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Abstract

Diagnosis and staging of liver fibrosis is a vital prognostic marker in chronic liver diseases. Due to 

the inaccuracies and risk of complications associated with liver core needle biopsy, the current 

standard for diagnosis, other less invasive methods are sought for diagnosis. One such method that 

has been shown to correlate well with liver fibrosis is shear wave velocity measured by ultrasound 

(US) shear wave elastography; however, this technique requires specific software, hardware, and 

training. A current perspective in the radiology community is that the texture pattern from an US 

image may be predictive of the stage of liver fibrosis. We propose the use of convolutional neural 

networks (CNNs), a framework shown to be well suited for real world image interpretation, to test 

whether the texture pattern in gray scale elastography images (B-mode US with fixed, subject-

agnostic acquisition settings) is predictive of the shear wave velocity (SWV). In this study, gray 

scale elastography images from over 300 patients including 3,500 images with corresponding 

SWV measurements were preprocessed and used as input to 100 different CNN architectures that 

were trained to regress shear wave velocity. In this study, even the best performing CNN explained 

only negligible variation in the shear wave velocity measures. These extensive test results suggest 

that the gray scale elastography image texture provides little predictive information about shear 

wave velocity and liver fibrosis.
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1. INTRODUCTION

In 2016 an estimated 4.9 million adults in the United States were diagnosed with liver 

disease, resulting in a premature death of over 40,000 people1. Liver disease typically 

progresses through multiple stages. Ongoing, untreated inflammation and attempted healing 

of the liver leads to progressive deposition of collagen and other macromolecules (scar 

tissue), eventually leading to liver cirrhosis. The extent of this deposition in the liver is 

named fibrosis. Treatment varies based on the stage of liver fibrosis and its underlying cause. 

Effective patient management, including monitoring treatment efficacy, requires estimating 

the fibrosis stage, ideally in a non-invasive manner. The current standard of care to 

determine a patient’s liver fibrosis stage is to sample the patient’s liver via core needle 

biopsy2. Not only can this procedure lead to severe complications such as internal bleeding3, 
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but due to the limited amount of liver volume sampled, liver biopsy suffers from sample 

bias4. A newer diagnostic approach uses shear wave elastography (SWE) to measure the 

tissue’s intrinsic shear wave velocity (SWV). This technique involves mechanically 

stimulating the liver at a targeted location with a high-amplitude “push pulse”, also called an 

acoustic radiation force impulse (ARFI), and measuring the speed (m/s) of the resultant 

lateral shear waves. In liver fibrosis, an increasing amount of interstitial collagen deposition 

stiffens the liver and increases the SWV, which is highly correlated with the severity of liver 

fibrosis at biopsy2. SWV is now an accepted surrogate biomarker for liver fibrosis in clinical 

practice2. Standard US devices produce gray scale images whose pixel intensity value is 

based on the backscatter signal amplitude (B-mode). Although many premium systems may 

be loaded with the necessary software, many are not equipped with the elastography mode. 

Therefore, an approach that predicts the SWV and hence fibrosis from the liver texture from 

the B-mode image would be of high practical and clinical significance by providing a readily 

available measurement for physicians to make informed diagnostic decisions. Preliminary 

work suggests that B-mode US image texture can be used for diagnosis and fibrosis 

estimation. However, the authors of that work state that their model’s performance depends 

highly on the human expert that selects the multiple regions of interest (ROIs), and that 

future work should eliminate or reduce the expert’s role. The purpose of this work is to 

address the question of whether or not the texture in gray scale elastography images whose 

acquisition parameters are not tailored to the subject is predictive of shear wave velocity, 

using the current state of the art in image interpretation, the convolutional neural network 

(CNN).

2. MATERIALS AND METHODS

2.1 Study Design and Subjects

This retrospective observational study performed between 02/2016 and 02/2017 included 

326 patients at risk for chronic liver disease who underwent SWE ultrasound exams for 

noninvasive evaluation of liver fibrosis. The patients’ ages ranged from 20 to 78 and 

consisted of 164 males and 162 females. Our Institutional Review Board approved this study 

and waived the need for informed consent. The study was conducted in compliance with 

Health Information and Primary Accountability Act (HIPAA).

