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Abstract

The diagnosis of Autism Spectrum Disorder (ASD) is a subjective process requiring clinical 

expertise in neurodevelopmental disorders. Since such expertise is not available at many clinics, 

automated diagnosis using machine learning (ML) algorithms would be of great value to both 

clinicians and the imaging community to increase the diagnoses’ availability and reproducibility 

while reducing subjectivity. This research systematically compares the performance of classifiers 

using over 900 subjects from the IMPAC database [1], using the database’s derived anatomical and 

functional features to diagnose a subject as autistic or healthy. In total 12 classifiers are compared 

from 3 categories including: 6 nonlinear shallow ML models, 3 linear shallow models, and 3 deep 

learning models. When evaluated with an AUC ROC performance metric, results include: (1) 

amongst the shallow learning methods, linear models outperformed nonlinear models, agreeing 

with [2]. (2) Deep learning models outperformed shallow ML models. (3) The best model was a 

dense feedforward network, achieving 0.80 AUC which compares to the recently reported 

0.79±0.01 AUC average of the top 10 methods from the IMPAC challenge [3]. These results 

demonstrate that even when using features derived from imaging data, deep learning methods can 

provide additional predictive accuracy over classical methods.
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1. INTRODUCTION

Autism spectrum disorder (ASD) is a common psychiatric disorder characterized by social 

and communication deficits and a restricted pattern of interests [4]. It is known that 

individuals with ASD have altered neuroanatomy and connectivity, though the full extent of 

these relationships has not been fully elucidated. Currently, the diagnosis of ASD is a 

subjective process that requires an expert in neurodevelopmental disorders who may be 

unavailable at many clinics. Noninvasive imaging captures structural and functional aspects 

of brain development that are promising for an automated machine learning (ML) based 

diagnosis. Such automated approaches would reduce subjectivity and increase 

reproducibility and availability of the diagnosis. Existing literature on automated diagnostics 
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are limited in two ways. First, in these studies, just one category of predictive model is 

typically proposed and fully optimized; making comparisons to comparable methods biased. 

Second, they often depend on access to raw image data. Sharing patient images can be 

problematic due to concerns for patient identifiability. However preprocessed data, such as 

volumetry and functional connectivity are more easily shared. The Paris IMPAC Autism 

Challenge [1] is one such sharable dataset containing the derived features from structural 

MRI (sMRI) and resting state functional MRI (rs-fMRI).

While in many problem domains, such as real world object recognition, deep learning 

outperforms shallow learning, this increase in performance has been attributed to the 

replacement of hand-engineered features with learned features. To date there is limited 

research aimed at understanding how deep learning methods compare in performance to 

shallow ML methods on datasets with pre-derived features. Elucidating the comparative 

performance of model categories for such large sharable datasets would be of great 

significance to guide the image analysis community.

In order to perform a fair comparison, in this study each model is similarly hyperparameter 

optimized using a random search-based approach. Identical randomly chosen cross-

validation splits are used to train each model, ensuring similar training opportunities for each 

model.

The primary contribution of this work is four-fold. First the study provides a systematic 

comparison of 3 broad categories of methods: linear and nonlinear shallow ML models and 

deep learning models, and assesses their relative performance. Second the study examines 

the relative performance of anatomical features, functional features and their combination 

and provides evidence of their level of complementarity. Third evidence for the effective 

level of granularity for deriving regional features from whole brain parcellations is obtained 

by comparing 7 atlases. Fourth the relative performance of 12 individual classifiers is 

compared and recommendations for ASD diagnosis is made for a specific winning deep 

learning model, which achieves greater performance than all other tested models.

