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Conventional kinesin, responsible for directional transport of cel-
lular vesicles, takes multiple nearly uniform 8.2-nm steps by
consuming one ATP molecule per step as it walks toward the
plus end of the microtubule (MT). Despite decades of intensive
experimental and theoretical studies, there are gaps in the elu-
cidation of key steps in the catalytic cycle of kinesin. How the
motor waits for ATP to bind to the leading head is controver-
sial. Two experiments using a similar protocol have arrived at
different conclusions. One asserts that kinesin waits for ATP in
a state with both the heads bound to the MT, whereas the other
shows that ATP binds to the leading head after the trailing head
detaches. To discriminate between the 2 scenarios, we developed
a minimal model, which analytically predicts the outcomes of a
number of experimental observable quantities (the distribution
of run length, the distribution of velocity [P(v)], and the ran-
domness parameter) as a function of an external resistive force
(F) and ATP concentration ([T]). The differences in the predicted
bimodality in P(v) as a function of F between the 2 models may
be amenable to experimental testing. Most importantly, we pre-
dict that the F and [T] dependence of the randomness parameters
differ qualitatively depending on the waiting states. The random-
ness parameters as a function of F and [T] can be quantitatively
measured from stepping trajectories with very little prejudice in
data analysis. Therefore, an accurate measurement of the ran-
domness parameter and the velocity distribution as a function
of load and nucleotide concentration could resolve the apparent
controversy.

kinesin | molecular motors | chemomechanical coupling |
randomness parameter

K inesin-1 (Kin1) is an archetypal cellular transporter, which
moves along the microtubule (MT) to shuttle cargo toward

the cellular periphery. In the last quarter century, a number of
spectacular experimental studies (1–5) have revealed many of
the salient features of Kin1 structure and motility: 1) Kin1 is
a homodimer made up of 2 ATPase and MT-binding heads.
A key structural element, the neck linker (NL), undergoes an
order/disorder transition during the catalytic cycle termed “NL
docking.” The distal tail forms a coiled coil which is responsi-
ble for dimerization and is also involved in cargo binding (6).
2) Remarkably, the motor takes almost precisely 8.2-nm steps
(5), which is commensurate with the spacing between 2 adja-
cent αβ dimers—the building blocks of the MT filament. 3)
For each diffusional encounter with the MT, Kin1 takes mul-
tiple steps before detaching, a feature termed processivity (7).
4) In the absence of resistive load (F ), Kin1 moves nearly uni-
directionally (backward steps are rare) toward the plus end of
the MT (8) and predominantly along a single protofilament
(9). In addition, the velocity (v) distribution is roughly Gauss-
ian with a peak typically in the range (100 to 1,000) nm · s−1

depending on ATP concentration (10); the mean velocity is much
larger than what is found in other motors such as myosin V and
dynein. As the resisting load increases, the probability that the
motor takes backward steps becomes more prominent, reach-
ing 0.5 at the stall force FS ≈ 7 pN (11, 12). At stall, the mean

motor velocity is zero, with a velocity distribution predicted to
be bimodal and distinctly non-Gaussian (13). 5) The 2 heads
step by a hand-over-hand mechanism (2, 5), in which the trail-
ing head (TH) detaches from the MT, bypasses the leading head
(LH), and reattaches to the target binding site (TBS) on the
MT. Although it has long been advocated that the search for the
TBS occurs largely by diffusion, it is only recently this has been
definitively established (14–16). The docking of the NL of the
LH propels the tethered head toward the plus end of the MT,
thereby minimizing the probability of taking backward steps. For
this reason, NL docking is sometimes referred to as the “power
stroke.” 6) The energetic cost necessary to realize this directed
motion is provided by the hydrolysis of ATP, which kinesin, like
other motors, consumes parsimoniously. One molecule of ATP
is hydrolyzed per step (17). The binding and hydrolysis of ATP
are the events associated with the NL docking (18). Based on
these observations and other key experiments probing the varia-
tions of the stepping characteristics of the motor as a function of
ATP concentration and applied load, several theoretical models
for motors in general and the catalytic cycle of Kin1 in particu-
lar have been proposed (13, 19–24), although issues such as the
mechanism of interhead communication (gating) continue to be
topics of interest (25–27).

Despite these significant advances, there is a key problem
related to the catalytic cycle of Kin1, which surprisingly still
plagues the field: What is the waiting state of Kin1 for ATP
binding? The answer to this fundamental question, which goes
to one of the most important steps in the catalytic cycle of the
motor, has been debated for nearly 2 decades, with contrasting
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pieces of evidence provided by optical trapping and single-
molecule fluorescence experiments. Some studies have argued
that the waiting state for ATP binding to the LH occurs
when both the heads are bound (2HB) to MT (28), whereas
others assert that binding occurs only after the TH has detached,
placing Kin1 in a 1-head-bound (1HB) state (29, 30). The wait-
ing state likely depends on ATP concentration. Kin1 waits with
both heads bound (2HB) to MT at saturating ATP concentra-
tion whereas at low ATP concentration Kin1 might be in a 1HB
state (4) before ATP binds. However, to discriminate between
the 1HB and 2HB ATP waiting states, it is necessary to monitor
the location of the tethered head at the time of ATP bind-
ing, which requires experiments with high temporal and spatial
resolution.

