
I. Introduction

Ten million patients visited about 400 emergency depart-
ments in 2018 in Korea, and for most of those patients, the 
first emergency care they encountered was triage [1]. Tri-
age, implemented in most modern emergency departments, 
is the process of accurately assessing and classifying severe 
symptoms to identify and provide rapid treatment to emer-
gency patients. To this end, a patient’s vital signs are mea-
sured, and a short history and examination is carried out as 
soon as the patient arrives at the emergency department by 
emergency physicians, emergency specialist nurses, or emer-
gency medical technicians. 
	 The Korean Triage and Acuity Scale (KTAS) was developed 
in 2012 based on the Canadian Triage and Acuity Scale [2]. 
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Since 2016, it has been mandatory for all emergency centers 
across the country to use and assess patients visiting emer-
gency departments with the KTAS. Centers are incentivized 
by the National Health Insurance Service through higher 
reimbursement rates for patients with higher KTAS levels [3]. 
Depending on the assigned KTAS level, a patient may wait 
for a set maximum amount of time until being evaluated 
by a physician [2]. It also supports the prioritization of the 
care provided in a busy emergency department to patients 
requiring urgent care. The KTAS was also recently shown to 
improve the length of stay and mortality rates in emergency 
departments [4]. 
	 As with most triage instruments, the KTAS classifies 
patients into five levels based on the patients’ symptoms, 
with primary and secondary factors taken into account [5]. 
Primary factors involve characteristics common to most 
symptoms, such as consciousness, blood pressure, heart rate, 
respiration rate, fever, pain, presence of hemorrhage, and 
trauma. Secondary considerations are characteristics applied 
to specific symptoms. Although most criteria are objective 
indicators, subjective judgment by the triage staff influences 
the final level assigned to the patient. 
	 Since triage is the starting point of care for emergency 
patients, it is important to be consistent in assigning KTAS 
levels. Hospitals employ dedicated personnel who have been 
certified by the KTAS Committee under the Korean Society 
of Emergency Medicine. The committee maintains a 6-hour 
training program for providers with more than 1-year clini-
cal experience in an emergency department [6]. It is also 
important to maintain the quality of education, training, and 
evaluation, which is becoming more difficult to maintain, 
as the complexity of emergency care increases and more 
patients visit emergency departments nationwide. However, 
even with these systems in place, the problems of misclassifi-
cation, over-triage, and under-triage still remain, due to the 
inherent complexity and uncertainty of triage. 
	 Several previous studies have applied machine learning 
models to patients in intensive care units [7,8], and emer-
gency departments [9,10]. Many studies have considered tri-
age in particular, with most aiming to predict the outcome at 
triage [11–14]. One such example is a study that compared 
e-triage with the emergency severity index that showed more 
accurate results in predicting patient outcome [15]. Other ef-
forts have focused on using not just structured data but also 
the text data generated. Sterling et al. [16] predicted disposi-
tion from the emergency department with only the triage 
text, and Hong et al. [11] used information collected at triage 
in addition to textual patient history to predict admission 

from the emergency department. However, there have been 
no attempts to predict or determine the outcome of a triage 
instrument with information collected during triage. 
	 The aim of this study was to train and compare machine 
learning models in their ability to predict KTAS levels. We 
also hypothesized that free text nursing notes written during 
triage would provide additional information that would sup-
port prediction of the KTAS level. 

II. Methods

1. Study Design, Setting and Data Source 
This study was a cross-sectional study using data from a 
single emergency department of a tertiary university hospi-
tal with an annual census of 60,000 patients. Retrospective 
data of all visits by patients to the adult emergency depart-
ment from November 2016 to June 2019 were included in 
the study. Encounters with missing data were excluded. All 
data processing was done with Python and related scientific 
libraries, pandas, and scikit-learn [17,18]. This study and its 
protocol were approved by the Institutional Review Board 
of Seoul National University Hospital (No. 1910-071-1070) 
with a waiver of informed consent. No personally identifi-
able data was part of the dataset. Data used in this study was 
retrieved from the clinical data warehouse of Seoul National 
University Hospital Patients Research Environment (SU-
PREME). 

