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Proteomics: a powerful tool to study plant 
responses to biotic stress
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Abstract 

In recent years, mass spectrometry-based proteomics has provided scientists with the tremendous capability to study 
plants more precisely than previously possible. Currently, proteomics has been transformed from an isolated field 
into a comprehensive tool for biological research that can be used to explain biological functions. Several studies 
have successfully used the power of proteomics as a discovery tool to uncover plant resistance mechanisms. There 
is growing evidence that indicates that the spatial proteome and post-translational modifications (PTMs) of proteins 
directly participate in the plant immune response. Therefore, understanding the subcellular localization and PTMs of 
proteins is crucial for a comprehensive understanding of plant responses to biotic stress. In this review, we discuss 
current approaches to plant proteomics that use mass spectrometry, with particular emphasis on the application of 
spatial proteomics and PTMs. The purpose of this paper is to investigate the current status of the field, discuss recent 
research challenges, and encourage the application of proteomics techniques to further research.
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Background
In the natural and agricultural environments, plants are 
constantly affected by biotic stress [1], which threatens 
their survival and growth. In response to these changing 
circumstances, plants have evolved a series of molecu-
lar programs to quickly perceive and adapt to the envi-
ronment. The role of proteins in the plant biotic stress 
response is crucial because: (1) proteins participate 
directly in the formation of new plant phenotypes by reg-
ulating physiological characteristics to adapt to changes 
in the environment; (2) proteins are the critical executors 
of cellular mechanisms and key players in the mainte-
nance of cellular homeostasis. However, the behavior of 
individual proteins usually does not reflect the complex 
network of signals and the dynamic regulation of cel-
lular processes involved in the plant response to biotic 
stress. In fact, it is believed that the plant immune sys-
tem responds to biotic stress as a complex system with 

interactions and crosstalk between multiple signals and 
with a diverse set of stress tolerance-related proteins. 
Therefore, many proteins are likely to function together 
and play multiple roles in the stress response. Currently, 
much of our knowledge of plant responses to biotic stress 
is acquired through genetic and genomic or transcrip-
tomic approaches. Although analyses of gene and mRNA 
abundance have contributed greatly to our understanding 
of the plant immune response, the correlation between 
mRNA expression levels and protein levels is frequently 
poor [2–4]. For example, in response to Phytophthora 
infestans, nearly half of the differential proteins showed 
changes that not corresponded to changes in transcrip-
tomic levels in potato [5]. Therefore, it is necessary to 
understand these proteins and their functions under 
stress at protein level.

Protein function depends not only on the molecular 
structure of the protein but also on its subcellular locali-
zation and post-translational modifications (PTMs) [6]. 
Protein function is closely related to subcellular localiza-
tion because different cell components provide different 
physiological and biochemical environments (such as 
pH and redox conditions) or potential acting substrates. 
Most cellular biological processes and pathways involve 
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changes in protein subcellular localization, such as the 
nucleocytosolic shuttling of transcription factors and 
relocation of mitochondrial proteins during apoptosis 
[7]. PTMs are a multifunctional regulatory process that 
can rapidly change the functional diversity of the pro-
teome [8] and objectively reflect biological processes. 
Current evidence suggests that PTMs are critical for the 
rapid reprogramming of cells, defense signal transduc-
tion and attenuated response and are important means 
by which plants maintain cell homeostasis at all levels of 
the immune response [9].

In recent years, liquid chromatography–mass spec-
trometry (LC–MS) technology has become the preferred 
method for spatial proteomics (the localizations of pro-
teins and their dynamics at the subcellular level) [10, 11] 
and PTMs because of its unique ability to measure com-
plex protein mixtures [12–15]. LC–MS-based proteom-
ics can show the quantitative state of a proteome [16] 
and contribute to unraveling cellular signaling networks 
and protein–protein interactions as well as provide a 
molecular understanding of the mechanisms involved in 
the response to biotic stress. Although spatial proteomics 
and PTMs have great development value and are techni-
cally easy to implement, (1) the diversity of the associated 
methods may be daunting to newcomers. (2) Our cur-
rent understanding of the response of the plant immune 
network to biotic stress is far from comprehensive. Using 
these technologies to study the response of plants to 
biotic stress remains a research field with great poten-
tial for growth. Therefore, the purpose of this review is 
to summarize the latest research methods of spatial pro-
teomics and PTMs and to describe how these methods 
can be used as intelligent tools to elucidate the mecha-
nisms involved in the regulation of plant responses to 
biotic stress. Second, a discussion should be conducted 
to improve the understanding of the possibilities offered 
by spatial proteomics and PTMs to promote further 
research on plant proteomics.

Understanding the molecular mechanisms 
of the plant response to biotic stress 
through spatial proteomics
Subcellular separation and purification
There are great differences in protein expression in bio-
logical samples. For example, in human serum, 99% of 
the serum proteins consist of 22 high-abundance pro-
teins, while the remaining 1% consist of a large number 
of other proteins [17]. Therefore, to easily detect a small 
number of target proteins or PTMs, a sufficient num-
ber of target proteins must be collected, and most of 
the redundant background proteins must be removed. 
This process requires the separation of biological sam-
ples into subcellular components or organelles to reduce 

their complexity. The proteins in each component are 
then enriched by selective fractionation, immunoprecipi-
tation, chromatography, electrophoresis or centrifugal 
technologies. As a result of ongoing advances, spatial and 
PTMs proteomics have become tools capable of deliver-
ing answers to key biological questions, and the roles of 
these tools in basic and applied science will likely expand 
in the coming decades. Systematic efforts to map the 
entire or localized plant proteome depend heavily on 
current and emerging technologies and methods.

In recent years, spatial proteomics has become an 
important research field [10, 18]. The common tech-
niques of subcellular separation and purification include 
centrifugation-based and affinity purification-based 
methods. However, the former methods are rather time 
consuming, and it is hard to obtain pure fractions with 
these methods. Meanwhile, the latter methods rely on 
the specificity of antibodies, and it is difficult to obtain 
suitable antibodies. To remedy the shortcomings of the 
above methods, a subcellular separation method based 
on different separation principles has been developed 
(Table  1). For instance, free flow electrophoresis (FFE) 
combined with two-phase partitioning to produce a 
population of highly purified plasma membrane vesicles 
has been developed. This combined high-quality plasma 
membrane isolation technique promoted a reproducible 
proteomic library of over 700 plasma membrane pro-
teins, which were not previously identified by other stud-
ies and included peripheral membrane proteins [19].

The flow field-flow fractionation (FIFFF) method is an 
elution-based separation technique that is capable of sep-
arating biological macromolecules without relying on the 
sample components. Asymmetric FlFFF was employed 
to characterize ribosome profiles of Nicotiana benthami-
ana. With the optimized working conditions, free mole-
cules from ribosomal subunits and intact ribosomes were 
separated [26]. Another promising sampling technology 
is laser capture microdissection (LCM), which can isolate 
target cell types from sectioned specimens of heteroge-
neous tissues via direct microscopic visualization with 
the assistance of a laser beam [27]. LCM has been suc-
cessfully employed in rice [28].

Newly emerging proteomic methods have revealed 
much information at the subcellular level. These studies 
have led to an improved understanding of the specialized 
proteomic behavior of certain organs, which will help us 
better understand the processes of biotic stress tolerance 
acquisition in plants. For example, chemical proteomics 
provides efficiency for analyzing the proteome in a native 
environment. Activity-based protein profiling (ABPP) 
[29], engineered ascorbate peroxidase (APEX) [30], 
organelle-locatable reactive molecules (ORMs) [31], and 
proximity-dependent biotin identification (BioID) [32] 
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have been developed for intracellular and even subcellu-
lar proteomic analysis.

