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Abstract
The genetic cardiomyopathies are a group of disorders related by abnormal
myocardial structure and function. Although individually rare, these diseases
collectively represent a significant health burden since they usually develop early
in life and are a major cause of morbidity and mortality amongst affected
children. The heterogeneity and rarity of these disorders requires the use of an
appropriate model system in order to characterize the mechanism of disease and
develop useful therapeutics since standard drug trials are infeasible. A common
approach to study human disease involves the use of animal models, especially
rodents, but due to important biological and physiological differences, this model
system may not recapitulate human disease. An alternative approach for
studying the metabolic cardiomyopathies relies on the use of cellular models
which have most frequently been immortalized cell lines or patient-derived
fibroblasts. However, the recent introduction of induced pluripotent stem cells
(iPSCs), which have the ability to differentiate into any cell type in the body, is of
great interest and has the potential to revolutionize the study of rare diseases. In
this paper we review the advantages and disadvantages of each model system by
comparing their utility for the study of mitochondrial cardiomyopathy with a
particular focus on the use of iPSCs in cardiovascular biology for the modeling of
rare genetic or metabolic diseases.
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E-Editor: Xing YX Core tip: Several experimental model systems exist for the modeling of
cardiomyopathies, including those caused by rare metabolic or mitochondrial diseases.
We compare and contrast the cellular models that have been used to date to model
several different mitochondrial disorders with a particular focus on the advantages and
disadvantages of induced pluripotent stem cells.
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INTRODUCTION
The cardiomyopathies are defined as a group of diseases of the heart characterized by
abnormal structure and function of the myocardium[1]. The cardiomyopathies have
been classically grouped according to cardiac morphology with the major categories
being: hypertrophic cardiomyopathy (HCM), restrictive cardiomyopathy, dilated
cardiomyopathy (DCM), arrhythmogenic right ventricular cardiomyopathy and left
ventricular non-compaction cardiomyopathy (LVNC)[2]. These groups can be further
subdivided into genetic  and acquired forms based on disease mechanism[2].  The
genetic cardiomyopathies generally arise in childhood or early adulthood and include
metabolic and monogenic diseases.

The inborn errors of metabolism (IEM) are a heterogeneous group of rare genetic
diseases  caused by defects  in  energy production or  intermediary metabolism[3,4].
Within the pediatric cardiomyopathies, IEM affect between 5% and 26% of infants and
children[5].  There  are  more  than  40  different  IEM  that  are  associated  with  the
development of cardiomyopathy[3]. The mitochondrial cardiomyopathies represent
the largest subset and result from pathologic mutations in either mitochondrial or
nuclear genes[6] that ultimately lead to dysfunction of the electron transport chain[7],
the main supplier of cellular energy under aerobic conditions[8]. Since the heart is one
of the most energy-demanding organ in the body[9], cardiomyopathies are found in
20%-40% of children with mitochondrial disease[10].  Given the early onset of these
devastating  multisystem  diseases,  research  into  disease  mechanism  and  the
identification of potential therapeutics is essential. However, the heterogeneity and
rarity of the IEM and the mitochondrial  cardiomyopathies preclude randomized
clinical drug trials with standardized end-points. This makes disease modelling using
animals or cells an essential component in the study of these diseases.

ANIMAL MODELS
The use  of  animal  models  for  research,  with  rodents  in  particular,  continues  to
represent the most commonly used and successful approach in reductionist biology.
However, despite its many successes, this methodology is still questioned because of
ethical  implications,  the  frequent  inability  to  totally  recapitulate  human genetic
variability[11] and the fact that important species-specific differences exist for many
aspects of biology which complicate both the study of disease and the translation of
therapies into human subjects[12]. For example, in cardiac research specifically, the use
of  rodent models  may be limited due to substantial  biological  differences in the
cardiovascular  system  between  rodents  and  humans.  Rodent  hearts  beat  at
considerably higher heart rates (200-300 beats per minute) than humans (60-100 beats
per minute)[13]  and the duration of the ventricular action potential is significantly
shorter in rodents[14] compared to humans[15]. Additionally, cardiomyocytes differ in
the proteins expressed in the myofilaments, which affects repolarization and calcium
sensitivity[13].  One potential strategy to improve the utility of animal models is to
create “humanized models” using genetic engineering[11] or engrafting animals with
human cells or tissues and immune suppressing them to prevent rejection of the
foreign  material[16].  Although  this  type  of  model  is  useful  for  studying  many
conditions including cancer[17], infectious diseases[18] and liver disease[19], they have
important limitations, especially in terms of time, cost and difficulties in creation and
maintenance. Furthermore, these hybrid animal models are often not feasible for
studying the heart and cardiovascular system.