The development of an experimental technique in which a
large gold nanoparticle (AuNP) (between 20 and 40 nm in diam-
eter) is attached to one of the heads has made it possible to
track indirectly the position of the tethered head during the step-
ping process as a function of ATP concentration. By tracking
the location of the AuNP, via either interferometric scattering
microscopy (iSCAT) (31) or total internal-reflection dark-field
microscopy (14), 2 groups have achieved a degree of temporal
and spatial resolution necessary to resolve the waiting state of
kinesin. From the analysis of the AuNP movement at different
ATP concentrations, Mickolajczyk et al. (31) argued that the
motor waits in the 2HB state when the concentration of ATP
is ≥ 10µM. The 2HB → 1HB transition follows ATP binding,
and Kin1 spends about half of the stepping time with the teth-
ered head parked above the bound head, which implies that
the TH is displaced by about 8.2 nm from the initial binding
site. In sharp contrast, Isojima et al. (14) established that ATP
binds to the LH only after the TH detaches from the MT. In
other words, Kin1 waits for ATP in the 1HB state. In addi-
tion, computer simulations, using coarse-grained (CG) models
for motors in general (32, 33) and kinesin in particular, have
provided insights into their functions. In particular, CG models
that accurately reproduce several features found in experiments
(15, 16, 34–36) have shown that the TH does spontaneously
detach but does not walk toward the plus end of the MT until
the neck linker docks to the LH, which requires ATP binding
to the leading head. These findings support the 1HB conforma-
tion as the Kin1 ATP waiting state. The contradictory findings
reported in refs. 14 and 31 and alluded to by Sindelar and Liu
(37) leave the vexing question posed in the previous paragraph
unanswered. This basic question needs to be fully answered to
achieve a complete understanding of the stepping mechanism of
conventional kinesin.

It is unclear whether the differing conclusions reached in the
recent experimental studies (14, 31) arise because of the discrep-
ancies in the constructs of the kinesin, the method of analysis
of the trajectories, or the variations in the temporal resolution
achieved in the experiments. Isojima et al. (14) used a cys-
lite motor to control the location of the linkage between the
motor and the AuNP. In contrast, Mickolajczyk et al. (31) used
a WT Kin1, whose N terminus was extended with an Avi tag
which is linked to the AuNP through a streptavidin–biotin com-
plex. Moreover, because of the higher temporal resolution in
the dark-field microscopy experiments (14), Isojima et al. (14)
could discern the 1HB state by simultaneously monitoring the
transverse fluctuations directly from the trajectories in a straight-
forward manner. On the other hand, Mickolajczyk et al. (31)
relied on hidden Markov models (HMMs) to extract information
from the stepping trajectories.

To discriminate between the contrasting interpretations of
these experiments, it is desirable to consider quantities that are
straightforward to measure and that do not require indirect
techniques of data analysis. Ideally, a theoretical study capa-
ble of describing both scenarios (1HB and 2HB waiting states

for ATP) should be able to identify which observable might be
used to discriminate between the proposed cycles for kinesin.
Here, we use a simple and accurate model for kinesin step-
ping and calculate analytically a number of standard measurable
quantities, such as the run length (n) distribution, P(n); veloc-
ity (v) distribution, P(v); and the randomness parameter as a
function of ATP concentration (denoted as [T] from now on)
and resistive force F . We show that P(n) is independent of
[T], and P(v) as a function of [T] and F is qualitatively simi-
lar for both the 1HB and 2HB models but differs quantitatively,
a discrepancy that is amenable to experimental test. Remark-
ably, we predict that the mechanical and chemical randomness
parameters, which are defined from readily measurable quan-
tities, could be used to discriminate between the 2 scenarios.
In particular, we find that both the mechanical and chemical
randomness parameters at different [T] and F are qualita-
tively different for these 2 scenarios in which Kin1 waits for
ATP either in the 1HB or in the 2HB state. Thus, we propose
that measurements of the randomness parameters and P(v)
as a function of [T] and F should unambiguously allow one
to distinguish between the 2 very different ATP waiting states
of Kin1.

Results
We begin by presenting some nomenclature. We refer to the
scenario in which ATP binds to the LH of kinesin when both
heads are attached to the MT as the “2HB model,” whereas
the “1HB model” refers to the alternative sequence of events,
in which the detachment of the TH of kinesin precedes the
binding of ATP to the LH. To calculate P(v) and P(n) we
created 2 versions of what is perhaps the simplest chemical kinet-
ics model for a molecular motor (Fig. 1 C and D), one for
the 2HB model and one for the 1HB model. The difference
between the two lies in the dependence on ATP concentra-
tion of the kinetic rates. In the 2HB model the transition to
the 1HB state occurs only after ATP binds to the leading head
(Fig. 1C); therefore, the 2HB → 1HB rate accounts for the
dependence on [T]. Because in the 1HB model ATP binds only
after the tethered head detaches, the stepping rates, k+ and
k−, as well as detachment rate γ are assumed to depend on
[T] (Fig. 1D).

We use Michaelis–Menten kinetics to describe ATP binding
and account for the effect of external load on the rates by adopt-
ing the Bell model (38). To distinguish between the parallel
components of the vectorial load applied to the motor, which
introduce the symbols ‖ and ⊥, respectively, see Fig. 1B. For
the 2HB model, k{[T]}= k0[T]

KT+[T] , k
+(F ) = k+

0 e−βFd+

, k−0 (F ) =

k−eβFd−
, and γ(F ) = γ0e|F |/Fd , where d±= d±‖ F‖/F and the

load Fd = (|F |kBT )/(F⊥dγ). In the case of the 1HB model
(Fig. 1D), k is a constant, independent of [T] and load, k+ =
k+
0 [T]

KT+[T]e
−βFd+

, k−=
k−
0 [T]

KT+[T]e
βFd−

, and γ= γ0[T]
KT+[T]e

F/Fd . Note
that in both the scenarios we have assumed that the 2HB→ 1HB
transition is independent of load.