2. Variables 
Only variables collected during triage were used in the 
analysis. The data were divided into three separate datasets: 
structured data only, text of nursing triage notes only, and 
both structured data and nursing triage notes. The struc-
tured data included gender, age, date and time of arrival, 
chief complaint, route to the emergency department, pain 
location and intensity, vital signs (blood pressure, heart rate, 
respiratory rate, oxygen saturation), and level of conscious-
ness. The chief complaint was selected from a set of 607 
codes; the route taken by the patient to the emergency de-
partment was selected from five options (direct, refer from 
outpatient department, transfer from other hospital, other, 
or unknown); the pain location was selected from 10 pos-
sible locations; level of consciousness was selected from five 
options (alert, verbal response-disoriented, verbal response-
stuporous, response to pain, and unresponsive). Some ad-
ditional preprocessing was applied to the data. Arrival time 
was binned into 1-hour increments. Pain intensity scores 
that were written as text were converted into numeric form, 
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for instance ‘6–7’ was converted to 6.5. The nursing triage 
note is a free-form text note, usually one to three sentences 
in length that summarizes the patient’s reason for visiting 
the emergency department written by the triage nurse. The 
outcome variable was the KTAS level assigned to the patient 
by the triage nurse on duty. 

3. Natural Language Processing 
Natural language processing (NLP) is a set of methods for 
analyzing human languages. Its purpose is to allow comput-
ers to process and understand the meaning of text. Because 
each language has specialized structures, such as characters, 
grammar, and words, NLP techniques have been developed 
for each specific language. In this study, most of the targeted 
documents were written in Korean. The domain of docu-
ments should also be considered when implementing NLP. 
The targeted documents were triage notes containing both 
Korean and English words. Most of them followed Korean 
grammar but had many English words designating medi-
cal concepts, such as symptoms, medications, and disease 
names.
	 To analyze the triage notes, we used soynlp, which is an 
NLP library of unsupervised NLP techniques written and 
available in Python [19]. Soynlp was used to tokenize the tri-
age notes and normalize words. Unlike Western languages 
like English, Korean is not divided into meaning structures 
by spaces alone. For this reason, most Korean morpheme 
analyzer tools are based on pre-defined dictionaries. How-
ever, it is very difficult for these tools to analyze text that 
contain words that are not in the dictionary. This is called an 
out-of-vocabulary problem. In contrast, soynlp uses a word 
extractor based on probabilistic scores representing the like-
lihood of words. Therefore, it is more appropriate for analyz-
ing documents with terminology that is used only in specific 
domains compared to any other Korean processing tools.
	 Because of the time pressure involved in writing the initial 
triage note, they usually contain abbreviations and short-
hand notations. Because punctuation marks and numbers 
are usually removed in the preprocessing step before analy-
sis, to maintain the meaning of notations that include mul-
tiple punctuation marks, the most common shorthand nota-
tions were fully spelled out. For example, abbreviations such 
as ‘n/v’ were replaced with ‘nausea vomiting’ and notations 
such as ‘(+/–)’, which would be completely removed by the 
preprocessing step removing punctuation, was replaced with 
the words ‘positive negative’. There was a total of 165 such 
replacement rules. After these abbreviations and shorthand 
notations had been removed, punctuation and numbers were 

removed, and all English text was converted into lowercase. 
No special preprocessing of the Korean language was per-
formed besides tokenization with soynlp.

