could 

reduce weight gain in early childhood and thereby reduce obesity risk. An example of this 

combined effect is seen in a follow-up of the intensive early intervention, the Abecedarian 

Project, in which males in the treatment group experienced reduced weight velocity in 

infancy and lower BMI at the adiposity rebound relative to the control group (Campbell et 

al., 2014). As such, male children receiving the intervention were less likely to be 

overweight at 5 and 8 years in addition to exhibiting gains in IQ at these ages. Males 

receiving the treatment were also less likely to exhibit characteristics of MetS at age 35. 

Similar effects at the population level are seen in an analysis of children participating in 

Head Start relative to a comparison group drawn from primary health care system data 

(N=43,748). Children who were obese or overweight when entering Head Start had greater 

declines in BMI over the academic year relative to children in the comparison group 

(Lumeng et al., 2015).
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Limitations and conclusion.

Although there are several strengths to this analysis, including a strong theoretical and 

empirical basis for the hypothesized association and the analysis of longitudinal data in early 

childhood, there are several limitations. One is the absence of information on diet and 

physical activity as well as other factors such as screen time and sleep that could indicate 

whether differences in energy intake and expenditure in early childhood might play a role in 

the association between BMI and EF. Although such variables are undoubtedly factors in 

weight gain, the inclusion of covariates (e.g., cumulative risk, sex) that might relate to 

variation in these variables helps to mitigate their potential role in associations reported here.

A further limitation is that the sample is generally high-risk and low-income. To the extent 

that the range of poverty-related risk is attenuated, coefficients might under- or overestimate 

the magnitude of the association between change in EF and change in BMI. As well, EF can 

be difficult to measure in young children, placing a further limitation on the precision with 

which coefficients are estimated. Finally, the study is limited by the absence of direct 

assessment of the putative mechanism of effect, namely, the energy requirement of the 

developing brain. Despite these limitations, this study analyzed data from a large 

longitudinal sample to confirm an innovative hypothesis regarding one potential contributor 

to the growing obesity epidemic.
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Research Highlights

• Deficits in EF associated with obesity are understood primarily as a 

consequence of metabolic problems and low-grade inflammation precipitated 

by obesity.

• We find an inverse developmental relation between change in EF and change 

in BMI in early childhood.

• Several sources of evidence support the idea that this relation is attributable to 

individual variation in the energy demand of the developing brain.

• Results suggest an inverse relation between brain development and fat 

deposition in early childhood that can inform prevention efforts.
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Figure 1. 
Model implied trajectories for EF and BMI. All covariates are grand mean centered.
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Figure 2. 
Association between change in BMI from age 2 to 5 years and change in EF from age 3 to 5 

years.
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Table 1.

Descriptive statistics and number of participants for raw score and z-score height, weight, and BMI, 

Descriptive statistics and number of participants for analysis variables

Variable N Mean SD

BMI 24mos raw score 1068 17.36 1.68

BMI 24mos z-score* 649 .52 1.07

BMI 36mos raw score 1049 16.61 1.67

BMI 36mos z-score 1049 .46 1.12

BMI 48mos raw score 1011 16.55 2.83

BMI 48mos z-score 1011 .56 1.24

BMI 60mos raw score 1036 16.60 2.39

BMI 60mos z-score 1036 .62 1.14

Weight 24mos kg raw score 1096 12.89 1.70

Weight 24mos z-score 1096 .17 1.15

Weight 36mos kg raw score 1057 15.23 2.23

Weight 36mos z-score 1057 .42 1.11

Weight 48mos kg raw score 1011 17.53 3.77

Weight 48mos z-score 1011 .45 1.09

Weight 60mos kg raw score 1036 20.26 4.04

Weight 60mos z-score 1036 .51 1.11

Height 24mos cm raw score 1075 86.11 3.95

Height 24mos z-score** 894 −.08 1.04

Height 36mos cm raw score 1055 95.61 4.24

Height 36mos z-score 1055 .13 1.03

Height 48mos cm raw score 1016 102.66 4.48

Height 48mos z-score 1016 .22 1.01

Height 60mos cm raw score 1042 110.14 5.68

Height 60mos z-score 1042 .32 1.07

Child age 24mos 1144 24.88 1.95

Child age 36mos 1123 37.05 1.75

Child age 48mos 1049 48.31 1.49

Child age 60mos 1099 60.62 3.26

EF EAP score 36mos 973 −0.54 0.54

EF EAP score 48mos 1009 −0.13 0.51

EF EAP score 60mos 1038 0.29 0.48

WPPSI-III Estimated Full-Scale IQ 1046 93.64 16.50

*
CDC reference data for BMI z-score are not available for children less than 24 months of age.

**
CDC reference data for z-score height are available only for 23.5 months of age and above.
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Table 2.

Correlation among variables in the analysis.

EF36 EF48 EF60 IQ Risk BMI 24m BMI 36m BMI 48m

EF 36mos ---

EF 48mos .37 ---

EF 60mos .32 .59 ---

IQ 36mos .40 .54 .47 ---

Risk mean −.29 −.36 −.33 −.45 ---

BMI 24mos −.03 −.04 −.01 −.02 .01 ---

BMI 36mos .01 −.02 −.02 .02 −03 .69 ---

BMI 48mos .01 −.03 −.03 .02 −.02 .62 .83 ---

BMI 60mos −.02 −.03 −.08 .01 −.01 .56 .77 .86

Correlations in bold are p < .0001
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Table 3.

The number of participants and percent of the sample considered overweight (≥85%) and obese (≥95%) at 

each time point according to CDC reference data.

Category 24m N (%)* 36m N (%) 48m N (%) 60m N (%)

underweight** 18 (3%) 17 (2%) 16 (2%) 9 (1%)

normal weight 482 (74%) 869 (83%) 807 (80%) 784 (76%)

overweight 127 (20%) 132 (13%) 136 (13%) 156 (15%)

obese 40 (6%) 48 (4%) 68 (7%) 96 (9%)

*
39 children were 22 months old and 398 children were 23 months old at the 24 month time point. CDC reference data are not available for 

children younger than 24 months.

**
underweight defined as CDC reference data z-score <−2 SD for weight for age
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Table 4.

Means and variances for all latent growth parameters.

Parameter M (SE) Variance (SE)

Executive Function

   Intercept −1.75 (.09)*** .036 (.012)**

   Linear slope 0.45 (.01)*** .024 (.007)***

BMI

   Intercept 17.05 (.14)*** 1.77 (.151)***

   Linear slope −0.52 (.11)*** 0.26 (.038)***

   Quadratic slope 0.22 (.01)*** 0.00 (fixed)

**
p < .01

***
p < .001
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