For the first step in the calculation of P(v) and P(n) we obtain
the stationary fluxes for forward stepping, backward stepping,
and detachment. The motor is viewed as a random walker start-
ing in the 2HB state at the MT site i . A steady-state probability
distribution of occupying the 2HB and 1HB states is enforced by
replenishing the 2HB state of all of the walkers that step forward
or backward (reaching i + 1 and i − 1, respectively) or detach
(39, 40),

dP2HB

dt
=−kP2HB + (γ+ k+ + k−)P1HB = 0

dP1HB

dt
=−(γ+ k+ + k−)P1HB + kP2HB = 0.

[1]
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Fig. 1. (A) Schematic representation of a kinesin motor walking hand over
hand on the MT. The tethered head detaches, undergoes diffusion, passes
the LH, and reattaches to the target binding site that is roughly 16.4 nm
from the starting position, resulting in a net displacement of an 8.2-nm step.
In the process one ATP molecule is hydrolyzed. (B) Decomposition of the
resistive force applied to the bead attached to the coiled coil of kinesin
into a perpendicular (⊥) and parallel (‖) direction to the MT. (C) Kinetic
scheme describing the ATP waiting state showing that binding to the LH
occurs when both the heads are bound to the MT in the 2HB state. (D) Same
as C except ATP binds when kinesin is in the 1HB state. In both the scenarios
the i − 1 and i + 1 states are equivalent to i in that they correspond to both
the heads bound to the track. The difference is in the state that waits for
ATP. The state labeled OUT represents an absorbing state.

The normalization condition implies that P2HB +P1HB = 1. The
solution of Eq. 1 gives P1HB = k

k+k++k−+γ
. The stationary fluxes

for forward stepping (J+), backward stepping (J−), and detach-
ment (J γ) are computed by multiplying the steady-state prob-
ability of being in state 1HB (P1HB) times k+, k−, and γ
(39, 40),

J±=
k

kT
k±, J γ =

k

kT
γ, [2]

where kT = k + k+ + k−+ γ.
The average velocity and run length are given by V = s(J+−

J−) and L=V /J γ , respectively, where s = 8.2 nm is the kinesin
step size, which we assume is a constant. It is straightforward to
show that

V =
Vmax[T]

KM + [T]
, L=

(k+− k−)s

γ
, [3]

for both the 2HB and 1HB models. The maximum velocity
at saturating ATP concentration for the 2HB and 1HB mod-
els is given by Vmax = k0(k

+−k−)s

k0+k++k−+γ
and Vmax = (k+

0 e−βFd+

−
k−0 eβFd−

)ks/kT , respectively. The concentrations at which the
velocity of Kin1 is half-maximal are given by KM = KT (k++k−+γ)

k0+k++k−+γ

for the 2HB model (Fig. 1C) and KM =KT for the 1HB model
(Fig. 1D).

Run Length Distribution, P(n). To solve for the run length and
velocity distributions, we construct the joint probability [P(m, l)]
that the motor takes m forward steps and l backward steps before
detachment (see SI Appendix for details),

P(m, l) =
(m + l)!

m!l !

(
J+

JT

)m(
J−

JT

)l (
J γ

JT

)
. [4]

In Eq. 4, J+/JT (J−/JT ) is the probability of taking a for-
ward (backward) step starting from the 2HB state, and JT =
J+ + J−+ J γ . Similarly, J γ/JT is the probability that a motor
in the 2HB state detaches. The number of all of the possi-
ble ways in which a sequence of m forward and l backward
steps can be realized is accounted for by the binomial factor.
If the run length is n =m − l , then P(n) is given by P(n) =∑∞

m,l=0 P(m, l)δm−l,n , where δm−l,n is the Kronecker delta
function (Fig. 2). By carrying out the summation we obtain

P(n ≷ 0) =

(
2J±

JT +
√

J 2
T − 4J+J−

)|n|
J γ√

J 2
T − 4J+J−

. [5]

Note that the functional form of P(n ≷ 0) is independent of
the model considered—it is the dependence of the fluxes on [T]
and F that separates the 2HB and 1HB models. We note that
the expression for P(n) obtained here is equivalent to the one
obtained previously (13, 41), which can be derived by substitut-
ing the rates of forward step, backward step, and detachment for
the corresponding fluxes defined in Eq. 2.

Velocity Distribution, P(v). To calculate P(v), we first compute
f (m, l , t), which is the joint probability density for detaching
during a time interval from t to t + dt after the motor takes
m forward and l backward steps. Let f+(t) be the probability
density of taking a forward step between t and t + dt , given that

A

B

Fig. 2. Simultaneous fits of P(L) (L = sn with s = 8.2 nm) and P(v) at zero
load for Kin1 to the experimental data given in ref. 10. Red circles are from
experiment and the blue and green lines are results from our theory, for
the 2HB and the 1HB model, respectively. (A) Run length distribution. (B)
Velocity distribution of Kin1. The comparison shows not only that the theory
reproduces the measured data well but also that the overlap of the blue and
green lines shows at zero load the differences in ATP waiting states are not
reflected in the distributions of the run length and velocity.