2. MATERIALS AND METHODS

2.1. Materials

This study uses 915 subjects from the IMPAC dataset [1] that received both sMRI and rs-

fMRI and were identified by the IMPAC organizers as having satisfactory images. The focus 

of this study is the comparison of two-category classifiers for diagnosing ASD or healthy 

control. The IMPAC dataset includes the clinical diagnosis (the classifier target) for which 

there were 418 ASD patients and 497 healthy control subjects. Structural MRI (sMRI) and 

resting state functional MRI (rs-fMRI) were acquired for each subject. Figure 1 illustrates 

how the features were derived from the MRI. From the sMRI, 207 features were extracted, 

including volumes of cortical and subcortical structures, cortical thickness, and area per 

region of interest (ROI) defined by the Desikan-Killiany gyral atlas [5]. From the rs-fMRI, 

functional connectivity matrices were derived. For this derivation, the rs-fMRI was first 

parcellated into ROIs using seven different atlases including: atlases (1–3) The BASC Atlas, 

whose regions are defined by k-means clustering of stable coherent groups [6] for k=64, 

Mellema et al. Page 2

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2019 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



122, and 197 ROIs, atlas (4) the Craddock atlas, which defines 249 ROIs by coherence of 

local graph connectivity [7], atlas (5) the Harvard-Oxford Anatomical atlas, which defines 

69 ROIs using anatomical features, atlas (6) the MSDL atlas, which has 39 ROIs defined by 

correlations of spontaneous activity [8], and atlas (7) the Power atlas [9], which is defined by 

local graph-connectivity into 264 ROIs. The rs-fMRI time signals from each region were 

converted into a connectivity matrix by projection into tangent space, a procedure which 

captures connectivity aspects from both the correlation and partial correlation [10]. Clinical 

data including patient gender and age were also collected.

2.2. Data partitioning

Subjects were randomly partitioned with 80% assigned to a training set and 20% to a test set 

with the split having matching proportions of diagnosis (ASD/healthy) and gender (male/

female). The test subjects were set aside and not used during training or model selection. 

The training set was further split into validation and training folds using a 3-fold stratified 

cross validation approach. To ensure fair subsequent model comparison, the same splits were 

used for all tested machine learning models.

2.3. Model construction

Systematic testing of a broad array of 12 machine learning classifiers was conducted. This 

included 6 nonlinear shallow machine learning methods: a naїve Bayes classifier, a support 

vector machine with a Gaussian kernel, a random forest classifier, an extremely randomized 

trees classifier, adaptive boosting, and gradient boosting with decision tree base models; 3 

linear shallow models; a support vector machine with a linear kernel, logistic regression with 

ridge regularization, logistic regression with lasso regularization; and 3 deep learning 

approaches: a fully connected dense feedforward (FeedFWD) network, and a long-short 

term memory (LSTM) based recurrent neural network classifier (RNN), and the 

BrainNetCNN [11]. Classical models were constructed using the scikit-learn and XGBoost 

pakages, while the deep learning models used the keras, tensorflow, and caffe packages. The 

LSTM classifier uses an LSTM network followed by a dense feedforward layer for 

classification like [12] which can succeed even on non-sequential fixed vector data, as 

suggested by [13]. The BrainNetCNN classifier is a graph-convolutional network classifier 

[11]. The models were trained on an NVIDIA Tesla p100.

2.4. Random search

To optimize each ML model, a random search was conducted over the model’s 

hyperparameter space. A total of 50 random points in hyperparameter space were sampled 

for each model. To illustrate, consider the examples of simple and complex dense FeedFWD 

networks that were tested are illustrated in Table 1, in the left and middle columns 

respectively. In detail, for the models tested these hyperparameter points were randomly 

chosen from the following dimensions and ranges: Random Forest: number of estimators 

[50, 5000], max nodes [5, 50]; Extremely Random Trees: number of estimators [50, 5000], 

max nodes [5, 50]; Adaptive Boosting: number of estimators [20, 2000], learning rate [0.1, 

0.9]; Gradient Boosting: number of estimators [5, 5000], max depth [1, 10], subsampling 

fraction per tree [0.2, 0.8], fraction of columns per tree [0.2, 1], learning rate [0.01, 1]; SVM 

with Gaussian Kernel: C [0.0001, 10000], maximum iterations: [10000, 100000], gamma 
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[0.01, 100]; SVM with Linear Kernel: C [0.0001, 10000], maximum iterations: [10000, 

100000]; logistic regression with lasso regularization: C [0.0001, 10000], maximum 

iterations [1000, 100000]; logistic regression with ridge regularization: C [0.0001, 10000], 

maximum iterations [1000, 100000]; dense FeedFWD network: number of hidden layers [1, 