Cell wall
The plant cell wall is a supporting structure and an exter-
nal physical barrier that is crucial to perceiving and lim-
iting the stress on plant physiology [33]. Most plant cell 
walls are basically composed of cellulose, hemicelluloses 
and pectin, and some often contain polymers such as 
lignin [34]. During stress, plants deploy a sophisticated 
immune system through pattern recognition receptors 
(PRRs), which are biosynthesized in the endoplasmic 
reticulum and transported to the plasma membrane to 
perceive pathogen-, microbe-, and danger-associated 
molecular patterns (PAMPs, MAMPs, and DAMPs, 
respectively) and initiate pattern-triggered immunity 
(PTI) [35–37]. Upon pathogen attack, plants sense the 
pathogens and induce a defense response based on the 
biochemical modification of the cell wall components 
[38]. The pectin methyl esterification status of Arabidop-
sis strongly affects the resistance of this plant to Botrytis 
cinerea [39]. Furthermore, PTI can be triggered by dam-
age associated molecular patterns, some of which are 
host-derived molecules from the cell wall [40, 41]. One 
of these types of molecules is oligogalacturonides (OGs), 
which are derived from homogalacturonan by pecti-
nases and perceived by wall-associated kinase 1 (WAK1), 
which functions as a PRR in Arabidopsis. For resistance 
to Septoria tritici blotch, a wheat stb6 gene encodes a 
conserved WAK-like protein (Stb6) that perceives the 
pathogen effector (AvrStb6) and confers pathogen resist-
ance [42]. Polygalacturonase-inhibiting proteins degrade 
microbial polygalacturonases, resulting in a delay in plant 
cell pectin hydrolysis and consequently restricting fungal 
infection, which can be a promising strategy to sustain 
susceptibility to pathogens [43].

As major contributors to most of the modifications in 
the cell wall composition and phenotype as well as their 
role as receptors, perceiving fluctuations in stress and 
remodeling the cell wall, cell wall proteins (CWPs) play 
critical and dynamic roles in plants during stress [44]. 
To date, the largest number of CWPs identified was 805 
from Arabidopsis [44], followed by Linum usitatissimum 
with 465 CWPs [45]. These data sets were obtained by 
combining the proteins physically located in the cell wall 
with proteins that are not physically located in the cell 
wall but are involved in biological processes related to the 
cell wall. Dirigent proteins (DIR) and DIR-like proteins, 
which were identified to be differentially expressed under 
stress conditions in the plant cell wall, were reported to 
take part in the lignin biosynthetic pathway [46, 47]. DIR-
like protein-encoding genes are induced under biotic 
stress, such as during infection by Physcomitrella patens 
and Pectobacterium carotovorum. Although the large 
number of different DIR genes expressed during wound-
ing and pathogen infection indicate the participation of 
DIR proteins in pathogen defense, direct evidence of the 
activity of DIR proteins and DIR-like proteins against 
pathogens requires techniques such as proteome studies 
[48]. In addition, DIR proteins could mediate the spatial 
control of lignin deposition, which may indicate the roles 
of these proteins in the maintenance of cell wall integrity.

Plasmodesmata are specialized tubular structures in 
the plant cell wall that allow intercellular communica-
tion and transport [49, 50]. Proteomic studies of plas-
modesmata components have revealed the function and 
structure of plasmodesmata, and for example, 61 plas-
modesmata-associated proteins were identified in Arabi-
dopsis leaves, among which, some were responsive to 
stress [51]. It has been shown that intercellular communi-
cation by plasmodesmata is a MAMP-triggered immune 
response that results in plasmodesmata closure [52, 53]. 

Table 1  Techniques used for subcellular isolation in plant proteomic studies

Subcellular 
organelles/
proteome

Techniques Plant/organ References

Cell wall proteins Extracted procedure using sequentially CaCl2, EGTA and LiCl-comple-
mented buffers

Medicago sativa/Stems [20]

Apoplastic fluid Vacuum infiltration-centrifugation Gossypium barbadense/Root [21]

Plasma membrane Two-phase partitioning combined with free-flow electrophoresis Arabidopsis/Seedlings [19]

Mitochondria Centrifugation and layered in a Percoll density gradient Solanum tuberosum/Tuber [22]

Centrifugation combined with one-dimensional blue native polyacryla-
mide gelelectrophoresis

Arabidopsis/leaf [23]

Chloroplasts Homogenisation in sorbitol-based isolation medium with blender and 
centrifugation

Malus domestica/in vitro material [24]

Nucleus Flow cytometric sorting with a mild formaldehyde-based fixation Hordeum vulgare/Root [25]

Ribosome Asymmetric flow field-flow fractionation Nicotiana benthamiana/transgenic lines [26]
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However, some pathogens have evolved mechanisms that 
take advantage of plasmodesmata to spread through-
out a plant. For example, Magnaporthe oryzae secretes 
cytosolic effector proteins that have been observed to 
move from the site of infection to other uninfected cells 
through plasmodesmata [54]. Another case was found 
in N.benthamiana in response to turnip mosaic virus, in 
which a plasmodesmata-specific cell wall-loosening pro-
tein called NbEXPA1 was downregulated by viral infec-
tion. It is believed that this plasmodesmata protein was 
recruited by viral replication to promote potyviral infec-
tion [55].

Though bioinformatic methods provide a launch pad 
to characterize CWPs with high-throughput proteomic 
profiles, there remain proteins annotated as having 
unknown functions and classified as ‘hypothetical’ by 
bioinformatic methods. The combination of morpho-
logical approaches and plant cell wall proteomics, which 
are supported by the analysis of the three-dimensional 
organization of CWPs, has great potential to provide 
information for understanding the function of the cell 
wall in plant immunity.

Apoplast
Apoplast is the space outside the plasma membrane 
and comprises the cell wall matrix and the fluid in the 
intercellular spaces, that allows free movement of mate-
rial. The fluid moving in the extracellular space is usu-
ally named apoplastic fluid. It contains a large variety of 
molecules and proteins that are known to be involved in 
many biological processes [56]. The most commonly used 
method to collect apoplastic fluid is vacuum infiltration-
centrifugation (VIC), the method can be used for the 
analysis of the roots, stems and leaves [57, 58]. Briefly, 
the tissues are infiltrated with a buffer during vacuum 
conditions, and the infiltrated apoplastic fluid is col-
lected by centrifugation. In VIC application, centrifugal 
and buffer are two key factors. It is reported that the cen-
trifugal forces below 1000  g lead to get pure apoplastic 
fluid [59]. In addition, the number of proteins collected 
by using 100  mM Sodium phosphate buffer [60], 0.2  M 
CaCl2 buffer [58] and buffer with different ionic strength 
[61] was significantly different. Apoplastic fluid can also 
be collected by direct centrifuging, for example, in Beta 
vulgaris it was extracted by direct leaf centrifugation 
[62]. At present, about 600 proteins have been identified 
in apoplastic fluid [63]. The functions of these proteins 
are mainly involved in general metabolism, polysaccha-
ride metabolism, proteolysis, oxido-reductase and plant 
defense [57].