Takaki et al. PNAS | November 12, 2019 | vol. 116 | no. 46 | 23093

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1913650116/-/DCSupplemental


at t = 0 the motor is in the 2HB state. Similarly, the probability
densities for stepping backward and for detachment are denoted
by f−(t) and fγ(t). We show in SI Appendix that f+(t), f−(t),
and fγ(t) are linear combinations of 2 exponential functions with
rates ξ1 = k and ξ2 = k+ + k−+ γ (see Fig. 1 for the definition
of the rates). The probability density f (m, l , t) is given by

f (m, l , t) =
(m + l)!

m!l !∫ t

0

dtm+l

∫ tm+l

0

dtm+l−1· · ·
∫ t3

0

dt2

∫ t2

0

dt1

m∏
i=1

f+(ti − ti−1)

m+l∏
i=m+1

f−(ti − ti−1)fγ(t − tm+l).

[6]

As detailed in SI Appendix, the solution of the integral equation
in Eq. 6 is

f (m, l , t) =
γ
√
π

m!l !
e−

ξ1+ξ2
2

t tm+l k
m+l+1(k+)m(k−)l

|ξ2− ξ1|m+l+1√
|ξ1− ξ2|tIm+l+ 1

2

(
|ξ1− ξ2|

2
t

)
,

[7]

where Im+l+ 1
2

(
|ξ1−ξ2|

2
t
)

is the modified Bessel function of the
first kind. The velocity distribution may be obtained by changing
the variables to v = (m − l)/t , which gives

P(v > 0) =

∞∑
m,l
m>l

m − l

v2

γ
√
π

m!l !
e−

ξ1+ξ2
2

m−l
v

(
m − l

v

)
m+l+ 1

2

km+l+1(k+)m(k−)l

|ξ2− ξ1|m+l+ 1
2

Im+l+ 1
2

(
|ξ2− ξ1|

2

m − l

v

)
.

[8]

The expression for P(v < 0) is presented in SI Appendix. Note
that both Eqs. 7 and 8 hold if ξ1 6= ξ2. However, as we show in SI
Appendix, the solution for ξ1 = ξ2 has the same form and can be
obtained as the limit for ξ1→ ξ2 in Eq. 8. Again, the functional
form for P(v) is the same in the 2HB and 1HB models, which
are differentiated only by the dependence on F and [T] of the
chemical rates.

Analyses of Experimental Data. We first analyzed the F = 0 exper-
imental data for Kin1 (10, 42; see Fig. 2) to obtain the 8
parameters at zero load by fitting Eq. 5 to the run length distri-
bution, with the constraint that the average velocity J+− J−=
132.8 steps per second at [T] = 1 mM (10) and the ratio of for-
ward over backward steps J+/J−= 221 at [T] = 10 µM and
[T] = 1 mM (42). We also used the load dependence of the aver-
age velocity at 1-mM and 10-µM ATP concentration in ref. 42 to
obtain the parameters that depend on F and [T]. Following pre-
vious studies, we set Fd = 3 pN (13, 43) and |d+|+ |d−|= 2.9 nm
(42). Overall we chose the fitting parameters to be k0, KT , k+

0 ,
and d+ from the 8 parameters in our model. The best-fit parame-
ters are listed in Tables 1 and 2 for the 2HB and the 1HB model,
respectively. It is worth pointing out that k+

0 and k−0 for both
the 1HB and 2HB models are fairly close to each other and are
in rough accord with our previous study that did not consider
[T] dependence (13). Similarly, the distances to the transition
state when F 6= 0 (d+ and d−) for both the schemes are not too
dissimilar (Tables 1 and 2).

To ascertain that our kinetic schemes for the 2HB and 1HB
models provide a faithful description of the data of Mickolajczyk
et al. (31) and Isojima et al. (14), we compare the lifetime of the
1HB [τ1HB = 1/(k+ + k−+ γ)] and 2HB (τ2HB = 1/k) with the

Table 1. Extracted parameters for the 2HB model

Parameter Meaning of the parameter Value

k0 Bare rate of transition from 2HB to 1HB 787.0(s−1)
k+

0 Bare rate for forward step 185.5(s−1)
k−

0 Bare rate for backward step 0.8(s−1)
γ0 Detachment rate at 0 load 2.4(s−1)
d+ Effective transition distance for 1.6 (nm)

forward step
d− Effective transition distance for 1.3 (nm)

backward step
Fd Detachment load 3.0 (pN)
KT Michaelis–Menten constant for 594.0 (µM)

ATP binding

experimental measurements. As shown in Fig. 3 the agreement
for both the scenarios is excellent, indicating that our theory
captures the results of the experiments (14, 31) accurately. We
hasten to emphasize that the data from Mickolajczyk et al. (31)
and Isojima et al. (14) were not used for fitting. The agreement
is a genuine emergent feature of our kinetic model, which lends
credence to the additional predictions made below.