4. Machine Learning Models 
In this study, we used logistic regression, random forest, and 
XGBoost to classify encounters. We applied a ridge logistic 
regression which uses L2 penalty to avoid multicollinear-
ity and overfitting. Random forest is an ensemble model to 
combine predicted results of multiple decision trees [20]. In 
the process of learning a random forest model, each decision 
tree trains on a random sample of the training dataset with 
replacement, and a random subset of features is selected at 
each candidate split of trees. Through these methods, the 
trained trees become mostly uncorrelated. Averaging the 
results of less correlated models has the effect of reducing 
the high variance of each model’s performance. As a result, 
the random forest has improved generalization performance. 
Random forest has been used by many scientists due to 
its performance; it was the best model for even the most 
comprehensive benchmarking studies [21]. XGBoost is an 
advanced model of gradient boosting machines (GBM), 
which trains many decision trees in a sequential and addi-
tive manner [22]. Although both GBM and random forest 
are based on decision trees, they train trees in different ways. 
In random forest, each tree is trained independently and 
becomes a so-called fully-grown tree, which overfits a subset 
of training dataset. GBM, on the other hand, learns small 
trees which may underfit the training set. However, trees 
in GBM are trained sequentially, and each tree is trained in 
consideration of the errors of other tree models in the previ-
ous steps. In this way, as more trees are trained, the error of 
GBM is reduced. XGBoost makes GBM’s training scalable 
by distributed learning with several approximation methods 
to parallelize training. Since XGBoost was proposed, it has 
outperformed other algorithms in many studies and compe-
titions [23].
	 To apply these algorithms, we structured the clinical notes 
using a bag-of-words model. In a bag-of-words model, each 
document is represented as a vector that has the same length 
as the size of the vocabulary [24]. In this study, the vocabu-
lary was composed of unigrams, bigrams, and trigrams ap-
pearing in more than 0.1% in the entire document set [25]. 
However, in preliminary experiments, the use of unigrams 
alone yielded better performance. Using bigrams and tri-
grams caused the document vector represented by the bag-
of-words model to become too long, leading the machine 
learning algorithms to fall victim to the curse of dimension-
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Table 1. Patient demographics