Plant pathogenic bacteria have different adaptabil-
ity to their parasitic environment. For example, phy-
topathogenic pseudomonads exhibit a different response 

according to their living on the surface and the interior of 
leaves [64]. This indicates that, for these bacteria, adap-
tation to apoplast environment is the key to establish 
parasitic lifestyle and spread [65]. However, when plants 
under biotic stresses, a large number of pathogenesis 
related proteins and disease resistance proteins contain-
ing leucine-rich repeats (LRR) domain, which frequently 
increase in apoplastic fluids [57].

Moreover, exosomes, which are extracellular vesicles 
(EVs), play a critical role in intercellular signaling in mam-
mals by transporting proteins and small RNAs, as well as 
in responding to pathogen infection in plants. Proteomic 
analyses of EVs from the apoplastic fluids of Arabidop-
sis revealed that these vesicles are highly enriched in 
proteins involved in biotic stress responses. Consistent 
with this finding, EV secretions were enhanced in plants 
infected with Pseudomonas syringae, in which many pro-
teins, such as RPM1-interacting protein4 (RIN4) and the 
glucosinolate transporter PEN3, were highly induced in 
response to stress [63]. These findings reveal that EVs 
may represent an important component of the plant 
immune response.

Plasma membrane
The plasma membrane consists of a phospholipid bilayer 
with embedded proteins that separates the cell inte-
rior from the external environment. Approximately half 
of the membrane volume is membrane proteins. As a 
communication interface with the extracellular environ-
ment, significant intracellular restructuring of the plasma 
membrane can be caused by biotic and abiotic stress in 
plants [66]. Thus, proteomic studies on plasma mem-
brane proteins are essential for exploring pathways of 
signal transduction and elucidating the mechanism of the 
plant defense system. The commonly used procedure to 
analyze the plasma membrane proteome is to first isolate 
the membrane fraction through centrifugation [67]. Most 
known PRRs are present at relatively low levels in the 
plasma membrane; however, it has also become possible 
to perform high-throughput, systematic measurements 
of the proteomes of plasma membranes. It has been 
reported that more than 3900 proteins were observed in 
highly purified rice plasma membranes [68]. Plant mem-
brane proteins, especially plasma membrane-localized 
receptor-like kinases (RLKs) and receptor-like proteins 
(RLPs), which function as pattern recognition receptors 
(PRRs), play a central role in adaptation to biotic stress. 
Usually, a plant RLK contains an extracellular domain, a 
single pass transmembrane domain and an intracellular 
kinase domain [69], whereas an RLP is essentially an RLK 
lacking an intracellular kinase domain.

Many of these RLKs can determine pathogen percep-
tion as well as propagate signals downstream of pathogen 
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recognition [70, 71]. The classic example, which is the 
most characterized PRR-elicitor pair in Arabidopsis, is 
the flagellin sensing2 (FLS2)-brassinosteroid insensi-
tive1-associated kinase1 (BAK1) receptor complex that 
can perceive a 22-amino-acid epitope (flg22) of the bac-
terial flagellin. Cys-rich receptor-like kinases (CRKs) are 
a large subfamily of RLKs in Arabidopsis [72]. A subset, 
CRK28, was demonstrated to be associated with BAK1; 
together, these proteins form the immune receptor com-
plex. In this model, CRKs showed upregulation upon 
the perception of flagellin and all acted to enhance the 
plant immune response to Pseudomonas syringae [73]. 
Pathogen elicitors, such as small molecules from insect 
saliva, may be recognized by the somatic embryogen-
esis receptor kinase (SERK)/BAK1 and trigger defensive 
signaling pathways further downstream in host plants 
[74]. According to proteomics data, infestation by the 
pea aphid caused SERK to stimulate PTI defenses in 
A17 plants, which were isogenic Medicago truncatula 
genotypes without the R gene. However, for Jester plants, 
which contain the R gene, aphid infestation did not trig-
ger SERK, and the PTI defenses were lower than those in 
the A17 plants [75].

Mitochondria
Mitochondria play a vital role in plant cells. These orga-
nelles are not only involved in pathways for energy pro-
duction and signal transduction but also play roles in 
cellular metabolism and programmed cell death (PCD). 
According to bioinformatic predictions, there are up 
to 3000 proteins present in mitochondria in plant cells 
under certain stages or conditions [76]. However, even 
for energy-related proteins, which are the most thor-
oughly studied functional protein group in mitochon-
dria, less than 75% of the proteins are recognized as 
mitochondrial by one prediction algorithm [77]. A recent 
proteomic analysis showed that the plant mitochondrial 
proteome is well defined and probably consists of 2000 or 
more different types of proteins [23, 77].

During metabolic processes, the mitochondrial elec-
tron transport chain (mETC) will produce reactive oxy-
gen species (ROS) as a signal in response to biotic stress 
[78]. A large amount of research has indicated that 
ROS levels increase under various forms of stress, such 
as extreme temperature, drought and pathogen stress, 
through changes in oxidative phosphorylation systems 
[79–83]. Some proteins related to metabolic processes 
could be coinduced in response to nonhost pathogens. 
For example, a proteomic study showed that the abil-
ity of soybean to respond to Bipolaris maydis stress 
depends on several metabolic proteins, such as oxygen 
evolving enhancer (OEE) and mitochondrial processing 
peptidase (MPP) [84]. In addition, autophagy-mediated 

mitochondrial degradation (mitophagy) has important 
effects on the normal function of mitochondria upon 
pathogen exposure [82]. In one iTRAQ-based proteomic 
study, wild-type Arabidopsis plants and autophagy-
deficient mutant plants were analyzed upon exposure 
to Verticillium dahlia. In this case, the authors proved 
that autophagy is involved throughout the defense pro-
cess and is required for activating defense responses; 
autophagy-mediated mitochondrial degradation also 
occurs [82].

Increasing evidence has demonstrated that mitochon-
dria participate in PCD [85–89]. The rice dynamin-
related protein 1E negatively regulates plant PCD by 
modulating the mitochondrial structure and cytochrome 
c release. Heat shock protein (HSP) family induction 
under stress to prevent protein misfolding and irrevers-
ible protein aggregation is also involved in the PCD 
process [90, 91]. These findings suggest that respiratory 
homeostasis is important to enhance tolerance to stress 
and that activation of the defense response system may 
help strengthen plant stress resistance.

Chloroplasts
The plant chloroplast apparatus not only plays an impor-
tant role in conducting photosynthesis but also partici-
pates in many biochemical processes, such as sensing 
environmental stimuli and synthesizing pigments and 
plant hormones [92]. The isolation and purification of 
chloroplasts from different organs are significant steps in 
profiling the chloroplast proteome. Most of the proteins 
located in the chloroplast are covered with a membrane, 
so it is difficult to analyze these proteins by gel-based 
proteomic techniques; however, this issue can be 
resolved by a method involving protein extraction with 
organic solvents [93]. Intact chloroplasts of wheat have 
been isolated from leaves [94].

Increasing evidence has revealed the central role of 
chloroplasts in the plant stress response [95–97]; chlo-
roplasts act as environmental sensors by mediating 
the plant stress response and redox sensor activation 
and by coordinating nuclear-encoded plastid-localized 
proteins [98–100]. Chloroplasts are involved in the 
biosynthesis of phytohormones such as salicylic acid 
(SA) and jasmonic acid (JA), which are the most preva-
lent defense phytohormones produced in response to 
biotic stress. In addition, research suggests that phy-
topathogens target chloroplast homeostasis as a path-
ogenicity mechanism [101]. Recently, the chloroplast 
retrograde pathway was demonstrated by proteomics 
to regulate the plant immune response by affecting the 
glucosinolate pathway and SA-/JA-mediated signal-
ing pathways [99, 102]. The jasmonate ZIM-domain 7 
(JAZ7) protein generally functions as a transcriptional 
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repressor regulating various biological processes, such 
as increasing the susceptibility of Arabidopsis to the 
fungal pathogen Fusarium oxysporum [103], and this 
protein is also involved in the defense response against 
Pseudomonas syringae pv. tomato DC3000 (PstDC3000) 
via regulation of ROS, the energy balance and glucosi-
nolate biosynthesis [104].