WJC https://www.wjgnet.com October 26, 2019 Volume 11 Issue 10

Jimenez-Tellez N et al. Cellular models for cardiomyopathy

222



CELLULAR MODELS FOR CARDIOVASCULAR DISEASE
The  adult  mammalian  heart  is  composed  of  multiple  cell  types,  including
cardiomyocytes, fibroblasts, endothelial cells, vascular and perivascular cells. The
composition  of  the  heart  varies  greatly  between  species [20]  but,  in  humans,
cardiomyocytes are the dominant cell type by volume, encompassing 70%-85% of the
total heart.  Cardiomyocytes give rise to specialized cells such as atrial myocytes,
ventricular myocytes and Purkinje cells[21] and are responsible for the generation of
contractile force[22]. However, although the other cell types only account for a small
portion  of  the  overall  total  myocardial  mass,  they  are  essential  for  maintaining
homeostasis by providing the extracellular matrix and intercellular communication
networks necessary to ensure proper cardiac function[23]. Although cardiomyocytes
may be dominant by volume, they are not the most abundant cells. Fibroblasts are
actually the most common cell type in the heart and are vital for maintaining the
structure, mechanical and electrical functions of the heart[24].  Cardiomyocytes and
fibroblasts are the best-studied cardiac cells and, since both cell types have important
functions in the heart,  we would suggest that both need to be examined to fully
comprehend the cardiomyopathies.

Cell  culture,  using cardiomyocytes,  fibroblasts  and other cardiac-related cells,
represents another well-established system to study human biology,  understand
disease and assess response to therapeutics. Primary cells and immortalized cell lines
derived from human tissues represent two commonly-used experimental models.
Primary cells reflect disease biology most faithfully since they are directly isolated
from the tissue of interest and they maintain the morphology, function and protein
markers in the dish as they possessed in vivo, but they are relatively delicate cells that
can be difficult to maintain in culture and have a finite lifespan with limited potential
for expansion[25]. Immortalized cells are derived by altering cell-cycle check points or
modifying telomerase activity and, although these cells don’t have a limited lifespan
and are capable of sustained active proliferation, they frequently contain genetic
aberrations that can accumulate over time and lead to cellular behaviours that are
distinct from those demonstrated in vivo[26].

Another approach to model disease involves the use of patient-derived cells. These
cells are obtained from an individual patient and therefore allow for the study of
human disease in its original genetic context and also have important advantages over
primary or immortalized cells. The two most commonly used patient-derived cell
types  used  for  research  today  are  induced  pluripotent  stem  cells  (iPSCs)  and
fibroblasts. Given that the genetic background for an individual is preserved, the use
of these patient-specific cells represents perhaps the best tool to realize personalized
medicine[27]. Personalized medicine refers to a health care approach which recognizes
each person’s distinct genetic, clinical and environmental history[28].  Personalized
medicine ideally adapts therapeutics in order to ensure the best response and safety
for  the  treatment  of  specific  diseases  with  an individualized approach[29].  Using
patient-specific cells can help realize this vision by helping researchers identify and
understand individual differences.

In conclusion, there are important differences between model systems (Table 1),
with advantages and disadvantages that are often dependent on the condition being
studied. In reality, a combination of models enabling both in vivo and in vitro studies
is often required. In this paper, our main focus will be to discuss and compare the
different cell types which could be useful for studying genetic cardiomyopathies as an
alternative to primary cardiac cells. We will illustrate our discussion with examples of
mitochondrial  cardiomyopathies  that  have been studied using different  cellular
models.