KTAS level
Total

1 2 3 4 5

Number of patients 1,989 (1.44) 16,098 (11.66) 77,720 (56.31) 36,045 (26.12) 6,170 (4.47) 138,022
Gender
   Female 814 (40.9) 7,328 (45.5) 40,612 (52.3) 19,703 (54.7) 3,652 (59.2) 72,109 (52.2)
   Male 1,175 (59.1) 8,770 (54.5) 37,108 (47.7) 16,342 (45.3) 2,518 (40.8) 65,913 (47.8)
Age (yr) 70 (58–78) 64 (51–75) 61 (46–72) 56 (37–69) 52 (31–67) 60 (43–72)
   0–29 76 (3.8) 1,056 (6.6) 7,477 (9.6) 5,961 (16.5) 1,433 (23.2) 23,563 (17.1)
   30–39 76 (3.8) 1,050 (6.5) 7,384 (9.5) 4,526 (12.6) 819 (13.3) 12,690 (9.2)
   40–49 143 (7.2) 1,627 (10.1) 8,470 (10.9) 4,378 (12.1) 692 (11.2) 27,390 (19.8)
   50–59 280 (14.1) 2,678 (16.6) 13,667 (17.6) 5,993 (16.6) 945 (15.3) 16,003 (11.6)
   60–69 425 (21.4) 3,769 (23.4) 17,197 (22.1) 6,752 (18.7) 1,068 (17.3) 13,855 (10.0)
   70–79 586 (29.5) 3,918 (24.3) 16,247 (20.9) 5,784 (16.0) 855 (13.9) 29,211 (21.2)
   ≥80 403 (20.3) 2,000 (12.4) 7,278 (9.4) 2,651 (7.4) 358 (5.8) 15,310 (11.1)
Time of visit to ED
   09:00–18:00 1,058 (53.2) 9,259 (57.5) 43,755 (56.3) 18,511 (51.4) 3,216 (52.1) 75,799 (54.9)
   18:00–09:00 931 (46.8) 6,839 (42.5) 33,965 (43.7) 17,534 (48.6) 2,954 (47.9) 62,223 (45.1)
Route to ED 
   Direct visit 1,377 (69.2) 10,834 (67.3) 60,005 (77.2) 31,143 (86.4) 5,431 (88.0) 108,790 (78.8)
   Refer from OPD 113 (5.7) 1,434 (8.9) 6,035 (7.8) 1,192 (3.3) 210 (3.4) 8,984 (6.5)
   Transfer from other hospital 489 (24.6) 3,820 (23.7) 11,637 (15.0) 3,700 (10.3) 528 (8.6) 20,174 (14.6)
   Others 10 (0.5) 7 (0.0) 32 (0.0) 5 (0.0) 0 (0.0) 54 (0.0)
   Unknown 0 (0.0) 3 (0.0) 11 (0.0) 5 (0.0) 1 (0.0) 20 (0.0)
Pain location
   Head 8 (0.4) 575 (3.6) 6,338 (8.2) 1,420 (3.9) 106 (1.7) 8,447 (6.1)
   Neck 2 (0.1) 55 (0.3) 800 (1.0) 341 (0.9) 36 (0.6) 1234 (0.9)
   Thorax 52 (2.6) 1,809 (11.2) 3,452 (4.4) 638 (1.8) 41 (0.7) 5,992 (4.3)
   Abdomen 84 (4.2) 930 (5.8) 14,760 (19.0) 2,550 (7.1) 69 (1.1) 18,393 (13.3)
   Back 2 (0.1) 39 (0.2) 755 (1.0) 242 (0.7) 25 (0.4) 1,063 (0.8)
   Pelvis 8 (0.4) 80 (0.5) 2,533 (3.3) 693 (1.9) 46 (0.7) 3,360 (2.4)
   All extremity 1 (0.1) 18 (0.1) 213 (0.3) 283 (0.8) 31 (0.5) 546 (0.4)
   Upper extremity 5 (0.3) 67 (0.4) 1,086 (1.4) 2,196 (6.1) 204 (3.3) 3,558 (2.6)
   Lower extremity 18 (0.9) 125 (0.8) 2,008 (2.6) 4,280 (11.9) 326 (5.3) 6,757 (4.9)
   Others 16 (0.8) 244 (1.5) 2,085 (2.7) 2,401 (6.7) 301 (4.9) 5,047 (3.7)
   None 1,793 (90.1) 12,156 (75.5) 43,690 (56.2) 21,001 (58.3) 4,985 (80.8) 83,625 (60.6)
Level of consciousness
   Alert 1,115 (56.1) 14,439 (89.7) 75,950 (97.7) 35,644 (98.9) 6,128 (99.3) 133,276 (96.6)
   Verbal response (disoriented) 163 (8.2) 910 (5.7) 1,423 (1.8) 287 (0.8) 26 (0.4) 2,809 (2.0)
   Verbal response (stuporous) 113 (5.7) 472 (2.9) 253 (0.3) 74 (0.2) 6 (0.1) 918 (0.7)
   Pain response 196 (9.9) 266 (1.7) 85 (0.1) 38 (0.1) 4 (0.1) 589 (0.4)
   Unresponsive 402 (20.2) 11 (0.1) 9 (0.0) 2 (0.0) 6 (0.1) 430 (0.3)

Values are presented as number (%) or median (interquartile range).
KTAS: Korean Triage and Acuity Scale, ED: emergency department, OPD: outpatient department.
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ality.
	 Each of the models was trained and evaluated on three 
separate datasets: structured data only, text of the nursing 
triage notes only, and both structured data and nursing tri-
age notes. Precision, recall, F1-score, and area under the 
receiver operating characteristic (AUROC) curve with 95% 
confidence interval (CI) are reported. 

III. Results

A total of 142,972 patients visited the adult emergency de-
partment during the study period. Encounters with missing 
information (4,950 cases, 3.5%) were excluded from the 
study. The most common missing information was the loca-
tion of pain (4,404 cases) followed by oxygen saturation (215 
cases). After exclusion of the cases with missing informa-
tion, a total of 138,022 patients were included in the study. 
The basic demographics of the patients can be seen in Table 
1. The median age of the patients was 60 years (interquartile 
range, 43–72) and 52.2% were female. The KTAS levels were 
distributed as follows: 1,989 level 1 (1.4%), 16,098 level 2 
(11.7%), 77,720 level 3 (56.3%), 36,045 level 4 (26.1%), and 
6,170 level 5 (4.5%). 
	 Table 2 and Figure 1 present the classification results of the 
machine learning models on different subsets of data. The 
models with the highest AUROC were the random forest 
and XGBoost models trained on the entire dataset (AUROC 
= 0.922, 95% CI 0.917–0.925 and AUROC = 0.922, 95% CI 
0.918–0.925, respectively). For each model, a similar trend is 
noticeable. The AUROC of the models trained on the clini-
cal data is higher than that of the models trained on the text 
data only, but the models trained on all variables showed the 
highest AUROC among similar models. 