Velocity Distribution Is Bimodal When F 6= 0. We use the analyt-
ical solutions for P(n) (Eq. 5) and P(v) (Eq. 8) to predict
how the distributions of run length and velocity change over a
broad range of load and ATP concentrations for the 2 mod-
els (Fig. 4). First, we note that the bimodality of the velocity
distribution, originally predicted by Vu et al. (13), is evident
at both high (1-mM) and low (10-µM) ATP concentrations.
The peak at the negative v increases as F approaches FS . As
the ATP concentration is lowered the motor slows down and the
location of the peak of the velocity distribution becomes closer to
zero. Second, the P(v)s at all values of F when [T] is 1 mM are
similar in the 1HB and 2HB scenarios (Fig. 4A) and hence cannot
be used to easily distinguish between them when the [T] is high.
Although the shape of P(v) does depend on the ATP waiting
state at low [T] (Fig. 4B), which in principle is amenable to exper-
imental test. However, the small qualitative difference may not
be sufficient to discriminate between the waiting states in prac-
tice. Bimodality in P(v) (13) arises because Kin1 takes nearly
constant discrete steps on the MT in multiples of the step size
(s = 8.2 nm). This feature is critical in the presence of load and
is prominent as the stall force is approached. Mathematically, it
was shown in ref. 13 that upon making a continuous approxima-
tion in the derivation of P(v), which would allow us to replace
discrete sums by integrals in Eq. 8 for example, the bimodality
is completely washed away, and one obtains a Gaussian distri-
bution centered at zero velocity at the stall force. Thus, it is the
ability of Kin1 to take almost precisely discrete steps on the MT
that results in the bimodal distribution in P(v), which becomes
pronounced in the presence of external resistive force.

To summarize, we showed that the bimodality of P(v) is
robust to changes in the concentration of ATP and the model
used for the ATP waiting states. This provides experimental flexi-
bility in testing the predicted bimodality. Although the prediction
of bimodal behavior as a function of [T] and F is most interest-
ing in its own right, it may be challenging to use P(v) as a probe
to determine the nature of the ATP waiting state in conventional
kinesin.

Randomness Parameters Are Qualitatively Different in the 1HB and
2HB Waiting States for ATP. Fluctuation analyses in molecular
motors are performed using the so-called chemical and mechan-
ical randomness parameters (11, 17, 44). The former describes
the fluctuation of the enzymatic states of the motor and is given
by rC = (〈τ2〉− 〈τ〉2)/〈τ〉2. Here, τ is the dwell time of the
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Table 2. Extracted parameters for 1HB model

Parameter Meaning of the parameter Value

k0 Bare rate of transition from 2HB to 1HB 538.0(s−1)
k+

0 Bare rate for forward step 184(s−1)
k−

0 Bare rate for backward step 0.8(s−1)
γ0 Detachment rate at 0 load 3.0(s−1)
d+ Effective transition distance for 1.9 (nm)

forward step
d− Effective transition distance for 1.0 (nm)

backward step
Fd Detachment load 3.0 (pN)
KT Michaelis–Menten constant for 21.0 (µM)

ATP binding

motor at one site and the bracket denotes the average over
an ensemble of motors. The mechanical randomness parameter
is given by rM = limt→∞(〈n2(t)〉− 〈n(t)〉2)/〈n(t)〉. It can be
shown that rC = rM and is bounded from 0 to 1 if there are no
backward steps (45). However, it is possible that rM increases
beyond 1 when load acts on the motor due to the presence of
backward steps. We found analytical expressions for rC and rM ,
which allowed us to compare the deviation of the 2 kinds of
randomness parameter as the external load increases. We can
recover rC from rM by using the relation rC = [(2P+− 1)rM −
4P+(1−P+)]/(2P+− 1)2, where P+ is the probability of for-
ward stepping. We denote the chemical randomness parameter
calculated from the mechanical randomness parameter given
above as r̄C to differentiate it from rC , which is not easy to mea-
sure experimentally (45). The relationship connecting rC and rM
has been derived elsewhere (46, 47). In SI Appendix, we provide
an alternate method, which connects between the chemical and
mechanical randomness parameters. The chemical randomness
parameter in our model is written as

rC =
k2 + (k+ + k−+ γ)2

(k + k+ + k−+ γ)2
. [9]

To calculate the moments needed to calculate rM , we first obtain
the renormalized probability distribution, f̄ (n > 0, t), for the
position of the motor at time t on the track,

f̄ (n, t)=
1

C

∞∑
l=0

γ
√
π

(n + 2l)!l !
e−

ξ1+ξ2
2

t tn+2l+ 1
2

kn+2l+1(k+)n+l(k−)l

|ξ2− ξ1|n+2l+ 1
2

In+2l+ 1
2

(
|ξ2− ξ1|

2
t

)
.

[10]

The normalization constant C , which accounts for the detach-
ment of motors, is obtained by summing over both positive and
negative values of n in Eq. 10 (see SI Appendix for details). By
computing the first and second moments of f̄ for n at sufficiently
long times, we can obtain an expression for the mechanical ran-
domness parameter rM . Because rC in Eq. 9 depends on ATP,
which occurs in different steps in the 2HB and 1HB models
(Fig. 1 C and D, respectively), the variation of rC as a function of
[T] could be used to assess the likelihood of the 2 models.

In Fig. 5 we plot the randomness parameters, rM , r̄C , and
rC for the kinetic schemes in Fig. 1 C and D as a function
of ATP concentration at different loads. The dependence on
ATP concentration of the mechanical randomness parameters
for kinesin has been previously reported (11, 17, 48). We plot-
ted the randomness parameter obtained in the experiments by
Visscher et al. (11) and Verbrugge et al. (48) in Fig. 5 to assess
whether the theory captures the experimental behavior. It is clear
that the theory and experiments agree only qualitatively with the

trends being very similar. It is known from even more compli-
cated models that it is difficult to calculate with high accuracy
the dependence of various randomness parameters on F and
[T] (11, 49). Because the randomness parameter measures the
inverse of the number of rate-limiting states in the cycle, it is not
unreasonable that our model may overestimate the randomness
parameter. At higher forces our model for chemical randomness
is in near-quantitative agreement (F = 6 pN). In addition, we
recover the trend observed in experiments (F = 1 pN). At inter-
mediate values of the forces (F = 4 pN) the agreement is less
accurate. Thus, we surmise that the agreement between theory
and experiments is reasonable so that we can discuss the use of
these parameters in deciphering the ATP waiting state of kinesin.