IMMORTALIZED CELL LINES
Immortalized  cells  are  defined  as  cells  whose  proliferative  capacity  has  been
enhanced using different methods[30]. There are a variety of established approaches to
immortalize  cell  lines  including  the  introduction  of  oncogenes [31 -33 ],  viral
transformation[34,35], the inactivation of tumor suppressor genes[36,37] or the inactivation
of telomere-controlled senescence[38]. The establishment of immortalized cell lines has
helped the scientific community to study different biological and molecular events[26],
although, this approach has been questioned since these immortalized cells differ
significantly from cells with an intact cell cycle control and they are more similar to
malignant cells in many respects. Therefore, the results obtained with these cells can
potentially be misleading if these differences are not considered[39]. However, the use
of immortalized cells still remains one of the most popular models for the study of
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Table 1  Comparison between animal and cell models

Properties Animal Cellular

Maintain genetic background No Yes

Cost of maintenance Expensive Less Expensive

Ease of maintenance Simple Difficult

Time required +++ +

Drug effects Potentially not translatable Translatable

Study of paracrine effects Yes No

Study of circulatory effects Yes No

disease.
Immortalized cells have been used to study two inherited diseases caused by point

mutations  in  mitochondrial  DNA  (mtDNA),  mitochondrial  myopathy,
encephalopathy, lactic acidosis and stroke-like episodes (MELAS), and myoclonic
epilepsy and ragged-red fibres (MERRF). In both diseases, an alteration in the post-
transcriptional modification of a uridine located in an essential position of specific
mitochondrial tRNAs, causes oxidative phosphorylation impairment that leads to the
inability to generate sufficient ATP to meet the energy demands of the cell[40]. These
mitochondrial disorders can be caused by mutations in several genes but,  in this
example, the immortalized cells were used to model the effect of an A>G transition at
nucleotide 3243 in the tRNALeu  gene causing MELAS[41]  and a A>G change in the
tRNALys gene at position 8344 causing MERRF[42]. Two different studies recapitulated
these diseases using cybrid cells[43,44]. Cytoplasmic hybrid cells (cybrid) are created
using a recipient cell line called rho-zero cells, whose mtDNA has been depleted but
the nuclear DNA remains intact  and a donor cell  which provides mtDNA to the
union[45].  This approach has the advantage of being able to isolate mtDNA from a
donor  patient  with  a  specific  mtDNA  mutation,  allowing  for  the  study  of  the
pathology in an immortalized cell line.

Another  rare  human  disorder,  Barth  syndrome  (BTHS)  was  studied  using
immortalized cell lines. BTHS is an X-linked recessive disorder characterized by early-
onset  cardiomyopathy  (usually  LVNC  or  DCM),  skeletal  muscle  weakness  and
neutropenia related to abnormal mitochondrial structure[46]. Disease severity is highly
variable,  with  patients  ranging  from  being  asymptomatic  to  having  severe
cardiomyopathy and end-stage heart failure[47].  Studies have shown that BTHS is
caused  by  loss-of-function  mutations  in  the  tafazzin  (TAZ)  gene[48].  TAZ  is  a
phospholipid  transacylase  located  in  the  inner  mitochondrial  membrane  and is
responsible for remodeling of the phospholipid cardiolipin[49] which is an essential
component of the mitochondrial membrane[50,51]. The TAZ gene consists of 11 different
exons[52]  and  mutations  have  been  identified  in  each  exon,  primarily  missense
mutations, although small insertions and deletions have also been found[53].

To study BTHS, the authors used a myoblast cell line (C2C12) derived from mouse
skeletal myoblast cells, which is commonly used as a model of disease in mammals
for skeletal muscle disorders and myopathies[54,55]. The authors designed a stable TAZ
knockout  (KO)  using  clustered  regularly  interspaced short  palindromic  repeats
(CRISPR) technology to target exon 3 in mouse TAZ and cloned it into a plasmid
together with the Cas9 nuclease and co-transfected into the cells with a plasmid that
allowed for selection with puromycin[56]. With the introduction of the plasmids into
the cell, the guide RNA binds to exogenous exon 3, and this binding is recognized by
the nuclease, which performs the cutting of the gene, disrupting it. The clone whose
genomic TAZ DNA band was fragmented into three pieces was the chosen one to be
the model of the disease. According to the authors, this model served to recapitulate
BTHS, being consistent with other previous models, showing mitochondrial defects
such as accumulation of monolyso-cardiolipin, impaired mitochondrial respiration
and increased mitochondrial ROS species[56].