Chloroplasts are another type of ROS factory in cells, 
so these organelles are also sensitive to ROS signaling. 
Many ROS defense systems are active under stress, 
such as guaiacol peroxidase-mediated ROS scaveng-
ing [105], DC90-mediated ROS scavenging [106] and 
antioxidant systems [107, 108]. Maintenance of high 
photosynthetic performance also helps enhance stress 
tolerance [109]. The HSP family is important for main-
tenance of the normal function of photosynthesis under 
temperature-related stress [110] and is involved in 
abscisic acid (ABA) signal transduction [111].

Nucleus
The nucleus contains most of the genetic informa-
tion and initiates transcription for protein expression. 
Therefore, under biotic stress, the nucleus determines 
how the plant will respond to external stimuli. Proteins, 
as the most abundant nuclear components, cooperate 
with nucleotide polymers and play vital roles in the 
nucleus. Furthermore, there is a complex network of 
mechanisms that respond to stimuli inside the nucleus. 
Altogether, the proteome of the nucleus requires fur-
ther study. Recent advances in nuclear proteomic 
methodologies have allowed highly sensitive identi-
fication of nuclear proteins [112, 113]. For example, 
approximately 4975 nuclear proteins in leaves were 
detected in soybean, many of the identified proteins 
among which belonged to nuclear localization signals 
and were homologs of transcription factors and other 
nuclear regulatory proteins [114].

Plant cell nuclei can sense signals from pathogens 
and translate these signals into molecular responses, 
which act as warnings to allow the early detection of 
an impending pathogen assault, notably through rapid 
modulation of the proteome [115]. Dramatic changes 
in the nuclear proteome of Solanum lycopersicum upon 
Phytophthora capsici infection were reported [116]. The 
AT-hook-like (AHL) protein family was found to contrib-
ute to immunity. The AHL1 and AHL9 proteins acceler-
ate PTI responses, suggesting that modification of AHL 
protein abundance or function could be employed to 
enhance disease resistance. When apple was exposed to 
Venturia inaequalis, the nuclear proteome of apple leaves 
was mainly involved in ROS scavenging and ubiquitin 
proteasome-mediated protein degradation [117].

Vacuoles
The vacuole is the largest organelle in plants that can 
accumulate inorganic ions and metabolites, store nutri-
ents and degrade discarded macromolecules or orga-
nelles [118]. Vacuoles can detoxify the cell by using 
‘internal excretion’, store the modified toxins, improve 
plant salinity tolerance via intracellular Na+ compart-
mentalization and defend against biotic stress by stor-
ing large amounts of secondary metabolites [119]. 
Vacuoles can remove toxic H2O2 by vacuolar peroxi-
dases [120] and receive damaged proteins or organelles 
by autophagy [121]. These results show that vacuoles 
may be involved in toxic salt accumulation, osmotic 
regulation, ROS scavenging and mitophagy to defend 
against many biotic stress factors.

Proteins exhibit spatiotemporal changes (that is, 
changes in location and expression), which enables the 
cell to adapt to biotic perturbations and form the pro-
teome network, thereby defining the cell’s function and 
phenotype. Although we are witnessing noteworthy 
progress in the understanding of the subcellular pro-
teomes of various plants, it should be noted that a few 
thousand proteins that have been identified in the plant 
proteomes have not been functionally described. In 
practice, it has been challenging to characterize the full 
potential of certain proteins based on abundance, type, 
number or localization. Thus, for this field, we believe 
that the potential for an increased number of future 
discoveries in plant cell biology is tremendously high.

Recognizing PTMs involved in plant defense
Proteins can be further post-translationally modified by 
covalent addition of some chemical units or by chang-
ing the structures of the amino acids themselves. There-
fore, no whole proteome is complete without a map of 
PTMs. PTMs are regulatory processes that can affect 
protein structure, function, subcellular localization, 
activity and stability, which play critical roles in almost 
all biological processes [122, 123]. PTMs are often sig-
nificant molecular engine that can lead to tremendous 
changes in the regulation of biological processes even 
when there are no changes at the total protein or tran-
script levels [124]. Currently, there are more than 400 
known PTMs reactions, and this number is increas-
ing [125]. PTMs proteomics is a fast-growing field that 
aims to provide a comprehensive analysis of protein 
PTMs and a better understanding of the regulatory 
roles of protein PTMs in molecular networks and ulti-
mately the global impact of these PTMs on plant bio-
logical processes.
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Post‑transcriptional modification enrichment
Although PTMs play an extremely important role in 
numerous cellular processes, the analysis of PTMs 
remains challenging because of their complex struc-
tures, dynamic nature and low abundance. In addition, 
repeatability and noninvasive enrichment methods are 
essential for biological studies. Fortunately, substantial 
progress has been made in developing and optimiz-
ing enrichment and fractionation strategies for global 
studies of PTMs (Table  2). The enrichment strategies 
can be applied to the protein level or the peptide level. 
Peptide-based enrichment strategies are by far the 
feasible methods. A brief introduction of the various 
enrichment strategies has been provided in this paper. 
For phosphorylation research, the most productive 
approach is based on exploiting metal chelation. Immo-
bilized metal affinity chromatography (IMAC) and 
metal oxide affinity chromatography (MOAC) methods 
are typical examples of efficient ways to enrich phos-
phorylated peptides from complex mixtures based on 
the interaction between negatively charged phosphate 
groups and positively charged metal ions or metal 
oxides. Enrichment with TiO2 beads has become a rou-
tine method in plant proteomic studies in more recent 
years [126]. Another efficient and sensitive method for 
the enrichment of histidine-phosphorylated peptides 
using Fe3+-IMAC columns was established, as well as 
an optimized sample preparation strategy, which allows 
the quantification of all phosphorylation events and 
requires less input samples than other methods [127].

Glycosylated proteins produce greater proteome diver-
sity than any other PTMs. To date, there has been a lack 
of methods for the analysis of complete glycosylated 
peptides at the whole-proteome scale [136]. For glyco-
sylation, many methods have also been employed for the 
enrichment of glycosylated peptides/proteins, including 
lectin affinity chromatography [137], hydrazide chemistry 
[138], and hydrophilic interaction liquid chromatography 

(HILIC) [139]. A total of 971 O-glcNAc-modified pep-
tides were identified using lectin weak affinity chroma-
tography in one proteomic study in Arabidopsis [137]. 
In addition, 1152  N-glycopeptides were identified from 
Arabidopsis inflorescence tissue by wheat germ lectin 
weak-affinity chromatography [140].

To study plant protein ubiquitination, in  vitro ubiqui-
tination assays are often employed and have been dem-
onstrated to be one of the most suitable tools for testing 
the functions of ubiquitin substrates [141]. However, 
purified proteins, especially those with high solubility 
and expression levels, are not always easy to analyze by 
this method. The Arabidopsis ubiquitination profiling 
in Escherichia coli was reconstituted using a synthetic 
biological approach. In this system, the plant proteins 
are expressed and then immediately participate in ubiq-
uitination reactions within E. coli cells. Additionally, 
this system allowed the efficient purification of ubiqui-
tin conjugates in milligram quantities [142]. Recently, a 
sensor-based proteomic approach that takes advantage 
of the Vx3K0-Lysine63 polyubiquitin specific sensor was 
used [143]. Vx3K0-Lys63 is based on three repetitions of 
ubiquitin interaction motifs from yeast that are joined by 
lysine63-linked polyubiquitin chains [144]. Combined 
with LC–MS/MS, this approach identified over 100 pro-
teins modified with Lys63 polyubiquitin in Arabidopsis 
[143].