Remarkably, the dependence of the randomness parameters
on [T] and F is dramatically different in the 2 models for
the ATP waiting states. In the 1HB model, the randomness
parameters decrease monotonically. In sharp contrast, if ATP
binds when both heads are engaged with the MT, we predict a
nonmonotonic function of [T] with a minimum occurring at near
[T] ≈ 100µM. This finding suggests an alternative, and perhaps
a more straightforward way, of differentiating between 2 types

A

B

Fig. 3. Mean dwell time for the 2HB state (τ2HB) and the 1HB state (τ1HB)
as a function of ATP concentration at F = 0. (A) The 2HB model (Fig. 1C). (B)
The 1HB model (Fig. 1D). Red circles and blue squares are taken from the
experiments by Mickolajczyk et al. (31) (A) and Isojima et al. (14) (B). Lines
are the theoretical predictions for the dwell times for the 1HB state and
2HB states. Note that in A τ1HB is [T] independent whereas in B τ2HB does
not depend on [T].
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A

B

Fig. 4. Velocity distributions for v 6= 0 predicted by our theory for different
loads and ATP concentrations. Solid lines are for the 2HB model (Fig. 1C) and
dashed lines are for the 1HB model (Fig. 1D). Colors represent different loads
applied to kinesin. (A) Velocity distribution at 1 mM ATP concentration. (B)
Velocity distribution for 10 µM ATP concentration.

of waiting states for ATP. If the randomness parameters (rM
and rC ) could be measured using the higher-resolution single-
molecule experiments (14) as a function of [T] and F , then
the timing of ATP binding to kinesin could be unambiguously
determined.

It is most interesting that at all values of F in the model based
on the 2HB waiting state the randomness parameters have a
clear minimum as the ATP concentration is changed whereas in
the 1HB model the decrease is monotonic and is almost flat as
F increases. The difference can be appreciated by noting that
in the 2HB model the rate-determining step for completing a
step changes as [T] is increased from a low value. In particular,
at low [T] the rate-limiting step is the 2HB → 1HB transition
(Fig. 1C) whereas at high [T] the 1HB → 2HB transition is
rate limiting (Fig. 1C). As a consequence of the change in the
rate-determining step, there is a minimum in the values of the
randomness parameter at a critical value of the ATP concentra-
tion. Let us write Eq. 9 as rC = 1+(x/k)2

(1+x/k)2
, where x = k+ + k−+ γ.

Using the parameters in Table 1 we determine that at low [T]
with F = 0 x

k
� 1, whereas at saturating ATP concentration x

k
≈

0.3 with a cross-over (location of the minimum in the random-
ness parameter) occurring at x

k
= 1. The values of [T] at which

the randomness parameters are a minimum at different values of
F may be estimated using the values in Table 1, which is roughly
in accord with the results in Fig. 5.

In sharp contrast, in the 1HB model the 1HB→ 2HB is always
slower than the 2HB → 1HB, a feature that is enhanced as F
increases. This is because the 1HB → 2HB transition is slowed
down with load, whereas the 2HB→ 1HB is unaffected. In other

words, at all values of the ATP concentration the 1HB → 2HB
transition is rate limiting with x

k
being less than unity. As a conse-

quence, the chemical randomness parameter is nearly monotonic
and is close to unity at all values of F , thus making rC almost
independent of [T] (Fig. 5).

It might be tempting to conclude based on the randomness
parameter at zero load reported in ref. 48 (Fig. 5A) that there is
a small dip around 100µM as predicted theoretically using the
2HB model (Fig. 1C). Although not unambiguous, the random-
ness parameter with external loads measured by Visscher et al.
(11) (Fig. 5 B–D) apparently shows more or less a monotonic
decease with increasing [T], which agrees with the predictions
of the 1HB model (Fig. 1D). We note that the experiment at
zero load (Fig. 5A) was conducted using fluorescence microscopy
and those at nonzero load used the optical trapping technique.
Because of limited temporal resolution in prior experiments, all
of the measurements of randomness parameter correspond to
rM , the mechanical randomness parameter. With access to tem-
poral resolution on the order of tens of microseconds, it may be
possible to directly measure the chemical randomness param-
eter. For a fuller understanding of the mechanochemistry of
kinesin and in particular how Kin1 waits for ATP, it is desirable
to explore the [T] and F dependence of chemical/mechanical
parameters using high-resolution stepping trajectories.

Discussion
We have introduced a simple model for stepping of conventional
kinesin on the microtubule to propose single-molecule experi-
ments, which could be used to discriminate between the waiting
states for ATP binding to the leading head. We derived analyt-
ical solutions for the run length and velocity distributions and
various randomness parameters as a function of ATP concen-
tration and external resistive load. For both the 1HB and 2HB
models P(n) is independent of [T], which is in good agreement
with experiments except at very low [T] concentrations, perhaps
due to enhanced probability of spontaneous detachment (11, 48).
Therefore, although P(n) could be measured readily, it cannot
be easily used to distinguish between the 2 distinct waiting states.
The distribution of velocity, which exhibits bimodal behavior at
F 6= 0, is qualitatively similar both at high and low ATP con-
centrations. The velocity distribution does differ quantitatively
at low ATP concentrations as F is varied (Fig. 4B). The most
significant finding is that that the randomness parameters, which
could be measured readily, show qualitative differences as a func-
tion of F and [T] between the 2HB and 1HB waiting states
for ATP.