Although these studies have used different immortalized cell models, these might
not be the best tool to recapitulate the diseases with accuracy. First of all, these cells
are derived either from tumors or from the immortalization of other cell times where
the cell cycle or the telomerase activity is compromised, therefore, these cells do not
resemble normal cell lines in terms of replication and lifespan and, consequently, this
can cause genetic and phenotypic variation over time leading to create heterogeneity
in the same cell line[57]. Secondly, these cell lines, like all cell lines are vulnerable to
contamination (e.g.,  Mycoplasma) which can remain undetected and modify cell
behaviour and gene expression[58]. Finally, the use of cellular models generated by
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using  techniques  that  knockout  a  gene  in  particular  in  a  cell  line,  might  not  be
sufficient  to  recapitulate  the  entire  spectrum of  disease  since  additional  genetic
modifiers are not reproduced.

FIBROBLASTS
Fibroblasts  are  the  major  stromal  cell-type  present  in  connective  tissue  and are
characterized by a flattened and elongated shape with a central nucleus[59] (Figure 1).
They are  derived from mesenchymal  precursors  and are  part  of  a  heterogenous
collection of cells widely distributed over the body. Fibroblasts play an important role
in  connective  tissue  by  producing  extracellular  matrix  compounds,  principally
collagen type I and III. Fibroblasts not only have a structural role but they are able to
repair damaged tissue by migrating to the site of injury and rapidly proliferating to
restore the wounded area[60]. This proliferation potential explains why fibroblasts are
so widely used and why they grow in vitro very easily[61]. In addition to their growth-
related  properties,  fibroblasts  are  also  increasingly  recognized  as  an  important
contributor  to  cardiac  biology  through  cell-cell  signalling  and  physical
interactions[62,63].  Unfortunately,  fibroblasts  have  distinct  electrophysiological
properties and these cells are not electrically excitable despite the presence of multiple
ion channels, including potassium and sodium channels[64]. Fibroblasts also lack a
specific cell surface marker that distinguishes them from other cell types[65]. However,
they can be isolated from a skin biopsy and grown in culture[66] but they do have a
limited lifespan[67], so their use to study function, structure and disease mechanism is
limited to cells that have not undergone an excessive (< 20) number or cell divisions
or passages[66].

Fibroblasts  have  also  been  used  to  study  MELAS  and  MERRF.  This  study
demonstrated that the tRNA point mutations did not modify the number of normal
mitochondria but there were important differences found regarding the number of
secondary lysosomes and residual bodies in both diseases compared to the control
cells[68]. Furthermore, in both diseases, there was impaired respiratory enzyme activity
which  decreased  mitochondrial  respiration  rate  and  membrane  potential  and
impacted cell viability due to the inability to synthesize enough ATP to meet the
energy requirements of the cell[68]. Even though the cell types affected by MELAS and
MERRF in humans are mainly neurons and myocytes[69,70], the easily obtainable skin
fibroblasts were sufficient to provide a helpful model to understand some of the
mechanisms by which these cell types are compromised. Fibroblasts were also used in
BTHS  to  help  understand  the  molecular  basis  of  the  disease.  As  previously
mentioned, diverse mutations have been found in each exon of TAZ, however, there
is  no clear  correlation between the gene mutation type and the different  patient
phenotypes[71]. The authors used fibroblasts from pediatric patients to correlate the
severity of the disease with cellular lipid abnormalities and found that there was
a b n o r m a l  c o m p o s i t i o n  o f  c a r d i o l i p i n ,  p h o s p h a t i d y l - c h o l i n e  a n d
phosphatidylethanolamine[72].  In  this  study fibroblasts  allowed the distinct  lipid
composition for each patient  to be characterized,  which enabled insight into the
phenotypic complexity of the disease[72].