There has been an increasing interest in plant PTMs 
research, yet studies hardly examine multiple PTMs 
at one time. The main barriers of PTMs studies are the 
requirement of large amounts of protein and the time 
consuming of sample preparation. Therefore, proteomic 
quantification of multiple PTMs by a new method is 
required. For example, the “one-pot” PTMs enrichment 
approach makes it possible to identify and quantify the 
peptides containing acetylated and succinylated lysine 
residues from 1  mg of mitochondrial protein sample 
[145].

Table 2  New methods and technologies for the identification of PTMs of proteins

SCX strong cation exchange, IMAC immobilized metal ion affinity chromatography, H-pH-RPLC high-pH reversed-phase liquid chromatography, SUMO1/2 small 
ubiquitin-like modifier isoform 1/2

PTMs Method and technology References

Phosphorylation Polymer-supported metal-ion-affinity capture [128]

Functional ligand-binding identification by Tat-based recognition of associating proteins [129]

Glycosylation Dendrimer-conjugated benzoboroxole [130]

Activated ion electron transfer dissociation [131]

Ubiquitination Combined fractional diagonal chromatography [132]

Sumoylation Replaced SUMO1 and SUMO2 isoforms with a variant and purification [133]

Acetylation Peptide prefractionation, immunoaffinity enrichment [134]

Methylation Combining SCX, IMAC and H-pH-RPLC [135]
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Phosphorylation
Phosphorylation of serine, threonine and tyrosine resi-
dues has been widely demonstrated, but the degree of 
histidine residue phosphorylation is low, and histidine 
phosphorylation is considered an archaic type of pro-
tein phosphorylation. Based on large-scale proteome 
analyses of plants, phosphorylation was shown to play 
essential roles in the regulation of nearly all biological 
phenomena, including proliferation, differentiation, 
apoptosis, and cellular communication [146].

In Arabidopsis, two classic PRRs, namely, FLS2 and 
EF-Tu receptor (EFR), which recognize bacterial flg22 
and the EF-Tu epitopes (elf18), respectively, both asso-
ciate with BAK1 [also known as somatic embryogenesis 
receptor kinase 3 (SERK3)] in a ligand-dependent man-
ner. FLS2-BAK1 interacts with botrytis-induced kinase 
1 (BIK1) to initiate plant immunity, which is based on 
BIK1 phosphorylation by BAK1 [1]. Similarly, PTI can 
also be suppressed by counteracting the kinase activ-
ity by serine/threonine protein phosphatase 2A (PP2A) 
activity. Upon flg22 treatment, PP2A activity has to be 
sacrificed for the activity of BAK1 and PTI signaling 
[147]. Additionally, protein phosphatase PP2C38 inter-
acts with FLS2-BIK1, acts as a negative regulator of 
BIK1 and inhibits BIK1 phosphorylation. A combined 
approach using coimmunoprecipitation (Co-IP) and 
phospho-proteomic analyses demonstrated that acti-
vated BIK1 induces phosphorylation of PP2C38 at Ser-
77, which dramatically decrease PP2C38 activity and its 
interaction with the FLS2/BAK1 or EFR/BAK1 receptor 
complexes [148]. The remarkable interactions between 
immune regulatory kinases and phosphatases are a sig-
nificant mechanism by which plant cells achieve home-
ostasis at the proteome level during infection.

Phosphorylation dynamics are essential for the regu-
lation of immune responses. Many bacterial pathogens 
inject effector proteins into the host cell via the type III 
secretion system (TTSS). Thus, there has always been 
a struggle between host cell immune responses and 
pathogen effectors. HopAO1, which is a tyrosine phos-
phatase, is delivered by PstDC3000. Once HopAO1 
is ectopically expressed in Arabidopsis, it inhibits 
elf18- and flg22-induced ROS bursts and resistance 
to PstDC3000, which is part of its virulence strategy 
[71]. HopAO1 expression led to an ~ 50% reduction in 
the phosphorylation of EFR upon elf18 treatment. This 
reduction was partially dependent on HopAO1 cata-
lytic activity, confirming that a major virulence func-
tion of HopAO1 is the targeted dephosphorylation of 
PRRs with the purpose of inhibiting MAMP-induced 
immune responses [71].

Ubiquitination
The ubiquitin system typically involves the covalent 
attachment of a highly conserved 76-amino-acid small 
protein, ubiquitin, to the ε-amino group of a lysine 
residue (Lys) of a substrate protein. Ubiquitination is 
reversible, ATP dependent, and catalyzed by the ubiq-
uitin-activating enzyme (E1), ubiquitin-conjugation 
enzyme (E2), and ubiquitin ligase (E3) cascade [149]. To 
date, one E4 ligase mutant, snc1-enhancing3 (MUSE3), 
has been identified in Arabidopsis [150]. Ubiquitination 
can produce monoubiquitinated or polyubiquitinated 
proteins, chains of which can be formed by linking more 
than one lysine residue (e.g., Lys11, Lys48, Lys63) to ubiq-
uitin. The vital roles of ubiquitination are responsible for 
the selection, targeting and proteolysis of specific sub-
strates destined for degradation [151, 152].

The ubiquitin proteasome system participates in plant 
immunity regulation via PRRs that are ubiquitinated and 
targeted for degradation in the ubiquitin proteasome sys-
tem. For example, two ubiquitin E3 ligases containing 
plant U-box (UPB) domains, PUB12/13, are phospho-
rylated by BAK1, which is required for FLS2-PUB12/13 
association. Then, PUB12/13 polyubiquitinate FLS2 and 
promote the degradation of this protein to attenuate 
immune signaling [153]. In addition, AtUBP12 and its 
solanaceous ortholog NtUBP12, which are two deubiqui-
tinating enzymes, were both identified as negative regula-
tors of HR, indicating that these proteins participate in 
regulating plant immunity against virulent PstDC3000 
in Arabidopsis [154]. Two rice seedling samples were 
investigated by label-free quantitative proteomics after 
treatment with flg22 and chitin [155]. The ubiquitination 
levels of some key components in the phenylpropanoid 
metabolic pathway were upregulated in plants; however, 
the ubiquitination levels of many enzymes in the plant 
hormone signaling pathways were up- or downregulated. 
This finding suggests that ubiquitination may fine tune 
hormone pathways for defense responses.