IV. Discussion

This study developed and compared several machine learn-
ing models using information collected during triage to 
predict the KTAS level. Our results indicate that machine 
learning algorithms can predict KTAS levels robustly during 
emergency department triage. To our knowledge, this is the 
first study to predict KTAS levels using information available 
during triage. Most of the studies reported in the literature 
have focused on predicting patient outcomes, but there are 
several possible uses of predicting not only the outcome but 
also the triage level. 
	 As with many recent results, the random forest and XG-

Table 2. Classification results of machine learning models

Model Input variable Precision Recall F1-score AUROC (95% CI)

Logistic regression Clinical data 0.680 0.659 0.666 0.881 (0.874–0.887)
Text data 0.664 0.644 0.652 0.860 (0.851–0.868)
All data 0.711 0.702 0.706 0.905 (0.900–0.909)

Random forest Clinical data 0.743 0.744 0.729 0.913 (0.906–0.918)
Text data 0.675 0.669 0.631 0.844 (0.833–0.853)
All data 0.737 0.730 0.707 0.922 (0.917–0.925)

XGBoost Clinical data 0.744 0.744 0.728 0.912 (0.906–0.917)
Text data 0.664 0.661 0.623 0.842 (0.832–0.850)
All data 0.753 0.753 0.740 0.922 (0.918–0.925)

AUROC: area under the receiver operating characteristic curve, CI: confidence interval. 
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Figure 1. �Receiver operating characteristic curve for selected ma-
chine learning models. AUROC: area under the receiver 
operating characteristic curve, LR: logistic regression, 
RF: random forest, XGB: XGBoost. 
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Boost models outperform other machine learning algo-
rithms, with XGBoost having the best F1-score (=0.740). It 
is also interesting to note that the AUROC of the random 
forest and XGBoost models using only clinical data outper-
formed the logistic regression model using the entire dataset 
pointing to the complex nonlinear relationships underlying 
the structured data.
	 As we hypothesized, the addition of nursing triage text data 
improved the prediction performance of all of the models 
studied, suggesting that there is information in the textual 
data that is not captured by the structured triage data, even 
with the minimal preprocessing of the text performed in this 
study. We only spelled out some common abbreviations and 
shorthand notations used in the notes, removed punctuation 
and transformed all English words to lowercase. We did not 
perform stemming nor lemmatization of Korean or Eng-
lish words, as lemmatization of Korean words still requires 
further work. The predictive ability of the models may be 
improved with more preprocessing of the text and further 
progress in Korean language processing.
	 Furthermore, even though the AUROC of the models may 
be acceptable in some instances, it cannot be denied that 
further improvements would be desirable. However, it must 
be noted that even between experienced triage nurses, the 
interrater weighted-kappa value was 0.772 [26], and 0.83 be-
tween triage nurses and experts in a retrospective review [27]. 
Although there is room for further improvement, even at its 
current state, the prediction model may be of assistance to 
triage personnel as an adjunct tool because expertise in tri-
age instruments requires considerable training and may be 
limited in resource-constrained settings. This demand was 
clearly shown in a survey of triage nurses, where the most 
requested feature for a new tool being built was an automatic 
severity grade calculator for the emergency severity index, 
which is a widely used triage instrument [28]. Due to the 
inherent complexity and uncertainty involved with the triage 
of patients, misclassification, over-triage, and under-triage 
are always possible [27], and a rule-based decision support 
system for triage has been shown to reduce classification 
errors [29]. A support tool based on machine learning and 
NLP may also reduce triage errors and may be more robust 
to out-of-vocabulary terms than a rule-based system; this 
would be worth exploring in future studies. 
	 There are several other possible use cases for an automated 
or supportive triage tool. In emergency dispatch centers and 
in prehospital ambulances where training and the mainte-
nance of the quality of the larger pool of personnel may be 
difficult, an automatic tool may be used to support users in 