Although  all  these  studies  successfully  used  fibroblasts  to  analyze  different
mitochondrial cardiomyopathies, all  studies had to work within the limitation of
fibroblast passage number. The passage number refers to the number of times that the
cell can undergo cell division and replication. Studies have shown that, with every
passage, the number of mitochondria decreases and that there are changes in the
structure of these organelles[73]. If not recognized and controlled for, these changes
have the potential to mislead researchers into making false conclusions regarding
mitochondrial morphology and function.

IPSCS
iPSCs were first created in 2006 after Shinya Yamanaka successfully reprogrammed
adult mouse fibroblasts into iPSCs by introducing the pluripotency factors Oct3/4
(Octamer binding transcription factor 3/4), Sox2 (sex determining region Y)-box 2), c-
Myc and Kfl4 (Kruppel Like Factor-4) under embryonic stem cells (ESC) conditions[74].
ESCs are derived from the inner cell mass of mammalian blastocysts and possess self-
renewal capacity, the ability to grow with an unlimited lifespan and the ability to
maintain  pluripotency  and  differentiate  into  every  cell  type  of  the  three  germ
layers[75,76]. The iPSCs created with these “Yamanaka factors” showed the morphology
(Figure 2), proliferative properties and gene expression associated with pluripotency

WJC https://www.wjgnet.com October 26, 2019 Volume 11 Issue 10

Jimenez-Tellez N et al. Cellular models for cardiomyopathy

225



Figure 1

Figure 1  Bright field microscopy images of human fibroblasts. A: 4 × magnification; and B: 20 × magnification.

in  ESCs[74]  but,  importantly,  did  not  have  to  be  derived  from discarded  human
embryos. Currently, iPSCs can be created from a variety of mature, differentiated cells
most commonly fibroblasts and peripheral blood mononuclear cells[77].

There  are  several  technical  approaches  for  the  delivery  of  the  four  critical
pluripotency factors necessary for cellular  reprogramming to occur[78].  There are
integrating methods that include retroviral transduction[74], lentiviral delivery[79] and
non-integrative methods such as adenoviral transduction[80], plasmid DNA (episomal)
transfer [81],  lox  p  lentivirus  delivery [82],  Sendai  virus  delivery [83],  piggyBAC
transposon[84], protein-mediated (polyarginine-tagged polypeptide)[85] and modified
synthetic  mRNA [ 8 6 ]  (Table  2).  Each  methodology  has  its  advantages  and
disadvantages[87-89] and the choice of delivery vector can have important implications
in downstream applications and, therefore, needs to be considered carefully.

Once created, iPSCs have significant advantages compared to other cell types as a
model of disease. Since they possess the ability to self-renew, there is no concern
about how many passages the cells can tolerate and these cells can be relatively easily
expanded in vitro and be used for many experiments[90]. Furthermore, since they can
be differentiated into mostly every cell  type[91],  researchers can generate patient-
disease- and tissue-specific cells for the disease of interest.

DIFFERENTIATION of IPSCS INTO CARDIOMYOCYTES
Most applications using iPSCs to study human heart disease have differentiated them
into beating cardiomyocytes[92]  although one group (discussed later) took a rather
unique approach and differentiated the iPSCs back into fibroblasts[93].  There are
several  different  published and commercial  methods  to  differentiate  iPSCs into
cardiomyocytes all of which are generally based on the signaling factors that are part
of the developmental pathway of cardiomyocytes in vivo[94-96] (Figure 3).