Sumoylation
Small ubiquitin-like modifier (SUMO) is an ~ 100-amino-
acid polypeptide that is covalently attached to target pro-
teins in a process resembling the conjugation of ubiquitin. 
SUMO has 3 active isoforms, SUMO-1, -2 and -3, with 
mature SUMO-2 and -3 having 97% identical sequences 
[156]. Notably, SUMO-1 and -3 themselves can be fur-
ther modified by SUMO, which results in polySUMO 
chains. Sumoylation is directed by an enzymatic cascade 
analogous to ubiquitination, and SUMO is generally con-
jugated onto lysine residues of target proteins [157]. Cur-
rently, the number of high-confidence SUMO targets in 
Arabidopsis is 1058, most of which are nuclear localized 



Page 9 of 20Liu et al. Plant Methods          (2019) 15:135 

[133]. Mature SUMO is conjugated to substrates by the 
SUMO-activating enzyme (SAE or E1), SUMO-conjugat-
ing enzyme (SCE or E2), and SUMO ligase (E3), which 
can promote sumoylation [158]. Two SUMO E3 ligases 
were identified in Arabidopsis: SIZ1 and high ploidy 2 
(HPY2, also known as AtMMS21). Notably, the level of 
sumoylation detected in SUMO targets is often low, with 
less than 10–20% of the targets being modified; however, 
SUMO attachment appears to affect the function of the 
entire pool of a target protein [159]. This fact implies that 
SUMO attachment regulates target functions by affecting 
some processes, such as cell cycle progression and pro-
tein stability, rather than by activating its targets per se 
[160].

Sumoylation is essential for both normal cellular func-
tions and stress defense and is especially critical for path-
ogen growth, conidium formation and virulence of the 
host cell. With the combination of a proteomic approach 
and biological phenotypic analyses, the deletion mutants 
of the sumoylation pathway genes AOS1 and UBA2 
(belonging to E1) and UBC9 (E2) and SIZ1 (E3) were 
researched [161]. During infection by the rice blast fun-
gus Magnaporthe oryzae, these genes were all signifi-
cantly reduced in strength, and the mutants exhibited 
inhibition of host penetration and invasive growth [161]. 
A total of 940 predicted SUMO proteins were identified, 
most of which were related to conidial storage accumu-
lation and mobilization, cell wall construction, stress 
response, redox detoxification, cell cycle control, and sig-
nal transduction [161]. Notably, this study demonstrated 
that all core components of septins are SUMO targets 
and that septins are sumoylated in M. oryzae, indicating 
that sumoylation of septins can regulate the function of 
septins by affecting the location of septins in the appres-
sorial septin ring and thus is important for infection 
[161].

Acetylation
Protein acetylation is a prevalent protein modifica-
tion that mainly occurs on the N-terminal (Nt) or 
lysine residue. Nt-acetylation is catalyzed by Nt-α-
acetyltransferases (NATs), which the acetyl moieties are 
transferred from acetyl-CoA to the α-amino group of the 
Nt-residue [162]. Even if the fact that more than 80% of 
proteins in humans and plants are estimated to be Nt-
acetylated [163, 164], its functional and significance are 
still enigmatic. Notably, it has been discovered that Nt-
acetylation may be dynamic, working as a regulator in 
plant immunity. For example, Nod-like receptors (NLRs), 
the stability is of which is tightly regulated, function as 
immune receptors in plants. Overaccumulation of NLRs 
often results in autoimmunity, whereas NLR deficiency 
can cause susceptibility to specific pathogens [165]. One 

NLR protein, suppressor of natriuretic peptide receptor 
A (NPR1), constitutive 1 (SNC1), is regulated by differ-
ent NATs. NAT complex A (NATA) contributes to the 
first methionine (Met) acetylation of SNC1, while the 
second Met is acetylated by NAT complex B (NATB). 
Proteomic analyses revealed remarkable results, showing 
that Nt-acetylation of NATA and NATB have opposite 
effects on protein abundance and that NATA destabilizes 
SNC1 and is identified as a modulator of SNC1-medi-
ated responses to pathogens. However, NATB stabilizes 
SNC1. SNC1 protein accumulates in NATA mutant 
plants and enhances pathogen tolerance [165].

In contrast to Nt-acetylation, lysine acetylation is a 
reversible and dynamic post-translational modification 
that is catalyzed by histone acetyltransferases (HATs) or 
histone deacetylases (HDACs) on the histone tails. The 
latest research by MS-based technology in maize leaf 
identified 2791 acetylation sites [166], which is twice 
the number detected in a rice acetylome study (1337 
acetylation sites) [167]. It is obvious that host proteins 
can directly be acetylated by pathogen effector proteins 
encoding HATs to alter immunity. For instance, general 
control nondepressive 5 (GCN5) and alteration/defi-
ciency in activation 2 (ADA2) are known as two subunits 
of the HAT complex, which acetylates histones (H3K9) 
and functions in immune signaling pathway by activating 
the expression of defense-related genes. The cytoplasmic 
effector PsAvh23 is produced by the soybean pathogen 
Phytophthora sojae. PsAvh23 disrupts the ADA2-GCN5 
complex by binding to ADA2 and further suppresses 
H3K9 acetylation mediated by the ADA2-GCN5 module, 
promoting P. sojae infection [168]. Moreover, endogenous 
plant enzymes can regulate protein acetylation during 
the immune response. The maize pathogen Cochliobolus 
carbonum produces the HC-toxin (HCT) as an HDAC 
inhibitor. A new study based on iTRAQ proteomics with 
an immobilization strategy has been conducted in the 
quantitation of protein acetylation in HCT-treated or 
pathogen-infected plants. These studies uncovered that 
HCT is required for infection and plays an important role 
in altering activity of histone deacetylases, which further 
influence both histone and nonhistone protein acetyla-
tion during a plant–pathogen interaction [166].

Glycosylation
Glycosylation of proteins is one of the most abundant 
modifications found in the proteomes of higher eukary-
otes. The most prevalent complex type is asparagine (N)-
linked glycosylation of proteins, which includes several 
modifications, including β-1,2-linked xylose (Xyl), core 
α-1,3-linked Fuc, and Lewis-A epitope structures. In 
addition to N-glycosylation, other types of protein gly-
cosylation have been reported in plants, such as a single 
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N-acetylglucosamine on Ser/Thr residues (O-GlcNAcyla-
tion) and glycosylphoshatidylinositol (GPI) anchors on 
the C-termini of proteins [169, 170].

Plants use immune receptors to recognize pathogen 
effectors and activate effector-triggered immunity (ETI); 
glycosylation of receptors and/or effectors can regulate 
immunity processes. For instance, Meloidogyne gramini-
cola has evolved a novel effector, MgGPP, that is secreted 
into rice cells; this effector targets the endoplasmic retic-
ulum (ER) and is upregulated in the early parasitic stage 
of M. graminicola. Notably, N-glycosylation of MgGPP 
is required to suppress the host response [171]. Another 
example is the glycosylation of flagellin. With the use 
of matrix-assisted laser desorption ionization-time-of-
flight MS (MALDI-TOF MS) analysis, a ten-gene clus-
ter of gigX genes, which are glycosylation island genes 
of Xanthomonas oryzae pv. oryzae, was proven to deter-
mine flagellin glycosylation, resulting in the regulation of 
motility and virulence of X. oryzae pv. oryzae [172]. SA 
homeostasis was also studied by proteomics. UGT76D1, 
a unique uridine 5′-diphospho-glycosyltransferase, plays 
a vital role in SA homeostasis and is associated with the 
immune response to PstDC3000 in Arabidopsis. After 
UGT76D1 expression, the formation of dihydroxyben-
zoic acid (DHBA) glycosides is accelerated. In addition, 
DHBA glycosylation may activate and increase SA syn-
thesis. High levels of SA accumulation lead to oxidative 
bursts and R protein expression and ultimately to PCD 
and increased plant resistance to PstDC3000 [173].