Predicted Bimodality in the Velocity Distribution Is Independent of
the ATP Waiting States. Since the mean run length does not
depend significantly on the ATP concentration for Kin1 (11, 48),
it follows that the mean position from which the motor detaches
from the MT is roughly the same irrespective of ATP concen-
trations. Thus, [T] would not affect the spatial resolution needed
to observe the predicted bimodality in the velocity distribution.
However, since the average velocity of kinesin increases with [T],
it would affect the temporal resolution needed to validate the
shape in P(v). We propose that it would be easier for exper-
imentalists to observe the theoretical prediction that P(v) is
bimodal at lower ATP concentrations. This most interesting pre-
diction, made a few years ago (13) without considering the [T]
dependence in contrast to this study, awaits experimental tests.

Randomness Parameters Are Dramatically Different between the
2 Waiting States. We predict that the [T] and F dependence
of the randomness parameters, which is an estimate of the
minimum number of rate-limiting states in kinesin, holds the
key in assessing the relevance of the 2 waiting states. Since
the theory for both the 2HB and 1HB models considers only 2
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Fig. 5. Theoretical prediction of the ATP concentration dependence of the 3 randomness parameters, rM, rC , and r̄C at different external loads for the 2HB
and 1HB models (Fig. 1 C and D, respectively). Solid squares, solid circles, and lines denote rM, r̄C , and rC , respectively. Red circles with error bar in A are
the experimentally measured randomness parameter at F = 0 in ref. 48. Red circles with error bar in B–D are the randomness parameters measured in ref.
11: (B) for 1.05 pN, (C) for 3.59 pN, and (D) for 5.69 pN. As explained in Discussion, the values of the randomness parameters in our schemes are always equal
or greater than 0.5.

states, the calculated randomness parameters cannot be below
0.5. Therefore, it might be tempting to conclude that our predic-
tions may not be realizable in experiments because it has been
advocated that more than 2 states might be needed to fit the
experimental data (19, 20). However, we argue that the qualita-
tive features of the [T] dependence of the randomness parameter
elucidated using our theory should be observable in experiments,
using the following reasoning. Because kinesin has only one
ATP-dependent rate per step and the rest of the rates do not
depend on ATP, just as in our model, the change of randomness
parameter as a function of [T] is affected only by the step that
depends on ATP concentration. On the other hand, we com-
pressed many potentially relevant states into one internal state
that is unaffected by [T]. As a consequence, we expect that when
[T] becomes large, our model might overestimate the values of
the randomness parameters by a factor that is proportional to the
number of actual ATP-independent internal states. Indeed, if we
shift our values for r in Fig. 5A so that they match the experimen-
tal values at high [T], we would attain an excellent agreement
with the data. The presence of force might further complicate
the interplay between internal states. Kin1 might switch between
the 1HB waiting state and the 2HB waiting state in an ATP-
dependent manner depending on applied loads, for example.
Nevertheless, the qualitative difference between the 1HB and
2HB models should be amenable to experimental verification.
Therefore, we believe that accurate measurements of rM and rC
using high-temporal-resolution experiments will be most useful
in filling a critical missing gap in the catalytic cycle of Kin1.

Status of Experiments and Relation to Theory. Randomness
parameters have been measured previously using fluorescence
microscopy (48) and optical trapping (11, 17). The experimen-
tal set up in ref. 48 did not contain cargo whereas the stepping
trajectories in the optical trapping experiments were measured
by monitoring the time-dependent movement of a bead attached
to the coiled coil (11, 17). Both experiments from Hancock
and coworkers (31) and Tomishige and coworkers (14) employ

innovative experimental methods, which are different from the
techniques previously used to measure the randomness parame-
ters. These experiments also did not have cargo but a large AuNP
(with diameters between 20 and 40 nm) was attached to different
sites on one of the motor heads. The AuNP experiments should
have sufficient temporal and spatial resolution to extract both
the mechanical and chemical randomness parameters as a func-
tion of ATP concentration. The current iSCAT or experiments
based on dark-field microscopy may not be able to measure the
randomness parameter as a function of F , which would require
attaching a bead (cargo) that would not interfere with the dynam-
ics of the AuNP. Nevertheless, measurements of randomness
parameters using the experimental constructs in refs. 14 and 31
as a function of [T] but with F = 0 can be made. Such studies are
needed to test our predictions (Fig. 5A), which would hopefully
provide insights into the ATP waiting state of kinesin.