2.2 Ultrasound Image Acquisition and ROI Definition

This study utilized gray scale elastography images of the liver for which the ground truth 

SWV estimate in m/s for each individual US image was also available. Gray scale 

elastography images are B-mode US images with fixed acquisition settings, in contrast to 

clinical B-mode images whose parameters are subjectively optimized for the patient by the 

sonographer taking into account their degree of obesity and severity of fibrosis, and thus 

dependent on the sonographer’s level of experience and skill. Each grayscale image was 

obtained using an EPIQ7G (Philips Healthcare, Bothell WA) clinical ultrasonography 

system with elastography capabilities. A sonographer merely needed to choose a SWE ROI 

(white box, Fig 1) in the center of the liver, away from the liver’s boundaries and major 

blood vessels to minimize confounding influence of these structures on stiffness 

measurements. This selection is readily performed. The SWV was measured within this 
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ROI. The gray-scale image acquisition and SWV measurements were repeated 10 times for 

each patient per institutional protocol. Across the patient cohort, the SWV ranged from 0.2 

to 9.3 m/s with an average of 1.60 m/s.

2.3 Deep Convolutional Neural Network Architecture

This study applied CNNs to regress the SWV directly from the US texture image. The CNN 

framework was chosen because it automatically learns a hierarchy of filters that are optimal 

to make a prediction from the training images. CNNs have formed the winning approach for 

image object recognition, including the ImageNet challenge, since 2012. Since 2015, they 

have attained human-level, single-task image interpretation performance6,7. Therefore, the 

CNN holds one of the best chances of finding an association between texture patterns and 

SWV if one exists. The CNN is a deep neural network with a feedforward architecture. 

Image inputs are passed into a succession of convolutional layers, that transform the inputs 

into a form that makes the prediction easier. The convolutional layers consist of 

convolutional filters and the filter kernel weights from these layers are the hierarchy of 

features learned for the supervised regression task in our experiments. The transformed input 

from the last convolutional layer is passed into a succession of fully connected layers, the 

last of which, the output layer, consists of a single unit that combines the learned features to 

output a continuous valued SWV estimate. The texture filters applied by the network are 

optimized through end-to-end learning via backpropagation8.

2.4 Image Preprocessing

The images are preprocessed for three purposes: (1) to crop the image to a large texture ROI 

that includes just liver pixels, (2) to spatially normalize the pixel sizes, and (3) to normalize 

the pixel intensities across subjects. Advanced fibrosis tends to make the liver more nodular 

due to bridging fibrosis within the interlobular space, with intervening nodular hepatocyte 

regeneration, which could result in a gray-scale image appearance with coarse echotexture. 

Based on the Nyquist sampling theorem, we observe that in order to sample the lowest 

expected spatial frequencies in the texture image, a larger ROI is needed than the 

elastography ARFI targeting box (Fig. 1, small white box). The texture ROI (Fig. 1, red box) 

that was used is the largest sized rectangle that still includes only liver pixels across our 

cohort. It is centered on the white target ROI but is 5x its width and 1.66x its height. The 

targeting ROI is 7mm wide x 12mm in height, hence our texture ROI is also of consistent 

dimensions across subjects. The texture ROI is resampled to the same pixel dimensions 

across all subjects. The intensity values of each texture ROI were normalized to have zero 

mean and unit standard deviation.

2.5 Network Architecture Optimization

To ensure thorough coverage of possibly relevant CNN architectures, a randomized search of 

100 architectures was conducted. The architectures included an input layer followed by 1 or 

more convolutional layers, and finally a number of fully connected layers. The 

hyperparameters were randomly chosen from ranges with a step size of one, for each of the 

following network architecture parameters:

1. Number of convolutional layers: [1,…,10]

Treacher et al. Page 3

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Number of filters in each convolutional layer: [2,…,64]

3. 2D filter kernel size (height and width): [2,…,11]

4. Number of fully connected layers: [2,…,5]

5. Number of units per fully connected layer: [3,…,256]

Across all the architectures tested, batch normalization was inserted with 50% probability 

after each convolutional layer. After the convolutional layers, a max pooling layer with a 

size of 2×2 was also inserted with 50% probability. After each fully connected layer, there 

was a 50% chance of inserting a dropout layer with a rate of 0.5. Dropout can help suppress 

overfitting. The loss function was mean squared error (MSE) which was minimized with 

ADAM optimization9 using β1 = 0.7, β2 = 0.999, and ϵ = 1×10−8. PReLU activation was 

used for each activation and weights were initialized to small random weights around zero 

using the He normal initialization, which has been shown to be optimal for PEeLU7. A 

maximum of 200 epochs was used along with early stopping. The early stopping used a 

minimum delta of 0 and a patience of 30 epochs.

The texture images were grouped by patient and randomly partitioned into 85% for training 

and 15% held out for testing. The training data was then split via 5-fold cross validation. All 

partitions were stratified so that the same distribution of SWV in the overall dataset 

appeared in the training and validation folds and in the test partition. Images from a patient 

were grouped so that a patient’s images appeared only in one partition (training, validation 

or test). The architectures were then trained with Tensorflow running on an Nvidia P100 

GPU. Two networks illustrating the range of architectural complexity tested are shown in 

Table 1A and Table 1B.