Other PTMs
Protein carbonylation is the direct oxidation product 
of proline, lysine, arginine and threonine [174, 175]. 
Lysine residues are most sensitive to carbonylation and 
are considered to be markers of protein oxidation [176]. 
This PTMs leads to the loss of protein function and ulti-
mately to the degradation of oxidized proteins [177]. The 
early response of plants to biotic stress is usually associ-
ated with oxidative bursts that leads to carbonylation of 
proteins. For example, pathogens can cause a significant 
increase in the carbonylation of proteins in plants [178]. 
In addition, the identification of oxidized amino acid resi-
dues in proteins may provide important information for 
the oxidation mechanism and metabolic pathway of cell 
vitality loss under stress [179].

Some PTMs perform immunomodulation, for exam-
ple, phosphorylation, ubiquitin and sumoylation [180]. 
Although it is very important, identification of the 
kinase upstream of a known substrate remains a major 
challenge. The application of proximity-dependent 
affinity labeling of protein complexes and targeted quan-
titative proteomics is a promising strategy for the dis-
covery of unknown kinases [181–183]. Furthermore, our 

understanding of other PTMs, such as S-nitrosylation 
and sulfenylation, and the importance of these modifica-
tions for plant immune responses is increasing [9]. An in-
depth understanding of the mechanisms via which PTMs 
promote an effective immune response will provide a 
dynamic and comprehensive perspective on plant immu-
nity and provide new strategies for improving the perfor-
mance of plant responses to biotic stress.

Plant immunity mechanisms can be viewed to be the 
products of thousands of proteins acting with a com-
mon plan to shape the cellular response. At the cellular 
level, proteins function in certain environments, such 
as organelles, which provide specific chemical environ-
ments and a set of interaction partners that are necessary 
to enable the protein function [184]. The combination of 
proteomics techniques and the isolation and purification 
of organelles has produced a considerable synergy and 
has provided a wide range of possibilities for understand-
ing the spatial distribution of proteins at the subcellular 
level. The direct identification of proteins in subcellular 
compartments via LC–MS-based technology remains the 
most popular high-throughput approach for crude and 
compartment-enriched samples [185]. Some proteomic 
studies have led to the identification of a considerable 
portion of the subcellular proteome of plants [186–188]. 
This information has led to further research on organelle 
function under biotic stress conditions. This is often a key 
step in understanding the underlying molecular mecha-
nisms of plant resistance. For instance, plant chloroplasts 
[189, 190] and nuclei [191] have emerged as targets of 
pathogen effector proteins. Additionally, chloroplast-
nucleus communication has been found to be associated 
with the plant immune response [192]. Accurate analy-
ses of the subcellular localization of proteins is therefore 
essential for understanding plant immunity.

Comparative protein expression in response 
to biotic stress
Quantitative technology
With the rapid development of sample pretreatment 
and MS-based proteomic technology, qualitative prot-
eomic analysis is becoming increasingly precise, provid-
ing increased coverage and consistent quality, rather than 
merely identifying proteins. The field has shifted from 
protein identification to accurate and reliable quantita-
tive analysis. Because mass spectrometry itself cannot 
achieve quantification, numerous strategies have been 
developed to achieve quantification by mass spectrome-
try. These strategies can be distinguished from each other 
by their method of quantitation, i.e., labeling-based and 
label-free quantitation. Labeling-based strategies include 
isotope-coded affinity tag (ICAT), isobaric tags for rela-
tive and absolute quantification (iTRAQ), tandem mass 
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tag (TMT), amino acid-coded mass tagging/stable iso-
tope labeling with amino acids in cell culture (AACT/
SILAC), uniform 15N/18O labeling and peptides or quan-
titative concatemer (QconCAT). Label-free techniques 
include sequential windowed acquisition of all theoreti-
cal fragment ion mass spectra (SWATH). Although these 
myriad approaches can be considered a bridge between 
quantitative and qualitative analyses, there are many 
choices for practical application, and each of these strate-
gies has its advantages and disadvantages (Table 3).

A mass defect-based four-plex data-independent 
acquisition strategy (MdFDIA) was researched. In this 
approach, cells are grown in culture media supplemented 
with the isotopes 13C6

15N2-lysine and D8-lysine. After 
labeling has been achieved, these two labeled protein 
samples were digested with Lys-C, peptides were labeled 
in vitro with light (213CD2H) and heavy (2CD3) dimethyl 
groups. Then, the four different pseudo-isobaric labeled 
prepared samples were mixed in a 1:1:1:1 ratio and ana-
lyzed by MS2 scans with high resolution MS instrument 

to permitted relative quantification [202]. This approach 
may be employed for relatively high throughput and 
high accuracy comparative analysis of changes in plant 
proteome.

Perspectives and conclusions
There is an increasing risk of yield reduction in agri-
cultural crops due to biotic stress, and it is becoming 
increasingly important to elucidate how plants respond 
to biotic stress. Our basic understanding of plant 
responses to biotic stress needs to be further improved. 
An understanding of proteomics at the cellular and sub-
cellular levels will provide precise regulation targets 
for plant immunity. As reviewed above, recent studies 
have revealed that intricate molecular mechanisms are 
involved in biotic stress. MS-based proteomic strategies 
allow measurement of proteins with critical functions 
and contributions to biotic stress mechanisms. However, 
many questions remain regarding plant proteomics and 
its application in biotic stress.

Table 3  Comparison of main label-based proteomic quantitative techniques

SILAC stable isotope labeling with amino acids in cell culture, CTAP cell-selective labeling with amino acid precursors, ICAT​ isotope-coded affinity tag, ICPL isotope-
coded protein labeling, TMT tandem mass tag, iTRAQ isobaric tag for relative and absolute quantification, DiLeu N,N-dimethyl leucine, IPTL isobaric peptide termini 
labeling

Quantification 
technique

Labeling level Multiplexing 
capability

Reaction localization Amino acid residue MSn Characteristic References

15N labeling Protein 2-plex In vivo and in vitro All MS1 Expensive; need metaboli-
cally active cells

[193]

SILAC Protein 5-plex In vivo and in vitro Lys, Arg MS1 Applicable to active 
cells; arginine can be 
converted into proline 
during cell division

[193]

CTAP Protein 2-plex In vivo and in vitro Lys MS1 Expensive; low multiplex-
ing capability; need 
stable expression of 
exogenous enzymes

[194]

18O labeling Peptide 2-plex In vitro C-terminal MS1 Enzyme-mediated back-
exchange of 18O with 
16O

[195]

ICAT​ Protein/peptide 2-plex In vitro Cys MS1 Does not support labels 
without cysteine-con-
taining peptides

[196]

ICPL Protein/peptide 4-plex In vitro Lys MS1 Support clinical samples; 
need complex compu-
tational analysis

[197]

TMT Peptide 10-plex In vitro N-terminal, Lys MS2 Expensive; wide applica-
tion range

[198]

iTRAQ Peptide 8-plex In vitro N-terminal, Lys MS2 High throughout, strong 
stability; expensive

[199]

DiLeu Peptide 12-plex In vitro N-terminal and ε-amino 
group of the lysine side 
chains

MS2 Wide application range [200]

IPTL Peptide 3-plex In vitro Employs SA (for N-ter-
minal) and dimethyl 
(for C-terminal lysine) 
tagging