Mechanochemistry of the Backward Step. In our model for the
1HB waiting state (Fig. 1D), we assumed that the rate of
the backward stepping depends on [T] in the same manner as the
rate for the forward step. It stands to reason that any step should
consume ATP, and consequently k− should also depend on [T].
Indeed, it has been argued that Kin1 walks backward by a hand-
over-hand mechanism by hydrolyzing ATP in much the same way
as it does when moving forward (12, 42). The observation that
the ratio of the probability of taking forward to backward steps
as a function of F at 2 ATP concentrations (1 mM and 10 µM)
is superimposed (figure 4b in ref. 42) lends support to the sup-
position that k− should also depend on [T]. Our 2HB and 1HB
models (Fig. 1 C and D, respectively), which consider ATP bind-
ing even for backward steps, lead to the prediction that both the
run length and the fraction of forward step to backward step
are independent of [T], as shown in the experiments (12, 42).
In addition, several theoretical models have been proposed to
rationalize the [T] dependence of the backward step (12, 20, 22,
23, 50, 51). Therefore, our assumption that k− depends on [T]
seems justifiable.
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However, the mechanism, especially in structural terms, of the
backward step is not fully understood (12, 20, 50, 51). There-
fore, it is important to entertain the possibility that k− has
negligible dependence on [T]. Note that the magnitude of k− is
nonnegligible only in the presence of substantial load. At very
low forces one could neglect the [T] dependence of k−. Under
these conditions the mechanisms for forward and backward steps
need not be the same.

There are at least 2 possible pathways (Fig. 6) by which Kin1
could take backward steps: 1) Let us consider that ATP binds
to the LH in either the 2HB state or the 1HB state and the TH
detaches with bound ADP. For a backward step to occur, the
TH has to release ADP and perform a “foot stomp” (return to
the starting position). Although to date there is no evidence for
either TH or LH foot stomping in Kin1, they have been observed
in myosin V in the absence of external load (52). The probability
of foot stomping could certainly increase if F 6= 0, but is improb-
able in the absence of load. If stomping were to occur, then both
the heads would be bound to the MT with the LH containing
ATP (third step in pathway I in Fig. 6). After TH stomping, ATP
should be hydrolyzed and the inorganic phosphate released from
the LH, which would lead to backward stepping. This pathway
results in identical [T] dependence for forward and backward
steps. Consequently, the [T]-independent characteristics of Kin1,
such as P(n), can be explained by this scenario. 2) Let us con-
sider another possibility for backward steps. Before ATP binds to
the LH in either the 1HB state or the 2HB state, ADP is released
from the TH, leading to the 2HB state with both the heads being
nucleotide-free pathway II in Fig. 6. For the backward state to
occur from this state, the LH should detach from the 2HB state
either spontaneously or by binding ATP. The latter event, which
would induce neck-linker docking and hence propel the TH for-
ward, would tend to suppress the probability of backward steps.
If the former were to occur, then it might be possible, especially
if F 6= 0, that k− might not depend on [T].

The theory developed based on the scheme in Fig. 1D does
not account for the possibility that the backward step rate may

not depend on [T]. For completeness, we created in SI Appendix
a variant of the 1HB model, corresponding to scenario 2, by
setting k− in Fig. 1D to be independent of [T]. The results in
SI Appendix show that regardless of the dependence or indepen-
dence of k− on [T] the qualitative differences in the randomness
parameters as a function of F and [T] between the 1HB and 2HB
models remain. Thus, the theoretical predictions are robust, sug-
gesting that high-temporal-resolution experiments that measure
randomness could be used to discriminate between the 2 waiting
states for ATP.

Conclusion
It has been challenging to decipher how exactly kinesin waits
for ATP to bind to the leading head. Recent experiments have
arrived at contradictory conclusions using similar experimental
techniques. Although one cannot rule out the possibility that
different kinesin constructs and the location of attachment of
the gold nanoparticle used in these experiments might lead to
different stepping trajectories, it is important to consider the the-
oretical consequences of the 2 plausible waiting states of kinesin.
To discriminate between the 1HB and 2HB waiting states, we
developed simple models, allowing us to calculate analytically
and fairly accurately a number of measurable quantities. The
theory predicts that there should be qualitative differences in
the randomness parameters as a function of load and ATP con-
centration. Although the force dependence of the randomness
parameters has been previously measured using optical trap
techniques, it would be most interesting to repeat these measure-
ments using the constructs used in the most recent experiments
(14, 31). In addition, measurements of the load dependence of
the randomness parameters using dark-field microscopy meth-
ods in combination with optical traps would be most illuminating
to verify many of the predictions outlined here.

Materials and Methods
We created 2 stochastic kinetic models to calculate a number of quantities
associated with the stepping kinetics of conventional kinesin. The sketch of

Fig. 6. Plausible backward step mechanisms for kinesin. Upper panel corresponds to pathway I explained in Discussion. In this case the [T] dependence is
identical to forward stepping. Lower panel is pathway II in which [T] dependence could be different from the forward stepping. T, D, DP, and φ stand for
ATP, ADP, (ADP + phosphate), and no nucleotide state, respectively. In Upper panel, after ATP binds to the leading head (shown in red), the neck linker
docks. Consequently, the backward step along this pathway would be possible only at higher loads.
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the 1HB and 2HB models and the pathways leading from the resting state to
the target binding states along with the rates and [T] dependence are given
in Fig. 1. The model, a generalization of the one introduced previously (13)
to include the important aspect of [T] dependence, can be solved exactly,
thus allowing us to calculate P(v) and the different randomness parame-
ters for the 2 different scenarios for the waiting states for ATP binding (see
SI Appendix for details). Despite the simplicity, we show in SI Appendix that
the model does quantitatively reproduce the experimentally measured [T]-
dependent force–velocity relation using physically reasonable parameters
for the rates describing the 2 schemes (Fig. 1 C and D).

Note. In a recent article (53) it has been argued that the trailing head is
detached (unbound but rotationally free) but is in close proximity to the
initial binding site while the leading head waits for ATP to bind. The authors
also suggest that the apparent stepping trajectories could depend on the
point of attachment of the gold nanoparticle.
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