2.6 Model Selection

As shown in Fig. 2, the median performance of each network over the cross-validation folds 

was computed and the networks were sorted in increasing order of MSE. The architecture 

with smallest median MSE across folds was chosen as the winning architecture. The 

architecture of the top performing network is shown in Table 1C.

2.7 Quantification of Human Expert Performance

To provide a point of comparison for our automated approach, we conducted an 

investigation into the performance of human experts (radiologists) in classifying the level of 

fibrosity (high versus low fibrosity). In this investigation we selected 10 subjects with very 

low fibrosity (group mean SWV of 0.57 m/s +/− .13 m/s) and 10 subjects with very high 

fibrosity (group mean SWV of 3.34 m/s +/− .73 m/s). One representative image from each 

subject was chosen and the ROIs from these 20 images, are shown in Fig. 3. We blinded the 

experts to the true fibrosity level and asked them to classify the 20 images as low or high 

fibrosity.

Treacher et al. Page 4

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. RESULTS

3.1 Performance of The Deep Neural Network on predicating SWV

As shown in Fig. 2, the top performing network achieved the smallest median MSE across 

folds of 0.34 on the validation data. This network was trained on the combined training and 

validation data and then used to make SWV predictions on the held out test gray scale 

elastography images. It achieved an MSE of 0.22 on the test data. Fig 4A. shows a scatter 

plot of the model’s predicted SWV vs the elastography measured SWV. Fitting a line to the 

predictions (Fig 4A, predictions shown as blue dots, fitted line in red) yielded a slope of 

0.062492 with large residuals (r2= 0.009612). This indicates that the textural pattern in gray 

scale elastography images was only slightly associated with SWV. The Bland-Altman plot 

(Fig 4B) further confirms this result and suggests that the model’s predictions could be 

substantially different from the SWV measured via elastography. Prior literature has defined 

the low fibrosis stage to have a SWV of below 1.37 m/s, significant fibrosis stage to be 1.37 

to 2.2 m/s, and advanced fibrosis and/or cirrhosis to be >2.2 m/s (when using the Philips 

pSWE as in this study)2. In this study the model’s 95% confidence interval is +/− 0.848 m/s 

(Fig. 4B), which can span all 3 fibrosis stages (Fig 4C) indicating that it does not reach 

clinical significance. Therefore, we suggest that the texture in gray scale elastography 

images is not predictive of the SWV from elastography.

3.2 Comparison Between Expert Human Performance and The Top Performing Deep 
Learning Model

When quantifying human expert (radiologist) performance (section 2.7) using the gray scale 

elastography images, we found that the experts performed only slightly better than chance, 

in agreement with our predictive model’s performance. Specifically, the mean accuracy of 

the experts classifying high versus low fibrosity was 58.3% with a standard deviation of 

7.6%. This suggests that even for an expert in ultrasound interpretation, the gray scale 

elastography image contains insufficient information to differentiate fibrosity levels. This 

corroborates our finding that machine learning also finds the gray scale elastography image 

to be only slightly associated with fibrosity. We acknowledge that the expert radiologists rely 

on clinical B-mode images, not necessarily gray scale elastography images, and typically 

take into account many other patient measures other than ultrasound image texture when 

making a clinical diagnosis of fibrosity. However, we note that clinical B-mode images are 

acquired by optimizing imaging settings on per-patient basis by the sonographer and thus 

subject to sonographer skill, potentially introducing a confound into image analysis.

4. NOVELTY

Our tests add an extensive body of evidence from over 300 patients to help address the 

hypothesis whether the gray scale elastography image texture is predictive of liver shear 

wave velocity, an established surrogate for fibrosis level. The results of our extensive tests on 

100 CNN architectures suggest that there is not a significant association between gray scale 

elastography image texture and SWV.
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5. CONCLUSION

The computer vision community has abundant evidence that CNNs are well suited for object 

and texture recognition in images. Therefore, if there were an association between gray scale 

elastography image texture and SWV, there should be CNN architectures that reveals this 

association. This work demonstrates that, at least for the 326 patients from our hospital, and 

the 100 CNN architectures tested from a wide range of architectures, there is not a 

substantive association between gray scale elastography image texture and SWV. When 

there is no strong association, a network can memorize training data but will not generalize 

well to held out test data. This is what we observed. To make an informed diagnosis, 

radiologists use a range of information, of which image texture is a small part, however 

when constrained to use only gray scale elastography image texture these CNN results 

concur with the slightly above chance performance by the radiologists to estimate liver 

fibrosity categories. Possible limitations of this work include: 1) only one gray scale 

elastography image from each liver is taken into account while information indicative of the 

liver fibrosis stage could be in surrounding liver tissue, 2) newer, possibly more precise 2D 

shear wave elastography has since become available that were not available for this study. 