MS2 Wide application range [201]
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At what depth can we cover the plant proteome?
To explain the molecular mechanism of protein level reg-
ulation in plants in response to biotic stress, it is impor-
tant to know which proteins/proteomes are involved in 
this biological process, which raises the question of how 
many different proteins/proteomes can be identified in 
a tissue under certain conditions. Scientists have spent 
more than a decade studying how to increase proteome 
coverage in organisms, relying greatly on mass spectro-
metric and bioinformatic analyses. Although MS is a 
powerful method, there are limitations associated with 
the scanning rate of the mass spectrometer, incomplete 
databases and retrieval matching algorithms that make 
the identification and quantification of complete pro-
teomes very challenging. For example, the scale of the 
human proteome remains a matter of debate. The num-
ber of potential protein-coding genes in the human 
genome is now estimated at ~ 20,000; however, the num-
ber of proteins in the human proteome ranges from 
20,000 to several million [203–207]. To map the complete 
human proteome, thousands of LC–MS/MS analysis 
runs were combined, which have likewise mainly been 
attempted by very large-scale experiments [207–210]. 
Combined results showed that protein identification and 
quantification with high confidence at protein existence 
level 1 [211] has been reported in the range of 13,664–
17,008, representing at least 70% of protein-coding genes 
in humans [204, 210, 212]. However, after decades spent 
increasing the metrics of proteome coverage, this aspect 
has not been analyzed systematically for plant proteome 
maps, with only 50% coverage achieved in Arabidopsis 
[213]. Therefore, it is necessary to quantitate and inte-
grate the analysis of the broad-scale plant proteome. 
Effective analytical methods that identify proteins have 
advanced to provide high-quality information in human 
tissues, which are worthy of our study and use for refer-
ence in plant proteomics.

A typical whole-cell proteome contains more than 
10,000 different proteins, with an abundance range of 
seven orders of magnitude, warranting further research 
on the whole-cell proteome [209, 214]. In particular, 
offline peptide fractionation at high pH reversed-phase 
chromatography, followed by peptide loading for low-
pH online analysis in an LC/LC–MS system, has revealed 
numerous profiling data at the protein level in recent 
years [215]. Shotgun proteomic studies have identi-
fied ~ 12,200 proteins with prior multidimensional frac-
tionation strategies [216]. The development of MS-based 
proteomics coupled with subcellular fractionation proto-
cols has provided new opportunities to elucidate mecha-
nisms under different conditions, such as disease and 
stress. To obtain a comprehensive view of the plant pro-
teome, multiple techniques applied in human or animal 

models could be used in concert because of the advan-
tages and shortcomings inherent to each method.

How accurate are the proteomic data that we have?
MS-based proteomics is a highly complex analytical 
workflow and can be subject to large variability, leading 
to challenges in the acquisition of accurate and reproduc-
ible results. The results obtained from proteomics are 
limited by each phase: (1) sample preparation, including 
extraction and proteolytic digestion of the proteins; (2) 
peptide separation through LC; (3) MS analysis; and (4) 
informatic data interpretation. All these steps can intro-
duce significant variability that needs to be accounted 
for at each step of the process from experiment to data 
analysis to obtain reproducible results. Consequently, a 
comprehensive and unbiased tool kit (standard, quality 
control or/and software) is a prerequisite for minimiz-
ing the existing variability and obtaining high-confidence 
results from different mass spectrometers and/or labo-
ratories. Multiple workflows have been optimized that 
address these issues.

In the context of sample preparation, plant tissues often 
contain large amounts of carbohydrates, lipids, organic 
acids and many secondary metabolites, which have cer-
tain effects on protein extraction [217]. To overcome 
these problems, the method of protein precipitation by 
trichloroacetic acid (TCA)/acetone has been applied 
[218, 219]. TCA/acetone not only precipitates proteins 
but also dissolves a large number of contaminants, which 
improves the efficiency of protein extraction. In addition, 
some efficient and reproducible sample preparation strat-
egies can also be used. Such as filter-aided sample prepa-
ration (FASP) [220], single-pot, solid-phase-enhanced 
sample preparation (SP3) [221] and the in-stagetip 
method (iST) [222]. However, the characteristics of all 
three approaches should be considered when using these 
three methods; the performance can differ in terms of 
proteome coverage as well as precision and reproduc-
ibility [223]. As a result, there is no single workflow that 
broadly fits all the sample processing in proteomics, 
and an optimal processing workflow for plant proteome 
analysis would ideally be built on the characterization of 
plant tissues or whole plants. There is no doubt that the 
rapid and deep proteomic analysis in plants will be essen-
tial in further research.

Another challenge associated with the reliability of pro-
teomics results is data analysis. Given the large amount 
of available mass spectral data, the ability of data analysis 
directly determines whether valuable information can be 
obtained. Qualitatively, data analysis mainly refers to pro-
teomic database searching. Currently, the main method 
of shotgun proteomics data analysis is to identify pro-
teins by matching theoretical protein sequence databases 
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with database search algorithms. The proteomic data res-
olution rate has increased from 50 to 85% [224]. The two 
main challenges that have been focused on are the proper 
matching characteristics of peptides and the spectra and 
credibility of the peptide matching results. Another chal-
lenge is data processing speed. In this respect, many rep-
resentative studies have been conducted, such as studies 
using MaxQuant [225], Open-pFind [224], and MSFrag-
ger [226]. Moreover, software for top-down proteomics 
have also been used [227, 228]. Based on the statistical 
approach taken, or from a semiquantitative perspective, 
proteomics data analysis lacks a perfect decision-making 
process and is prone to misleading and incorrect data 
analysis and interpretation. To solve this problem, Marta 
et al. [229] analyzed and compared available methods of 
proteomics data analysis, providing a reference for other 
researchers.

What are the other notable aspects of spatial and PTMs 
proteomics?
The identification of new targets and key regulators 
of stress remains an important but challenging goal 
for biotic stress research. MS-based proteomics has 
advanced and is now a versatile method that enables 
the generation of large datasets, including data regard-
ing sequences, states of modification, quantities, protein 
structures and macromolecular contexts [230]. Several 
studies have shown that approximately 50% of the human 
proteome is located in multiple cellular compartments 
[207], which indicates that these proteins have multiple 
roles. These proteins may have two or more different 
cellular functions, depending on their subcellular envi-
ronment [231]. The number of such proteins contin-
ues to increase [232]. In addition, proteins may change 
their position depending on cell cycle stages, circadian 
rhythms, or various stress factors [18]. These localization 
details need to be considered when designing spatial pro-
teomic methods and validation experiments.

PTMs are key to many cellular signal transduction 
events, so it is important to know which proteins can 
be post-translationally modified and at which amino 
acid residue. In the case of phosphorylation, it remains 
unclear how many proteins are phosphorylated in the 
eukaryotic proteome and how many phosphoryla-
tion sites there are, despite the large number of high-
throughput phosphoproteomic data that have emerged 
in the past decade [233, 234]. There is less phospho-
rylation data for Arabidopsis than for humans, mice 
and yeast [235]. Furthermore, in vivo, various kinds of 
PTMs do not exist in isolation, and the mutual coor-
dination and influence of these PTMs enable com-
plex life activities to proceed smoothly. Coordination 
of multiple PTMs ensures rapid and fine-tuned signal 

transduction and, in many cases, mediates activation 
and attenuation of the same pathway [236]. Collabora-
tive studies on these kinds of multi-PTMs is emerging 
in the field of plant research. Therefore, there clearly 
remains much to be studied in plant PTMs research.

As emphasized above, MS-based proteomics has 
attracted many researchers with the ability to decipher 
complex proteomic networks and provides a holistic 
view at the molecular level that may better reflect the 
phenotype of plant resistance. If carefully designed and 
validated, spatial proteomics and PTMs proteomics, 
with appropriate bioinformatic assistance, are invalu-
able tools that make it possible to uncover plant resist-
ance mechanisms. We are optimistic that an increasing 
number of laboratories will adopt, practice and advance 
MS-based proteomics to answer important biological 
questions.
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