the field or as a quality-control monitoring tool. An auto-
matic tool with triage capabilities developed for in-home 
use may also be employed by patients for self-assessment in 
deciding whether to go to the emergency department or not. 
If automated triage tools are shown to be useful, a separate 
tool developed for use in disaster zones and warzones may 
be valuable, where personnel trained in triage would most 
likely be overwhelmed. 
	 This study had several limitations. As a single center study 
without an external validation dataset, the results cannot 
be confidently generalized outside of the study hospital. 
Another limitation is the possibility of systemic bias in the 
practices of different triage nurses. Since some subjective 
judgement is included into the determination of the KTAS 
level, any systemic bias would also be reflected by the model 
created and further limit generalizability. More recent tech-
niques in natural language processing, such as recurrent 
neural networks and convolutional neural networks for text 
data, which are powerful tools, were not covered in this 
study. These can be explored in future studies. 
	 In conclusion, machine learning models can robustly 
predict the KTAS level at triage, which may have many pos-
sibilities for use, and the addition of text data improves the 
predictive performance compared to that achieved using 
structured data alone.

Conflict of Interest

No potential conflict of interest relevant to this article was 
reported.

ORCID

Sae Won Choi (http://orcid.org/0000-0002-0123-8227)
Taehoon Ko (http://orcid.org/0000-0002-4045-0036)
Ki Jeong Hong (http://orcid.org/0000-0003-3334-817X)
Kyung Hwan Kim (http://orcid.org/0000-0002-2718-8758)

References

1.	 National Emergency Medical Center. Emergency Medi-
cal Statistics Annual Report 2018 [Internet]. Seoul, Ko-
rea: National Emergency Medical Center; c2019 [cited 
at 2019 Oct 18]. Available from: https://www.e-gen.
or.kr/nemc/statistics_annual_report.do.

2.	 Park J, Lim T. Korean Triage and Acuity Scale (KTAS). J 
Korean Soc Emerg Med 2017;28(6):547-51.

3.	 Ryu JH, Min MK, Lee DS, Yeom SR, Lee SH, Wang IJ, 



311Vol. 25  •  No. 4  •  October 2019 www.e-hir.org

Predicting KTAS with Machine Learning 

et al. Changes in relative importance of the 5-level tri-
age system, Korean Triage and Acuity Scale, for the 
disposition of emergency patients induced by forced 
reduction in its level number: a multi-center registry-
based retrospective cohort study. J Korean Med Sci 
2019;34(14):e114.

4.	 Kwon H, Kim YJ, Jo YH, Lee JH, Lee JH, Kim J, et al. 
The Korean Triage and Acuity Scale: associations with 
admission, disposition, mortality and length of stay 
in the emergency department. Int J Qual Health Care 
2019;31(6):449-55.

5.	 Hinson JS, Martinez DA, Cabral S, George K, Wha-
len M, Hansoti B, et al. Triage performance in emer-
gency medicine: a systematic review. Ann Emerg Med 
2019;74(1):140-52.

6.	 KTAS education guide [Internet]. Seoul, Korea: Korean 
Triage and Acuity Scale; c2019 [cited at 2019 Oct 17]. 
Available from: http://www.ktas.org/education/info.php.

7.	 Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, 
Buchman TG. An interpretable machine learning model 
for accurate prediction of sepsis in the ICU. Crit Care 
Med 2018;46(4):547-53.

8.	 Gupta A, Liu T, Shepherd S, Paiva W. Using statistical 
and machine learning methods to evaluate the prognos-
tic accuracy of SIRS and qSOFA. Healthc Inform Res 
2018;24(2):139-47.

9.	 Park JH, Shin SD, Song KJ, Hong KJ, Ro YS, Choi JW, et 
al. Prediction of good neurological recovery after out-
of-hospital cardiac arrest: a machine learning analysis. 
Resuscitation 2019;142:127-35.

10.	 Stewart J, Sprivulis P, Dwivedi G. Artificial intelligence 
and machine learning in emergency medicine. Emerg 
Med Australas 2018;30(6):870-4.