Although  the  ability  to  generate  patient-  and  disease-specific  beating
cardiomyocytes is a powerful tool for the study of individual cardiomyopathies[97], the
cardiomyocytes that are generated using current methods do have some limitations.
First of all, following differentiation, the final population of cardiomyocytes are not
completely homogeneous. Differentiated cells contain a mixture of atrial, ventricular
and Purkinje  cell-types with variable  functional  properties[98].  If  a  homogeneous
population is desired, it may be necessary to select for the cellular subpopulation of
interest using sorting techniques based on surface marker expression[99] or genetic
selection[100]  which further complicates the process requiring additional time and
expense and exposes the cells to additional handling and stresses which they may not
survive.  Furthermore,  for  some cell  types,  e.g.  ventricular  myocytes,  unique cell
surface markers do not exist[101]. Another issue is that the cardiomyocytes obtained
using current differentiation strategies have a phenotype resembling fetal cells in
terms of structure, molecular markers and metabolism[102]. This lack of maturity can
require additional steps (which are not fully established or reliably reproducible at
this time) or additional time in culture to obtain a more adult-like cardiomyocyte
population[103]  Several  methods  to  stimulate  the  maturation  of  iPSC-derived
cardiomyocytes  have  been  published  based  upon  electrical[104],  mechanical[105],
chemical stimulation[106] or matrix modification[107]. This is currently an area of active
investigation and future advances and improvements are certain which will further
enhance the utility of iPSC-CMs for the study of genetic cardiomyopathies. However,
even with these functional limitations of derived cells, they have been helpful for
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Figure 2

Figure 2  Bright field microscopy images of human induced pluripotent stem cells. Cells display a round morphology with a large nucleus and grow firmly
packed in colonies. A: 4 × magnification. B: 20 × magnification.

scientists seeking insight into cardiac biology and disease[108,109].

STUDYING GENETIC CARDIOMYOPATHIES USING IPSCS
Primary fibroblasts from a patient with MELAS were reprogrammed into iPSCs using
a retroviral approach in order to establish a novel disease model[110].  As standard
practice,  the differentiation capacities  of  the iPSCs were tested using a teratoma
formation assay to demonstrate that the cells were capable of generating all germ
layers and immunocytochemistry for the pluripotency markers Oct-4 and SSEA-4 was
performed to confirm pluripotency. Tissues in MELAS patients can vary in the levels
of  abnormal  mitochondria  (heteroplasmy)[111]  so  the  researchers  assessed this  in
patient cells using quantitative real-time PCR to measure mutation ratios and mtDNA
copy  number.  They  found  that  different  fibroblast  lines  had  different  levels  of
heteroplasmy  ranging  from  <  5%  to  95%.  They  then  demonstrated  that  those
fibroblasts with lower levels of heteroplasmy showed increased heteroplasmy after
several  passages  while  those  with  higher  levels  did  not  vary  significantly  after
multiple passages. There were also variations with regards to mtDNA copy number
after each passage. This data suggests that the mitochondrial abnormalities in patient
fibroblasts can change over time in culture. However, because of their importance in
cardiac biology, the authors still wanted to study MELAS. Therefore, the MELAS
iPSCs  were  differentiated  back  into  fibroblasts  but,  because  of  the  unique  self-
renewing properties of iPSCs, the authors could overcome passage-associated changes
in  the  mitochondria.  In  the  fibroblasts  derived  from  patient  iPSCs,  levels  of
heteroplasmy  were  found  to  be  similar  to  the  iPSCs  from  which  they  were
differentiated. These iPSC-derived fibroblasts were then characterized with regards to
the enzymatic activities of the mitochondrial respiratory complexes and compared to
primary  skin  fibroblasts.  These  studies  revealed  that  the  iPSC-derived  cells
recapitulated  the  disease  phenotype  and  did  not  demonstrate  altered  levels  of
heteroplasmy in culture and therefore represent a unique and novel in vitro model of
MELAS[110].

MERRF has also been studied using retrovirus-reprogrammed iPSCs. In this study,
they generated iPSCs from patient  dermal  fibroblasts.  After  reprogramming the
fibroblasts  using  OCT4,  SOX2,  KLF4,  and  GLIS1  delivered  into  the  cells,  they
differentiated the resulting iPSCs into the two different cell types most involved in the
disease,  cardiomyocytes (iPSC-CMs)[112]  and neural progenitor cells (iPSC-NPCs).
When they tested all three cell types, they found that all MERRF patient-derived cells
(iPSCs,  iPSC-CMs and iPSC-NPCs)  had reduced oxygen consumption,  elevated
reactive oxygen species (ROS), reduced growth and fragmented mitochondria. The
cellular phenotype correlated with the molecular mechanism of the disease, allowing
iPSCs and iPSC-derived cells to serve as a model for the disease[93].