3], layer width [16, 256]; dropout fraction [0.1, 0.6], L2 regularization coefficient [0.0001, 

0.02], LSTM: number of hidden layers [1, 3], layer width [16, 256], dropout fraction [0.1, 

0.6], L2 regularization coefficient [0.0001, 0.02]; BrainNetCNN: number of hidden layers 

[0, 2], layer width [16, 64], dropout fraction [0.1, 0.6], ReLU slope for x<1 [0.1, 0.5]. Deep 

learning models used the leaky ReLU activation function, early stopping, the Nesterov 

ADAM optimizer, a batch size of 128, and the binary cross-entropy loss function.

Each of our 12 models types was trained on 15 different feature sets, for a total of 180 model 

type × feature set combinations. The feature sets contain measures of anatomical volume 

and functional connectivity from the IMPAC dataset. These feature sets included: (1) 207 

measures of regional volume and thickness, (2–8) functional connectivity measured between 

regions defined by one of the 7 atlases described in the materials section above, (9–15) the 

union of the anatomical with one of the functional feature sets. The model with the highest 

average area under ROC curve over the cross validation folds was selected as the best model 

for each model type × feature set combination. This model was then trained on all training 

data and evaluated on the held out test set not used in training.

3. RESULTS

The results are summarized in Figure 2, which shows the area under the ROC curve of 

different machine learning models predicting ASD vs healthy control on the test data that 

was held out from training.

3.1. The importance of feature set combination

Comparing the 15 feature sets (rows of Figure 2), it can be observed that the anatomical 

features yielded the lowest prediction accuracy by area under the ROC curve, while the rs-

fMRI functional connectivity features alone yielded models with higher predictive power 

than anatomical features. For functional connectivity data alone, the BASC atlas with any 

number of parcellations and the Power atlas generated models with more predictive power 

than other atlases. However the combination of anatomical and functional features yielded 

models with even higher predictive power, suggesting their complementarity. The best 

performing models used the anatomical features with connectivity features from the Power 

atlas, Craddock atlas, or BASC atlas. Models trained on the Harvard-Oxford atlas 

connectivity data and volumetric data are notably lower performing, and models trained on 

the MSDL atlas were slightly better than those trained on the Harvard-Oxford atlas.

3.2. The importance of model type

The most accurate shallow machine learning algorithm was logistic regression with ridge 

regularization, which had a maximum ROC AUC of 0.773. Of the nonlinear methods, the 

extremely randomized trees performed the highest, and the adaptive boosting methods 

performed the lowest. Overall, deep learning outperformed shallow learning, and the highest 
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performing shallow linear methods outperformed the highest performing shallow nonlinear 

methods.

As shown in the columns towards the right of Figure 2, the deep learning methods 

performed higher than the other categories of models. The most successful deep learning 

algorithms were the dense FeedFWD network which achieved an ROC AUC of 0.804 and 

LSTM, which achieved an ROC AUC of 0.776. The BrainNetCNN model is only defined for 

functional connectivity input features, but on those features it performed lower than the 

other deep learning models with a performance similar to the linear models. Like the 

shallow methods, the deep learning methods performed best when using the combination of 

functional and anatomical features. The highest overall performance was the dense 

FeedFWD network, whose architecture is shown in Table 1 right column, using the rs-fMRI 

connectivity data with the BASC atlas with 122 ROIs and the sMRI volumetric data 

combined, achieving an AUC of 0.804. Other permutations using the BASC atlases, 

Craddock atlas, and Power atlas as training data for the dense FeedFWD network also 

performed well.