11.	 Hong WS, Haimovich AD, Taylor RA. Predicting hos-
pital admission at emergency department triage using 
machine learning. PLoS One 2018;13(7):e0201016.

12.	 Goto T, Camargo CA Jr, Faridi MK, Freishtat RJ, 
Hasegawa K. Machine learning-based prediction of 
clinical outcomes for children during emergency de-
partment triage. JAMA Netw Open 2019;2(1):e186937.

13.	 Kwon JM, Lee Y, Lee Y, Lee S, Park H, Park J. Validation 
of deep-learning-based triage and acuity score using a 
large national dataset. PLoS One 2018;13(10):e0205836.

14.	 Raita Y, Goto T, Faridi MK, Brown DFM, Camargo CA 
Jr, Hasegawa K. Emergency department triage predic-
tion of clinical outcomes using machine learning mod-
els. Crit Care 2019;23(1):64.

15.	 Levin S, Toerper M, Hamrock E, Hinson JS, Barnes S, 

Gardner H, et al. Machine-learning-based electronic tri-
age more accurately differentiates patients with respect 
to clinical outcomes compared with the emergency se-
verity index. Ann Emerg Med 2018;71(5):565-574.e2.

16.	 Sterling NW, Patzer RE, Di M, Schrager JD. Prediction 
of emergency department patient disposition based on 
natural language processing of triage notes. Int J Med 
Inform 2019;129:184-8.

17.	 McKinney W. Data structures for statistical computing 
in python. Proceedings of the 9th Python in Science 
Conference; 2010 Jun 28-Jul 3; Austin, TX. p. 51-56.

18.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, 
Thirion B, Grisel O, et al. Scikit-learn: machine learning 
in Python. J Mach Learn Res 2011;12:2825-30.

19.	 Kim H. soynlp [Internet]. [place unknown]: github.com; 
2019 [cited at 2019 Oct 16]. Available from: https://
github.com/lovit/soynlp.

20.	 Breiman L. Random forests. Mach Learn 2001;45(1):5-
32.

21.	 Fernandez-Delgado M, Cernadas E, Barro S, Amor-
im D. Do we need hundreds of classifiers to solve 
real world classification problems?  J Mach Learn 
Res 2014;15(1):3133-81.

22.	 Chen T, Guestrin C. XGBoost: a scalable tree boosting 
system. Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data 
Mining; 2016 Aug 13-17; San Francisco, CA. p. 785-94.

23.	 Nielsen D. Tree boosting with XGBoost: why does XG-
Boost win "every" machine learning competition? [mas-
ter’s thesis]. Trondheim, Norway: Norwegian University 
of Science and Technology; 2016.

24.	 Passalis N, Tefas A. Entropy optimized feature-based 
bag-of-words representation for information retriev-
al. IEEE Trans Knowl Data Eng 2016;28(7):1664-77.

25.	 Sidorov G, Velasquez F, Stamatatos E, Gelbukh A, 
Chanona-Hernandez L. Syntactic n-grams as machine 
learning features for natural language processing. Expert 
Syst Appl 2014;41(3):853-60.

26.	 Park JB, Lee J, Kim YJ, Lee JH, Lim TH. Reliability of 
Korean Triage and Acuity Scale: interrater agreement 
between two experienced nurses by real-time triage and 
analysis of influencing factors to disagreement of triage 
levels. J Korean Med Sci 2019;34(28):e189.

27.	 Moon SH, Shim JL, Park KS, Park CS. Triage accuracy 
and causes of mistriage using the Korean Triage and 
Acuity Scale. PLoS One 2019;14(9):e0216972.

28.	 Levis T, Schwartz D, Bitan Y. Triage nurses decision-
support application design. Proc Int Symp Hum Factors 



312 www.e-hir.org

Sae Won Choi et al

https://doi.org/10.4258/hir.2019.25.4.305

Ergon Healthc 2018;7(1):52-5. 
29.	 Dehghani Soufi M, Samad-Soltani T, Shams Vahdati S, 

Rezaei-Hachesu P. Decision support system for triage 

management: a hybrid approach using rule-based rea-
soning and fuzzy logic. Int J Med Inform 2018;114:35-
44.