Differentiated iPSCs have also been used in the study of BTHS. The cells of two
unrelated patients were reprogrammed using either retroviral[113] or modified RNA
approaches[114].  These two patients had different mutations in TAZ, one having a
frameshift mutation and the other a missense mutation. After the generation of the
iPSCs, they differentiated them into cardiomyocytes that they then used to create
tissue layers and a heart-on-chip model[115]. The iPSC-CMs showed abnormalities in
cardiolipin processing, sarcomere assembly, myocardial contraction, ROS production
and cardiomyocyte  functioning,  correlating  with  the  abnormalities  and  cardiac
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Table 2  Methods of delivery for reprogramming factors

Method Advantages Disadvantages

Retroviral transduction Efficient, validated for multiple cell types, easy Transgene integration

Lentiviral delivery Very efficient Transgene integration

Adenoviral transduction Does not integrate Low efficiency, only validated for fibroblasts

Plasmid DNA transfer (episomal) Good efficiency, does not integrate, able to
replicate autonomously, validated for multiple cell
types

Low efficiency in fibroblast reprogramming

Lox p lentivirus delivery High efficiency, excision of the integrated
sequence, gene expression profile closer to hES
cells

Genomic instability and genome rearrangements
and loxP site remains integrated

Sendai virus Efficient, does not integrate, validated for multiple
cell types

Cost if purchased commercially or challenging if
generated by a laboratory

PiggyBAC transposon Efficient, precise and efficient self-excision, does
not remain integrated

Published work only in fibroblasts, licensing
patent issues, pBt gene may remain active post-
transposition

Polyarginine tagged polypeptide Does not integrate Low efficiency, time-consuming, technically
challenging and work only on fibroblasts

RNA modified synthetic mRNA Very efficient, does not integrate, factor available
commercially

Cost if purchased commercially or challenging if
generated by a laboratory and work only on
fibroblasts

dysfunction observed in patients, demonstrating again that is possible to use an in
vitro model to provide insight into human disease and test potential therapeutics[116].

iPSC-CMs have also been used to study other cardiomyopathies.  For example,
iPSC-CMs have also been used to understand the pathological effects caused by the
reduced  expression  of  frataxin  (FXN)  in  Friedreich  ataxia  (FA).  This  neurode-
generative disease is caused by the expansion of a short tandem repeat (GAA) in the
FXN  gene,  which  can  result  in  transcriptional  silencing[117]  and  therefore,  the
development of HCM[118] which is an important component of the disease phenotype
but its development is not understood. In this study, the researchers generated iPSCs
from  three  patients  using  an  episomal  reprogramming  approach  and  then
differentiated the resulting iPSCs into cardiomyocytes[119]. Analysis of the iPSC-CMs
showed that these cells had an increased beating rate which was related to a defect in
calcium handling. Therefore, these cells revealed novel biology that could potentially
contribute to the future development of treatment for this disease[120]. It is important to
note that this cellular phenotype could arguably not have been accomplished with
any other cell type.

The DCM with ataxia syndrome (DCMA) is an autosomal recessive disorder caused
by mutation in DNAJC19 and is  characterized by 39% mortality[121]  during early
childhood due to severe heart failure[122]. DCMA has been related to BTHS due to the
presence of metabolic abnormalities (i.e. production of 3-methylglutaconic acid) and
abnormal mitochondria are thought to be responsible for heart failure[123]. Rohani et
al[123] successfully established four patient iPSC lines that have been differentiated into
CMs expressing cardiac-specific markers and this will allow for the study of four
unique patient cell lines. This disease still needs to be further characterized but the
use of iPSC-CMs derived from patients looks promising as a cellular model to provide
a better understanding of the disease.

Finally, iPSC-CMs have also been used to study familial HCM, characterized by
thickened left ventricular walls, myofiber disarrays and myocardial fibrosis that often
results in arrhythmias[124].  This can be caused by different mutation in at least 11
different  genes  which  encode  sarcomeric  proteins[125].  In  this  study,  the  authors
generated  iPSC-CMs  derived  from  an  HCM  patient  that  had  a  single  missense
mutation in the β-myosin heavy chain (MYH7) gene. Whole transcriptional analysis of
these  iPSC-CMs  provided  useful  insights  into  the  disease,  revealing  important
signaling pathways implicated in the pathogenicity of HCM[126].