4. DISCUSSION AND CONCLUSIONS

Mensch et al. [14] reported high performance using deep learning networks for decoding 

brain activity to predict of the class of psychological stimuli presented in neuroimaging 

studies. This study focused on the classification of ASD versus healthy control and also 

demonstrated high performance using deep learning, adding to the evidence that deep 

learning is effective at classification from multidimensional neuroimaging data. The highest 

performing model in this study was a dense FeedFWD network which achieved 0.80 AUC, 

which is quite similar to the 0.79±0.01 AUC average of the top 10 methods recently reported 

from the IMPAC challenge [3]. Classification of ASD has been reported by Parisot et al. [15] 

and Meenashki et al. [16]. These methods both employ novel convolutional neural networks 

to achieve state-of-the-art performance of 70.4% and 73.3% accuracy respectively on the 

open source ABIDE dataset for ASD [17], but both depend on the raw imaging data.

The results of this study indicate multiple conclusions: First, the results show that deep 

learning is still a valuable tool that is able to extract additional predictive power over shallow 

methods even when provided pre-extracted feature sets. Second, the subset of atlases that 

performed better is informative for ASD diagnosis. Across many different machine learning 

modalities, the functional BASC atlas, derived using a k-means clustering approach, 

performed very well. Its 122 and 197 ROI versions performed better than the 64 ROI 

version. This suggests the scale or granularity of neuroimaging-detectable changes in 

functional connectivity in ASD. Also, this suggests that k-means clustering and other graph-

based clustering methods such as the Power and Craddock atlases, may be more suited to 

accurately elucidate functional connectivity changes in ASD than other parcellation 

methods. Third, the uniformly poor performance observed when models use purely 

anatomical features suggests that the deficits in ASD are reflected more by changes in 

functional connectivity than by changes in volume and cortical thickness. This finding is in 

agreement with results of previous studies [16]. However, the fact that in general, combining 

anatomical features with functional connectivity features tended to improve model 
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performance across model categories, supports the notion that the information is 

complementary and should be combined to maximize predictive accuracy.

In summary, this study provides insights into the comparative performance of three 

categories of widely used machine learning models, including both linear and nonlinear 

shallow models as well as deep learning models for the important task of automating 

diagnosis for Autism Spectrum Disorder. It provides insights into the combination of 

anatomical and functional features that are most useful for diagnosis of ASD and 

demonstrates that their combination is most appropriate. The study also demonstrates that a 

finer level of granularity in whole brain parcellation with roughly 120 ROIs outperforms 

coarser parcellations. Lastly the study shows that a dense FeedFWD network outperforms 

other models even when features are pre-extracted from MRI and attains highly accurate 

diagnosis compared to previously published methods. In the future we aim to continue to 

improve upon automated classification performance in ASD and other neuropathologies.
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Fig. 1. 
Combinations of derived features used by the predictive models tested in this study. Image 

data (rs-fMRI and sMRI) and was gathered externally by IMPAC organizers. (A) The rs-

fMRI was transformed into a symmetric connectivity matrix for each atlas. (B) Upper 

triangular elements of matrix were flattened into a 1D vector. (C) The sMRI was 

transformed into a vector of cortical/subcortical ROI volumes and cortical thickness features. 

In (D) the connectivity matrix vector is used as the sole input for the predictive model, in (E) 

both anatomical and connectivity derived feature vectors are appended and used, while in (F) 

the anatomical features are used as the sole input for the predictive model.
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Fig. 2. 
Performance of classifiers predicting the diagnosis of ASD versus healthy control. 

Performance is measured as the area under the ROC curve on held-out test data. Cooler 

colors indicate superior performance.
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Table 1.

Examples of dense FeedFWD network architectures tested in the random search. Hyperparameters shown 

include the regularization coefficient, # of layers, # of neurons/layer, and dropout fraction. Left column 

illustrates a simple network. Middle shows a complex network. Right column shows the architecture of the 

highest performing network.

Simple Dense Network Complex Dense Network Highest Performing Dense Network

L2 Regularization: 2.3e-4 L2 Regularization: 2.3e-4 L2 Regularization: 1.1e-4

Dense 16 neurons Dense 128 neurons Dense 64 neurons

Dropout: 53% removed Dropout 18% removed Dropout 13% removed

Dense 16 neurons Dense 128 neurons Dense 64 neurons

Dense 1 neuron Dropout 18% removed Dense 1 neuron

Dense 64 neurons

Dropout 18% removed

Dense 42 neurons

Dense 1 neuron
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