Also, in order to be least dependent on sonographer expertise, this study focused on the gray 

scale elastography images taken while the SWV is being measured. While this has the 

advantage of using fixed acquisition settings across all subjects, it is possible that clinical B-

mode US images with settings such as gain, dynamic range, focus, transmit frequency and 

speckle reduction optimized for each subject could provide more informative texture.
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Figure 1: 
An gray scale elastography image (left) and the image region used for CNN prediction (red 

box on right). The white box in both panels shows the ROI positioned by the technologist as 

the target for SWE to measure the SWV. The image region for prediction (right) has 

dimensions that are 5x the width (w) and 1.66x the height (h) of the elastography targeting 

white box.
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Figure 2: 
The minimum median MSE for the validation data on each network across epochs, ranked 

from lowest to highest. The first architecture (Table 1C) indicated with the red arrow was 

used later to evaluate performance on the on the test data.
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Figure 3: 
Gray scale elastography ROIs for 10 high and 10 low subjects. Shown on the left are 10 

ROIs from subjects with no or little fibrosis and who have the lowest SWV. Shown on the 

right are 10 ROIs with the highest SWV and high fibrosis. These images were used to 

quantify human expert accuracy.
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Figure 4: 
A. Comparison of predicted SWV (m/s) versus actual elastography measured SWV (m/s). 

The ideal predicted=measured line is shown in black, while the actual linear fit line, shown 

in red, demonstrates only weak correlation between the measured and predicted values. B. 
The Bland-Altman plot showing average of the measured and predicted SWV values versus 

the difference: measured - predicted. The red lines show a 95% confidence interval which 

are +/− 0.848 m/s from the mean. C. The range of SWV for fibrosis stages: low fibrosis 

(green), significant fibrosis (yellow), and advanced fibrosis (red) as described in a pSWE 

study2. The blue line shows the 95% confidence interval of the best performing model can 

span all three stages.
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Table 1:

Sample of the network architectures tested in the random search. The abbreviation “Conv, 10×10, 343×156, 

30”,describes the size of convolutional filter, feature maps, and # filters. “Dense, 102” describes # of units in a 

fully connected layer. A. One of the largest networks tested. B. One of the smallest networks tested. C. The 

network with the lowest median MSE across the 5 folds.

Table 1A Table 1B Table 1C

343×156 input image 343×156 input image 343×156 input image

Conv, 10×10, 343×156, 30 Conv1, 343×156, 3×3, 8 Conv, 6×6, 343×156, 41

Batch Normalization Flatten Batch Normalization

Max Pooling stride 1 Batch Normalization Max Pooling stride 1

Conv, 2×2, 171×78, 31 Dense, 51 Conv, 8×8, 171×78, 30

Batch Normalization Dense output, 1 Batch Normalization

Conv, 6×6, 171×78, 24 Conv, 7×7, 171×78, 9

Batch Normalization Batch Normalization

Conv, 9×9, 171×78, 7 Max Pooling stride 1

Batch Normalization Conv, 2×2, 85×39, 26

Max Pooling stride 1 Batch Normalization

Conv, 4×4, 85×39, 12 Max Pooling stride 1

Batch Normalization Conv, 4×4, 42×19, 57

Conv, 3×3, 85×39, 46 Batch Normalization

Batch Normalization Conv, 8×8,42×19, 11

Max Pooling stride 1 Batch Normalization

Conv, 9×9, 42×19, 18 Max Pooling stride 1

Batch Normalization Conv, 8×8, 21×9, 31

Max Pooling stride 1 Batch Normalization

Conv, 2×2, 21×9, 29 Max Pooling stride 1

Batch Normalization Conv, 10×10, 10×4, 47

Max Pooling stride 1 Batch Normalization

Conv, 4×4, 10×4, 48 Conv, 4×4, 10×4, 3

Batch Normalization Batch Normalization

Max Pooling stride 1 Flatten

Conv, 2×2, 5×2, 51 Batch Normalization

Batch Normalization Dense, 95

Flatten Dense, 163

Batch Normalization Dense, 185

Dense, 14 Dropout, rate=0.5

Dense, 141 Dense output, 1

Dense, 35

Dense, 25

Dense output, 1
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