FIBROBLASTS VS IPSCS
As we have described, both fibroblasts and iPSCs have been used to model genetic
cardiomyopathies and both cell types have important advantages and disadvantages
(Table 3). The characteristics of a specific cell type and the disease being studied may
have an important influence on the researcher’s choice of cellular model and, in some
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Figure 3

Figure 3  Cardiomyocyte differentiation protocol. Modified from Lian et al[135], 2012. hiPSCs: Human induced pluripotent stem cells.

situations,  the  study of  both  fibroblasts  and iPSCs  may be  complementary.  For
instance, in a disease in which the interaction between cardiomyocytes and fibroblast
plays a role in the development of the pathogenesis, for example in cardiac fibrosis
and arrhythmias[127], the study of both cell types would likely be beneficial.

In  order  to  solve  the  lifespan problem with  primary  cells  such  as  fibroblasts,
reversible immortalization could be performed to increase the number of passages
and limit the risk for the development of aberrations in the genome[128]. In one study,
this  reversible  immortalization  was  performed  in  primary  neonatal  rat  cardio-
myocytes using lentiviral transduction with either simian virus 40 large T antigen
(TAg) or Bmi-1 together with the human telomerase reverse transcriptase (hTERT).
After  the  cells  were  expanded,  the  introduced  genes  were  removed  using  an
adenoviral vector expressing Cre recombinase. The transduction of Bm1-1/hTERT
into  the  primary  cardiomyocytes  successfully  immortalized  the  cells  and  they
maintained  the  expected  cell  morphology  and  presence  of  contact  inhibition,
suggesting  that  the  cells  had  not  become  aberrant  during  the  immortalization
process[129]. This technique is an example of how genetic engineering could be used to
overcome some of the limitations of cell biology which may be useful to researchers
seeking to study a particular cell type.

Although patient-derived iPSCs and the differentiated cells that are created are
excellent models of disease, the generation of appropriate controls is essential since
they will help to define the abnormal phenotype. For some diseases that are enriched
in specific populations with a unique genetic background, for example, DCMA, which
is highly prevalent in the Hutterite population of southern Alberta[130], there is a need
for  controls  who also  have  the  same genetic  background.  The  Hutterites  are  an
isolated and genetically-closed population descended from a limited number of
European ancestors with a communal religious lifestyle[131]. CRISPR/Cas9[132] can be
used to repair the DNA mutation in patient cells to create isogenic controls[133] that are
genetically identical except for a single genetic mutation background[134].

CONCLUSION
Cellular models represent an important tool for investigating rare human diseases
including the genetic cardiomyopathies.  Generic immortalized cells are the most
commonly used cell model as they are the easiest to handle in terms of proliferation
capacity, growth rate and low maintenance and can be easily genetically manipulated.
Conversely,  obtaining  cells  from  individual  patients  allows  the  study  of  inter-
individual differences and the important role of genetic modifiers in shaping disease
phenotype and increases the possibility of developing personalized therapeutics.
Certainly, in vitro models have some significant limitations but, in many cases, can
provide a model that is otherwise not available. Particularly for cells differentiated
from iPSCs, it is true that further research is necessary to optimize these cells but the
potential for the development of an accurate and personalized cellular model is very
promising for those diseases where conventional cells and animal models are limited.
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Table 3  Advantages and disadvantages of different cell types for modeling disease in vitro

Properties Fibroblasts iPSCs

Proliferation capacity + ++

Self-renewal No Yes

Longevity Limited Unlimited

Differentiation No Yes

Metabolism Quiescent Energetic

Acquisition Easy Difficult

Cost + +++

Ease of maintenance Simple Difficult

Necessary expertise Low High

Disease modeling + ++

Structure Single elongated cells Round colonies/beating CM sheets

Maturation Not applicable Required for CM

iPSCs: Induced pluripotent stem cells; CM: Cardiomyopathy.
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